metal-organic compounds
Bis(2-amino-1,3-benzothiazol-3-ium) tetrachloridozincate(II)
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, bUniverstié Lyon 1, Centre de Diffractométrie Henri Longchambon, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France, and cLaboratoire de Chimie Organometallique de Surface (LCOMS), École Supérieure de Chimie Physique Électronique, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr
The 7H7N2S)2[ZnCl4], contains a network of 2-aminobenzothiazolium cations and tetrahedral [ZnCl4]2− anions. The crystal packing is influenced by cation-to-anion N—H⋯Cl and C—H⋯Cl hydrogen bonds. The [ZnCl4]2− anions have a distorded tetrahedral geometry. Intermolecular π–π stacking interactions are present between neighboring benzene rings, thiazole and benzene rings and neighboring thiazole rings [centroid–centroid distances = 3.711 (2), 3.554 (1), 3.536 (2) and 3.572 (1) Å].
of the title compound, (CRelated literature
For common applications of organic–inorganic hybrid materials, see: Bringley & Rajeswaran (2006); Pierpont & Jung (1994); Dai et al. (2002). For the geometry around the zinc atom, see: Harrison (2005). For the weighting scheme used, see: Prince (1982); Watkin (1994) and for the extinction correction, see: Larson (1970).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536811015753/vn2006sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811015753/vn2006Isup2.hkl
A mixture of an aqueous solution of 2-aminobenzothiazole (3 mmol, 0.450 g), zinc chloride (1.5 mmol, 0.297 g) and HCl (10 ml, 0.3 M) in a Petri dish was slowly evaporated at room temperature. Colorless single crystals of the title compound were isolated after several days (yield 58%).
All non hydrogen atoms were refined anisotropically. The H atoms were all located in a difference map. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).Fig. 1. View of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. | |
Fig. 2. The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are denoted by dotted lines. ZnCl4 is given in tetrahedral representation. | |
Fig. 3. π–π stacking interactions in (C7H7N2S)2[ZnCl4]. The centroids of the rings are indicated by orange spheres. |
(C7H7N2S)2[ZnCl4] | Z = 2 |
Mr = 509.61 | F(000) = 512 |
Triclinic, P1 | Dx = 1.714 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.7107 Å |
a = 7.543 (1) Å | Cell parameters from 3221 reflections |
b = 7.828 (1) Å | θ = 3.4–29.4° |
c = 17.109 (2) Å | µ = 2.00 mm−1 |
α = 94.250 (1)° | T = 110 K |
β = 100.930 (1)° | Plate, colorless |
γ = 92.465 (1)° | 0.49 × 0.23 × 0.14 mm |
V = 987.5 (2) Å3 |
Agilent Xcalibur Atlas Gemini ultra diffractometer | 4685 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3630 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 10.4685 pixels mm-1 | θmax = 29.5°, θmin = 3.4° |
ω scans | h = −9→9 |
Absorption correction: analytical [using a multifaceted crystal model based on expressions derived by Clark & Reid (1995), implemented in CrysAlis PRO (Agilent, 2010)] | k = −10→10 |
Tmin = 0.498, Tmax = 0.771 | l = −22→23 |
10196 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.054 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.230E + 04 0.321E + 04 0.179E + 04 528. |
wR(F2) = 0.111 | (Δ/σ)max = 0.001 |
S = 0.94 | Δρmax = 1.03 e Å−3 |
4685 reflections | Δρmin = −1.23 e Å−3 |
227 parameters | Extinction correction: Larson (1970), Equation 22 |
0 restraints | Extinction coefficient: 20 (3) |
Primary atom site location: structure-invariant direct methods |
(C7H7N2S)2[ZnCl4] | γ = 92.465 (1)° |
Mr = 509.61 | V = 987.5 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.543 (1) Å | Mo Kα radiation |
b = 7.828 (1) Å | µ = 2.00 mm−1 |
c = 17.109 (2) Å | T = 110 K |
α = 94.250 (1)° | 0.49 × 0.23 × 0.14 mm |
β = 100.930 (1)° |
Agilent Xcalibur Atlas Gemini ultra diffractometer | 4685 independent reflections |
Absorption correction: analytical [using a multifaceted crystal model based on expressions derived by Clark & Reid (1995), implemented in CrysAlis PRO (Agilent, 2010)] | 3630 reflections with I > 2σ(I) |
Tmin = 0.498, Tmax = 0.771 | Rint = 0.045 |
10196 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 0.94 | Δρmax = 1.03 e Å−3 |
4685 reflections | Δρmin = −1.23 e Å−3 |
227 parameters |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.49814 (8) | 0.31162 (7) | 0.75071 (4) | 0.0243 | |
Cl2 | 0.29039 (16) | 0.43801 (16) | 0.81360 (8) | 0.0274 | |
Cl3 | 0.50293 (17) | 0.47084 (17) | 0.64494 (8) | 0.0312 | |
Cl4 | 0.43482 (19) | 0.03141 (16) | 0.71252 (8) | 0.0327 | |
Cl5 | 0.76785 (17) | 0.33826 (17) | 0.83422 (9) | 0.0348 | |
S6 | 0.80197 (17) | 0.66813 (17) | 0.54732 (8) | 0.0271 | |
C7 | 0.9702 (6) | 0.6161 (6) | 0.6239 (3) | 0.0238 | |
N8 | 1.1348 (6) | 0.6629 (5) | 0.6125 (3) | 0.0270 | |
C9 | 1.1369 (7) | 0.7391 (6) | 0.5413 (3) | 0.0259 | |
C10 | 0.9660 (7) | 0.7508 (6) | 0.4981 (3) | 0.0274 | |
C11 | 0.9378 (8) | 0.8213 (7) | 0.4244 (3) | 0.0334 | |
C12 | 1.0891 (9) | 0.8761 (7) | 0.3964 (4) | 0.0399 | |
C13 | 1.2610 (8) | 0.8636 (7) | 0.4407 (4) | 0.0371 | |
C14 | 1.2880 (7) | 0.7940 (7) | 0.5137 (4) | 0.0332 | |
N15 | 0.9376 (6) | 0.5413 (6) | 0.6864 (3) | 0.0301 | |
N16 | 0.4666 (6) | 0.2078 (6) | 1.1438 (3) | 0.0318 | |
C17 | 0.3739 (7) | 0.1401 (6) | 1.0765 (3) | 0.0267 | |
S18 | 0.33424 (17) | 0.24680 (16) | 0.98962 (8) | 0.0267 | |
C19 | 0.2084 (7) | 0.0651 (7) | 0.9370 (3) | 0.0272 | |
C20 | 0.1203 (7) | 0.0453 (7) | 0.8583 (3) | 0.0289 | |
C21 | 0.0273 (7) | −0.1091 (7) | 0.8316 (3) | 0.0305 | |
C22 | 0.0266 (7) | −0.2424 (6) | 0.8813 (3) | 0.0298 | |
C23 | 0.1155 (7) | −0.2224 (6) | 0.9596 (3) | 0.0279 | |
C24 | 0.2056 (7) | −0.0673 (6) | 0.9873 (3) | 0.0258 | |
N25 | 0.2989 (6) | −0.0203 (5) | 1.0642 (3) | 0.0256 | |
H111 | 0.8216 | 0.8312 | 0.3963 | 0.0401* | |
H121 | 1.0765 | 0.9226 | 0.3472 | 0.0479* | |
H131 | 1.3614 | 0.9009 | 0.4205 | 0.0452* | |
H141 | 1.4023 | 0.7848 | 0.5425 | 0.0398* | |
H201 | 0.1216 | 0.1333 | 0.8250 | 0.0348* | |
H211 | −0.0354 | −0.1254 | 0.7796 | 0.0368* | |
H221 | −0.0350 | −0.3478 | 0.8606 | 0.0360* | |
H231 | 0.1136 | −0.3105 | 0.9923 | 0.0341* | |
H152 | 1.0268 | 0.5160 | 0.7218 | 0.0362* | |
H162 | 0.5251 | 0.3062 | 1.1464 | 0.0382* | |
H161 | 0.4973 | 0.1448 | 1.1825 | 0.0382* | |
H151 | 0.8275 | 0.5082 | 0.6881 | 0.0364* | |
H81 | 1.2342 | 0.6334 | 0.6426 | 0.0335* | |
H251 | 0.3111 | −0.0904 | 1.1014 | 0.0316* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0209 (3) | 0.0234 (3) | 0.0286 (3) | 0.0006 (2) | 0.0037 (2) | 0.0055 (2) |
Cl2 | 0.0251 (6) | 0.0269 (6) | 0.0310 (6) | 0.0003 (5) | 0.0074 (5) | 0.0040 (5) |
Cl3 | 0.0238 (6) | 0.0367 (7) | 0.0359 (7) | 0.0048 (5) | 0.0079 (5) | 0.0140 (5) |
Cl4 | 0.0414 (7) | 0.0246 (6) | 0.0303 (6) | −0.0007 (5) | 0.0031 (5) | 0.0032 (5) |
Cl5 | 0.0256 (6) | 0.0321 (7) | 0.0434 (8) | −0.0064 (5) | −0.0049 (5) | 0.0156 (6) |
S6 | 0.0210 (6) | 0.0287 (6) | 0.0299 (6) | 0.0014 (5) | 0.0004 (5) | 0.0036 (5) |
C7 | 0.018 (2) | 0.024 (2) | 0.031 (3) | 0.0051 (18) | 0.0061 (19) | 0.004 (2) |
N8 | 0.022 (2) | 0.025 (2) | 0.034 (2) | 0.0004 (16) | 0.0037 (17) | 0.0024 (18) |
C9 | 0.028 (3) | 0.024 (2) | 0.028 (2) | 0.0062 (19) | 0.009 (2) | 0.002 (2) |
C10 | 0.032 (3) | 0.021 (2) | 0.028 (3) | 0.003 (2) | 0.004 (2) | −0.003 (2) |
C11 | 0.045 (3) | 0.025 (3) | 0.029 (3) | −0.001 (2) | 0.004 (2) | −0.001 (2) |
C12 | 0.061 (4) | 0.026 (3) | 0.032 (3) | −0.009 (3) | 0.013 (3) | −0.003 (2) |
C13 | 0.043 (3) | 0.029 (3) | 0.044 (3) | 0.002 (2) | 0.023 (3) | −0.004 (2) |
C14 | 0.026 (3) | 0.030 (3) | 0.045 (3) | 0.001 (2) | 0.010 (2) | 0.001 (2) |
N15 | 0.026 (2) | 0.035 (2) | 0.029 (2) | −0.0015 (18) | 0.0020 (18) | 0.0060 (19) |
N16 | 0.034 (2) | 0.028 (2) | 0.032 (2) | −0.0031 (19) | 0.0012 (19) | 0.0066 (19) |
C17 | 0.023 (2) | 0.026 (2) | 0.032 (3) | −0.0024 (19) | 0.007 (2) | 0.006 (2) |
S18 | 0.0268 (6) | 0.0231 (6) | 0.0308 (6) | −0.0029 (5) | 0.0068 (5) | 0.0054 (5) |
C19 | 0.021 (2) | 0.029 (3) | 0.034 (3) | 0.0000 (19) | 0.010 (2) | 0.006 (2) |
C20 | 0.028 (3) | 0.027 (3) | 0.035 (3) | 0.002 (2) | 0.011 (2) | 0.005 (2) |
C21 | 0.029 (3) | 0.031 (3) | 0.030 (3) | −0.007 (2) | 0.008 (2) | −0.002 (2) |
C22 | 0.029 (3) | 0.019 (2) | 0.041 (3) | −0.0046 (19) | 0.010 (2) | −0.004 (2) |
C23 | 0.028 (3) | 0.022 (2) | 0.036 (3) | −0.0003 (19) | 0.011 (2) | 0.004 (2) |
C24 | 0.022 (2) | 0.025 (2) | 0.032 (3) | 0.0034 (19) | 0.011 (2) | 0.003 (2) |
N25 | 0.028 (2) | 0.0190 (19) | 0.031 (2) | 0.0027 (16) | 0.0072 (18) | 0.0060 (17) |
Zn1—Cl2 | 2.2820 (14) | N15—H152 | 0.856 |
Zn1—Cl3 | 2.2770 (14) | N15—H151 | 0.865 |
Zn1—Cl4 | 2.2462 (14) | N16—C17 | 1.292 (7) |
Zn1—Cl5 | 2.2452 (14) | N16—H162 | 0.865 |
S6—C7 | 1.728 (5) | N16—H161 | 0.858 |
S6—C10 | 1.750 (5) | C17—S18 | 1.741 (5) |
C7—N8 | 1.333 (6) | C17—N25 | 1.340 (6) |
C7—N15 | 1.315 (6) | S18—C19 | 1.762 (5) |
N8—C9 | 1.397 (6) | C19—C20 | 1.379 (7) |
N8—H81 | 0.876 | C19—C24 | 1.398 (7) |
C9—C10 | 1.369 (7) | C20—C21 | 1.372 (7) |
C9—C14 | 1.378 (7) | C20—H201 | 0.926 |
C10—C11 | 1.398 (7) | C21—C22 | 1.394 (7) |
C11—C12 | 1.383 (8) | C21—H211 | 0.922 |
C11—H111 | 0.926 | C22—C23 | 1.375 (8) |
C12—C13 | 1.384 (9) | C22—H221 | 0.940 |
C12—H121 | 0.932 | C23—C24 | 1.372 (7) |
C13—C14 | 1.384 (8) | C23—H231 | 0.920 |
C13—H131 | 0.934 | C24—N25 | 1.385 (7) |
C14—H141 | 0.917 | N25—H251 | 0.865 |
Cl2—Zn1—Cl3 | 103.35 (5) | C7—N15—H152 | 119.0 |
Cl2—Zn1—Cl4 | 114.50 (5) | C7—N15—H151 | 119.2 |
Cl3—Zn1—Cl4 | 112.21 (6) | H152—N15—H151 | 121.4 |
Cl2—Zn1—Cl5 | 108.54 (6) | C17—N16—H162 | 120.4 |
Cl3—Zn1—Cl5 | 110.34 (5) | C17—N16—H161 | 119.8 |
Cl4—Zn1—Cl5 | 107.81 (6) | H162—N16—H161 | 117.3 |
C7—S6—C10 | 90.0 (2) | N16—C17—S18 | 123.7 (4) |
S6—C7—N8 | 112.2 (4) | N16—C17—N25 | 124.7 (5) |
S6—C7—N15 | 123.3 (4) | S18—C17—N25 | 111.6 (4) |
N8—C7—N15 | 124.5 (5) | C17—S18—C19 | 90.6 (2) |
C7—N8—C9 | 114.5 (4) | S18—C19—C20 | 128.4 (4) |
C7—N8—H81 | 123.0 | S18—C19—C24 | 110.2 (4) |
C9—N8—H81 | 121.8 | C20—C19—C24 | 121.4 (5) |
N8—C9—C10 | 111.9 (5) | C19—C20—C21 | 117.2 (5) |
N8—C9—C14 | 126.5 (5) | C19—C20—H201 | 121.4 |
C10—C9—C14 | 121.6 (5) | C21—C20—H201 | 121.4 |
S6—C10—C9 | 111.4 (4) | C20—C21—C22 | 121.5 (5) |
S6—C10—C11 | 127.5 (4) | C20—C21—H211 | 119.3 |
C9—C10—C11 | 121.1 (5) | C22—C21—H211 | 119.2 |
C10—C11—C12 | 117.4 (6) | C21—C22—C23 | 121.1 (5) |
C10—C11—H111 | 120.4 | C21—C22—H221 | 119.2 |
C12—C11—H111 | 122.1 | C23—C22—H221 | 119.7 |
C11—C12—C13 | 120.8 (6) | C22—C23—C24 | 117.9 (5) |
C11—C12—H121 | 120.2 | C22—C23—H231 | 120.7 |
C13—C12—H121 | 118.9 | C24—C23—H231 | 121.4 |
C12—C13—C14 | 121.5 (5) | C19—C24—C23 | 120.9 (5) |
C12—C13—H131 | 119.5 | C19—C24—N25 | 112.3 (4) |
C14—C13—H131 | 119.0 | C23—C24—N25 | 126.8 (5) |
C13—C14—C9 | 117.5 (5) | C24—N25—C17 | 115.3 (4) |
C13—C14—H141 | 121.0 | C24—N25—H251 | 122.4 |
C9—C14—H141 | 121.5 | C17—N25—H251 | 122.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H81···Cl3i | 0.88 | 2.43 | 3.190 (5) | 145 |
N15—H151···Cl3 | 0.86 | 2.42 | 3.235 (5) | 157 |
N15—H152···Cl2i | 0.86 | 2.42 | 3.274 (5) | 176 |
N25—H251···Cl5ii | 0.86 | 2.41 | 3.215 (5) | 155 |
N16—H161···Cl4ii | 0.86 | 2.34 | 3.196 (5) | 177 |
N16—H162···Cl2iii | 0.86 | 2.37 | 3.215 (5) | 166 |
C20—H201···Cl2 | 0.93 | 2.69 | 3.473 (6) | 142 |
C22—H221···Cl5iv | 0.94 | 2.78 | 3.701 (5) | 167 |
C11—H111···Cl4v | 0.93 | 2.73 | 3.592 (6) | 154 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+2; (iii) −x+1, −y+1, −z+2; (iv) x−1, y−1, z; (v) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C7H7N2S)2[ZnCl4] |
Mr | 509.61 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 110 |
a, b, c (Å) | 7.543 (1), 7.828 (1), 17.109 (2) |
α, β, γ (°) | 94.250 (1), 100.930 (1), 92.465 (1) |
V (Å3) | 987.5 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.00 |
Crystal size (mm) | 0.49 × 0.23 × 0.14 |
Data collection | |
Diffractometer | Agilent Xcalibur Atlas Gemini ultra diffractometer |
Absorption correction | Analytical [using a multifaceted crystal model based on expressions derived by Clark & Reid (1995), implemented in CrysAlis PRO (Agilent, 2010)] |
Tmin, Tmax | 0.498, 0.771 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10196, 4685, 3630 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.111, 0.94 |
No. of reflections | 4685 |
No. of parameters | 227 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.03, −1.23 |
Computer programs: CrysAlis PRO (Agilent, 2010), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003), DIAMOND (Brandenburg, 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H81···Cl3i | 0.88 | 2.43 | 3.190 (5) | 145 |
N15—H151···Cl3 | 0.86 | 2.42 | 3.235 (5) | 157 |
N15—H152···Cl2i | 0.86 | 2.42 | 3.274 (5) | 176 |
N25—H251···Cl5ii | 0.86 | 2.41 | 3.215 (5) | 155 |
N16—H161···Cl4ii | 0.86 | 2.34 | 3.196 (5) | 177 |
N16—H162···Cl2iii | 0.86 | 2.37 | 3.215 (5) | 166 |
C20—H201···Cl2 | 0.93 | 2.69 | 3.473 (6) | 142 |
C22—H221···Cl5iv | 0.94 | 2.78 | 3.701 (5) | 167 |
C11—H111···Cl4v | 0.93 | 2.73 | 3.592 (6) | 154 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+2; (iii) −x+1, −y+1, −z+2; (iv) x−1, y−1, z; (v) −x+1, −y+1, −z+1. |
Acknowledgements
We would like to acknowledge the support provided by the Secretary of State for Scientific Research and Technology of Tunisia.
References
Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304–m1305. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sum, Q.-Q. (2002). Inorg. Chem. 41, 1391–1396. Web of Science CSD CrossRef PubMed CAS Google Scholar
Harrison, W. T. A. (2005). Acta Cryst. E61, m1951–m1952. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Pierpont, C. G. & Jung, O. (1994). J. Am. Chem. Soc. 116, 2229–2230. Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag Google Scholar
Watkin, D. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Inorganic-organic hybrid compounds provide a class of materials displaying interesting technological importance (Bringley & Rajeswaran, 2006; Pierpont & Jung, 1994; Dai et al., 2002). We report the crystal structure of one such compound, (C7H7N2S)2[ZnCl4] (I), formed from the reaction of 2-aminobenzothiazole with zinc chloride. As shown in Fig.1, only the nitrogen atom of the thiazole ring of the title compound is protonated, but not that of the amine group. Thus, to ensure charge equilibrium, the structure associates each tetrachlorizincate anion with two (2-aminobenzothiazolium) cations. Fig.2 shows that the atomic arrangement of the title hybrid material can be described as inorganic ZnCl42- units isolated from each other by the organic cations. The different entities are held together by coulombic attraction and multiple hydrogen bonds to form a three dimensional network. The tetraclorozincate anion geometrical features show that the Zn—Cl bond lengths vary between 2.245 (1) and 2.282 (1) Å and the Cl—Zn—Cl angles range from 103.35 (5) to 112.21 (5) °. These values, which are in good agreement with those reported previously, clearly indicate that the [ZnCl4]2- anion has a slightly distorted tetrahedral stereochemistry (Harrison, 2005). Intermolecular π-π stacking interactions are present between neighboring phenyl rings (centroid-centroid distance = 3.711 (2) Å), thiazole-phenyl rings (centroid-centroid distance = 3.554 (1) Å) and thiazole-thiazole rings (centroid-centroid distances = 3.536 (2) and 3.572 (1) Å) (Fig. 3).