metal-organic compounds
Poly[diimidazole-μ4-oxalato-μ2-oxalato-dicopper(II)]
aJinhua Professional Technical College, No. 1188 Wuzhou Street, Jinhua, Zhejiang 321007, People's Republic of China
*Correspondence e-mail: jh_ll@126.com
The title compound, [Cu2(C2O4)2(C3H4N2)2]n, was obtained as an unexpected product under hydrothermal conditions. The CuII atom is in a Jahn–Teller-distorted octahedral environment formed by one imidazole N atom and five O atoms from three oxalate anions. The two independent oxalate anions are situated on centres of inversion and coordinate to the CuII atom in two different modes, viz. bidentate and monodentate. The bidentate anions bridge two CuII atoms, whereas the monodentate anions bridge four CuII atoms, leading to a layered arrangement parallel to (100). These layers are further linked into a final three-dimensional network structure via intermolecular N—H⋯O hydrogen bonds. The title compound is isotypic with the Zn analogue.
Related literature
For background to oxalates, see: Ghosh et al. (2004); Ye & Lin (2010). For the isotypic Zn analogue, see: Lu et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536811015777/wm2473sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811015777/wm2473Isup2.hkl
A mixture of 2-carboxymethylsulfanyl nicotinic acid (0.086 g, 0.40 mmol), CuCl2.2H2O (0.068 g, 0.40 mmol), and imidazole (0.054 g, 0.80 mmol) in CH3CH2OH (2 ml)/H2O (16 ml) was placed in a 25 ml Teflon-lined stainless steel reactor and heated at 383 K for 24 h, and then cooled to room temperature over a period of 24 h. Green crystals suitable for X-ray analysis were obtained.
The H-atoms were positioned geometrically and included in the
using a riding model [C—H 0.93Å and Uiso(H) = 1.2Ueq(C); N—H 0.86 Å; and Uiso(H) = 1.2Ueq(N)].Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(C2O4)2(C3H4N2)2] | F(000) = 436 |
Mr = 439.28 | Dx = 2.217 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4365 reflections |
a = 8.3367 (4) Å | θ = 2.5–27.6° |
b = 9.3131 (5) Å | µ = 3.29 mm−1 |
c = 8.4838 (5) Å | T = 296 K |
β = 92.352 (3)° | Block, green |
V = 658.13 (6) Å3 | 0.28 × 0.18 × 0.06 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 1511 independent reflections |
Radiation source: fine-focus sealed tube | 1362 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 27.6°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→9 |
Tmin = 0.497, Tmax = 0.821 | k = −12→12 |
10313 measured reflections | l = −11→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0335P)2 + 0.3353P] where P = (Fo2 + 2Fc2)/3 |
1511 reflections | (Δ/σ)max = 0.001 |
109 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
[Cu2(C2O4)2(C3H4N2)2] | V = 658.13 (6) Å3 |
Mr = 439.28 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.3367 (4) Å | µ = 3.29 mm−1 |
b = 9.3131 (5) Å | T = 296 K |
c = 8.4838 (5) Å | 0.28 × 0.18 × 0.06 mm |
β = 92.352 (3)° |
Bruker APEXII CCD diffractometer | 1511 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1362 reflections with I > 2σ(I) |
Tmin = 0.497, Tmax = 0.821 | Rint = 0.028 |
10313 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.49 e Å−3 |
1511 reflections | Δρmin = −0.42 e Å−3 |
109 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | −0.87721 (3) | 0.23821 (2) | −0.10302 (3) | 0.02435 (10) | |
O1 | −0.80090 (16) | 0.04677 (14) | −0.02324 (17) | 0.0263 (3) | |
O2 | −0.90639 (16) | −0.15701 (14) | 0.06412 (17) | 0.0265 (3) | |
O3 | −0.97708 (18) | 0.41685 (14) | −0.18398 (16) | 0.0277 (3) | |
O4 | −0.91189 (18) | 0.37282 (15) | 0.12789 (17) | 0.0296 (3) | |
N1 | −0.6552 (2) | 0.30160 (19) | −0.1281 (2) | 0.0294 (4) | |
N2 | −0.3925 (2) | 0.2996 (3) | −0.1154 (3) | 0.0450 (5) | |
H2A | −0.2956 | 0.2704 | −0.0975 | 0.054* | |
C1 | −0.9154 (2) | −0.03131 (19) | 0.0114 (2) | 0.0214 (4) | |
C2 | −1.0193 (2) | 0.51365 (19) | −0.0895 (2) | 0.0225 (4) | |
C3 | −0.5993 (3) | 0.4276 (3) | −0.1902 (3) | 0.0411 (5) | |
H3A | −0.6631 | 0.5019 | −0.2305 | 0.049* | |
C4 | −0.4374 (3) | 0.4264 (3) | −0.1836 (3) | 0.0483 (6) | |
H4A | −0.3699 | 0.4981 | −0.2186 | 0.058* | |
C5 | −0.5252 (3) | 0.2292 (2) | −0.0814 (3) | 0.0400 (6) | |
H5A | −0.5266 | 0.1404 | −0.0313 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02007 (15) | 0.01856 (14) | 0.03460 (17) | 0.00096 (8) | 0.00343 (10) | 0.00411 (9) |
O1 | 0.0212 (7) | 0.0228 (6) | 0.0351 (8) | −0.0002 (5) | 0.0017 (6) | 0.0042 (6) |
O2 | 0.0215 (7) | 0.0203 (6) | 0.0377 (8) | 0.0020 (5) | 0.0023 (6) | 0.0040 (5) |
O3 | 0.0356 (8) | 0.0206 (6) | 0.0269 (7) | 0.0042 (5) | 0.0015 (6) | 0.0004 (5) |
O4 | 0.0369 (8) | 0.0235 (7) | 0.0284 (7) | 0.0072 (6) | 0.0001 (6) | 0.0016 (5) |
N1 | 0.0244 (8) | 0.0261 (8) | 0.0379 (10) | −0.0009 (7) | 0.0034 (7) | 0.0014 (7) |
N2 | 0.0216 (10) | 0.0462 (12) | 0.0670 (15) | 0.0008 (8) | 0.0001 (9) | 0.0017 (10) |
C1 | 0.0204 (9) | 0.0217 (8) | 0.0222 (9) | 0.0022 (7) | 0.0013 (7) | −0.0013 (7) |
C2 | 0.0224 (9) | 0.0214 (8) | 0.0238 (10) | −0.0019 (7) | 0.0008 (7) | 0.0019 (7) |
C3 | 0.0339 (12) | 0.0401 (12) | 0.0490 (14) | −0.0052 (10) | −0.0025 (10) | 0.0143 (10) |
C4 | 0.0334 (12) | 0.0551 (15) | 0.0561 (16) | −0.0138 (11) | −0.0001 (11) | 0.0164 (13) |
C5 | 0.0272 (12) | 0.0303 (11) | 0.0624 (16) | 0.0021 (8) | 0.0015 (11) | 0.0043 (10) |
Cu1—N1 | 1.9624 (18) | N1—C3 | 1.375 (3) |
Cu1—O3 | 1.9713 (13) | N2—C5 | 1.328 (3) |
Cu1—O2i | 1.9960 (14) | N2—C4 | 1.361 (3) |
Cu1—O1 | 2.0016 (13) | N2—H2A | 0.8600 |
Cu1—O4 | 2.3536 (14) | C1—C1i | 1.532 (4) |
Cu1—O4ii | 2.512 (1) | C2—O4iii | 1.240 (2) |
O1—C1 | 1.245 (2) | C2—C2iii | 1.560 (4) |
O2—C1 | 1.254 (2) | C3—C4 | 1.348 (3) |
O2—Cu1i | 1.9960 (14) | C3—H3A | 0.9300 |
O3—C2 | 1.266 (2) | C4—H4A | 0.9300 |
O4—C2iii | 1.240 (2) | C5—H5A | 0.9300 |
N1—C5 | 1.323 (3) | ||
N1—Cu1—O3 | 95.45 (7) | C3—N1—Cu1 | 129.37 (16) |
N1—Cu1—O2i | 174.07 (6) | C5—N2—C4 | 107.7 (2) |
O3—Cu1—O2i | 90.33 (6) | C5—N2—H2A | 126.2 |
N1—Cu1—O1 | 90.95 (6) | C4—N2—H2A | 126.2 |
O3—Cu1—O1 | 173.43 (6) | O1—C1—O2 | 126.46 (17) |
O2i—Cu1—O1 | 83.31 (5) | O1—C1—C1i | 117.3 (2) |
N1—Cu1—O4 | 94.51 (7) | O2—C1—C1i | 116.2 (2) |
O3—Cu1—O4 | 77.05 (5) | O4iii—C2—O3 | 125.35 (17) |
O2i—Cu1—O4 | 85.50 (6) | O4iii—C2—C2iii | 118.0 (2) |
O1—Cu1—O4 | 103.96 (5) | O3—C2—C2iii | 116.7 (2) |
O1—Cu1—O4ii | 87.92 (5) | C4—C3—N1 | 109.4 (2) |
O4—Cu1—O4ii | 164.20 (6) | C4—C3—H3A | 125.3 |
O3—Cu1—O4ii | 89.98 (5) | N1—C3—H3A | 125.3 |
N1—Cu1—O4ii | 95.69 (6) | C3—C4—N2 | 106.4 (2) |
C1—O1—Cu1 | 111.35 (12) | C3—C4—H4A | 126.8 |
C1—O2—Cu1i | 111.80 (12) | N2—C4—H4A | 126.8 |
C2—O3—Cu1 | 120.32 (12) | N1—C5—N2 | 111.3 (2) |
C2iii—O4—Cu1 | 107.87 (12) | N1—C5—H5A | 124.4 |
C5—N1—C3 | 105.23 (19) | N2—C5—H5A | 124.4 |
C5—N1—Cu1 | 125.38 (16) | ||
N1—Cu1—O1—C1 | 178.87 (13) | O2i—Cu1—N1—C3 | −170.1 (6) |
O3—Cu1—O1—C1 | −14.0 (6) | O1—Cu1—N1—C3 | 175.6 (2) |
O2i—Cu1—O1—C1 | 0.34 (13) | O4—Cu1—N1—C3 | −80.3 (2) |
O4—Cu1—O1—C1 | 83.99 (13) | Cu1—O1—C1—O2 | 179.88 (16) |
N1—Cu1—O3—C2 | −96.29 (15) | Cu1—O1—C1—C1i | −0.4 (3) |
O2i—Cu1—O3—C2 | 82.40 (15) | Cu1i—O2—C1—O1 | 179.67 (16) |
O1—Cu1—O3—C2 | 96.7 (5) | Cu1i—O2—C1—C1i | 0.0 (2) |
O4—Cu1—O3—C2 | −2.90 (14) | Cu1—O3—C2—O4iii | −177.21 (15) |
N1—Cu1—O4—C2iii | 97.23 (13) | Cu1—O3—C2—C2iii | 2.8 (3) |
O3—Cu1—O4—C2iii | 2.66 (13) | C5—N1—C3—C4 | 1.7 (3) |
O2i—Cu1—O4—C2iii | −88.72 (13) | Cu1—N1—C3—C4 | 179.68 (18) |
O1—Cu1—O4—C2iii | −170.67 (12) | N1—C3—C4—N2 | −0.6 (3) |
O3—Cu1—N1—C5 | 174.7 (2) | C5—N2—C4—C3 | −0.7 (3) |
O2i—Cu1—N1—C5 | 7.6 (8) | C3—N1—C5—N2 | −2.1 (3) |
O1—Cu1—N1—C5 | −6.7 (2) | Cu1—N1—C5—N2 | 179.75 (17) |
O4—Cu1—N1—C5 | 97.3 (2) | C4—N2—C5—N1 | 1.8 (3) |
O3—Cu1—N1—C3 | −2.9 (2) |
Symmetry codes: (i) −x−2, −y, −z; (ii) x, −y+1/2, z−1/2; (iii) −x−2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2iv | 0.86 | 2.00 | 2.841 (2) | 167 |
Symmetry code: (iv) −x−1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C2O4)2(C3H4N2)2] |
Mr | 439.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 8.3367 (4), 9.3131 (5), 8.4838 (5) |
β (°) | 92.352 (3) |
V (Å3) | 658.13 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.29 |
Crystal size (mm) | 0.28 × 0.18 × 0.06 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.497, 0.821 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10313, 1511, 1362 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.653 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.062, 1.09 |
No. of reflections | 1511 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.42 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).
Cu1—N1 | 1.9624 (18) | Cu1—O1 | 2.0016 (13) |
Cu1—O3 | 1.9713 (13) | Cu1—O4 | 2.3536 (14) |
Cu1—O2i | 1.9960 (14) | Cu1—O4ii | 2.512 (1) |
Symmetry codes: (i) −x−2, −y, −z; (ii) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2iii | 0.86 | 2.00 | 2.841 (2) | 167 |
Symmetry code: (iii) −x−1, −y, −z. |
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ghosh, S. K., Savitha, G. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5495–5497. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lu, J., Zhao, K., Fang, Q. R., Xu, J. Q., Yu, J. H., Zhang, X., Bie, H. Y. & Wang, T. G. (2005). Cryst. Growth Des. 5, 1091–1098. CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, S.-F. & Lin, H. (2010). Acta Cryst. E66, m901–m902. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oxalates can represent one of the end-products of the degradation of some organic ligands, under both oxidative and non-oxidative conditions (Ghosh et al., 2004). For example, we reported an oxalate compound with a three-dimensional structure, which was constructed by decomposition of 2-carboxymethylsulfanyl nicotinic acid (Ye et al., 2010). Herein, we report a new polymeric oxalate compound, Cu2(C2O4)2(C3N2H4)2, (I), which is isotypic with Zn2(C2O4)2(C3N2H4)2 (Lu et al., 2005).
A view on the molecular structure of compound (I) is given in Fig. 1. The CuII atoms are each in a Jahn-Teller distorted coordination by one nitrogen atom from imidazole and five oxygen atoms from three oxalate groups. The oxalate anions adopt two different coordination modes: one adopts a chelate bis-bidentate linkage, the other adopts a chelate and bridging bis-bidentate linkage (Fig. 1). As shown in Fig. 2, the oxalate anions connect the CuII atoms into a two dimensional layer along the bc plane, and are further linked into a three-dimensional network structure by N—H···O hydrogen bonds (Fig. 3).