metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m685-m686

Bis[4-(2-hy­dr­oxy­benzyl­­idene­amino)­benzoato-κO1]tetra­kis­(methanol-κO)cadmium

aDepartment of Geriatrics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, People's Republic of China, and bPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: wangxiawx83@yahoo.com.cn

(Received 8 April 2011; accepted 23 April 2011; online 7 May 2011)

In the title mononuclear complex, [Cd(C14H10NO3)2(CH3OH)4], the Cd2+ cation is situated on an inversion centre. It exhibits a distorted octa­hedral coordination, defined by two carboxyl­ate O atoms from two monodentate anions and by four O atoms from four methanol mol­ecules. The crystal structure comprises intra­molecular O—H⋯O and O—H⋯N, and inter­molecular O—H⋯O hydrogen bonds. The latter help to construct a layered structure extending parallel to (100).

Related literature

For background to Schiff base ligands, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Banerjee et al. (2004[Banerjee, S., Gangopadhyay, J., Lu, C.-Z., Chen, J.-T. & Ghosh, A. (2004). Eur. J. Inorg. Chem. pp. 2533-2541.]); Zhong et al. (2009[Zhong, M., Lin, J.-H., Shang, J., Huang, T.-H. & Wang, X.-J. (2009). Acta Cryst. E65, m634.]). For background to cadmium complexes, see: Meng et al. (2004[Meng, X.-R., Song, Y.-L., Hou, H.-W., Han, H.-Y., Xiao, B., Fan, Y.-T. & Zhu, Y. (2004). Inorg. Chem. 43, 3528-3536.]); Wang et al. (2010[Wang, X., Li, Y.-X., Liu, Y.-J., Yang, H.-X. & Zhang, C.-C. (2010). Acta Cryst. E66, m1207.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C14H10NO3)2(CH4O)4]

  • Mr = 721.04

  • Monoclinic, P 21 /c

  • a = 15.564 (3) Å

  • b = 11.937 (2) Å

  • c = 8.8946 (18) Å

  • β = 99.69 (3)°

  • V = 1629.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.16 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.862, Tmax = 0.892

  • 7793 measured reflections

  • 2760 independent reflections

  • 2137 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.166

  • S = 1.13

  • 2760 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.230 (5)
Cd1—O4 2.295 (5)
Cd1—O3 2.315 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2 0.87 1.87 2.653 (7) 150
O5—H5⋯N1 0.82 1.90 2.632 (9) 148
O3—H3⋯O2i 0.85 1.83 2.640 (7) 160
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base ligands played an important role in the development of coordination chemistry due to their metal binding ability (Garnovskii et al., 1993). Schiff bases and their metal complexes have numerous applications in biological systems and material sciences (Banerjee et al., 2004; Zhong et al., 2009). The Cd2+ ion is a good model atom to construct complexes owing to its property to form bonds with different types of donors simultaneously, and to its various coordination modes (Meng et al., 2004; Wang et al., 2010). In this work, we describe the synthesis and structure of the title complex, [Cd(C14H10NO3)2(CH3OH)4], (I).

In complex (I), the Cd2+ ion is situated on an inversion centre and is six-coordinated by two carboxylate O atoms from two monodentate ligands and by four O atoms from four methanol molecules (Fig. 1). The dihedral angle between the phenyl ring and the benzylidenimino moiety is 23.4 (4) °.

The crystal structure of (I) comprises intramolecular O—H···O and O—H···N hydrogen bonds that help to stabilize the molecular conformation. Intermolecular O—H···O hydrogen bonds between methanol molecules and the free carboxylate O atoms of neighbouring molecules construct a layered structure extending parallel to (100), as shown in Fig. 2.

Related literature top

For background to Schiff base ligands, see: Garnovskii et al. (1993); Banerjee et al. (2004); Zhong et al. (2009). For background to cadmium complexes, see: Meng et al. (2004); Wang et al. (2010).

Experimental top

N-(4-carboxyphenyl)salicylideneimine (0.04 mmol, 0.0097 g) in methanol (6 ml) was added dropwise to a methanol solution (5 ml) of CdCl2 (0.02 mmol, 0.0037 g) in methanol. The resulting solution was allowed to stand at room temperature. After two weeks good quality crystals with pale yellow colour were obtained and were dried in air.

Refinement top

H atoms bound to C atoms were generated geometrically and refined as riding atoms with C—H = 0.93Å and Uiso(H) = 1.2×Ueq(C). H atoms bound to O atoms were found from difference maps and refined with distance restraints between 0.82—0.87 Å and Uiso(H) = 1.5×Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing the labelling of the non-H atoms and atomic displacement parameters at the 30% probability level. [Symmetry code: A) -x+2, -y+1, -z+3.]
[Figure 2] Fig. 2. View of the packing of the structure of (I), showing intermolecular hydrogen bonding (dotted lines). H atoms have been omited for clarity.
Bis[4-(2-hydroxybenzylideneamino)benzoato-κO1]tetrakis(methanol- κO)cadmium top
Crystal data top
[Cd(C14H10NO3)2(CH4O)4]F(000) = 740
Mr = 721.04Dx = 1.470 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3109 reflections
a = 15.564 (3) Åθ = 2.2–28.0°
b = 11.937 (2) ŵ = 0.73 mm1
c = 8.8946 (18) ÅT = 293 K
β = 99.69 (3)°Prism, pale yellow
V = 1629.0 (6) Å30.21 × 0.19 × 0.16 mm
Z = 2
Data collection top
Rigaku Saturn
diffractometer
2760 independent reflections
Radiation source: fine-focus sealed tube2137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 1410
Tmin = 0.862, Tmax = 0.892l = 109
7793 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0483P)2 + 5.4285P]
where P = (Fo2 + 2Fc2)/3
2760 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Cd(C14H10NO3)2(CH4O)4]V = 1629.0 (6) Å3
Mr = 721.04Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.564 (3) ŵ = 0.73 mm1
b = 11.937 (2) ÅT = 293 K
c = 8.8946 (18) Å0.21 × 0.19 × 0.16 mm
β = 99.69 (3)°
Data collection top
Rigaku Saturn
diffractometer
2760 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
2137 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.892Rint = 0.055
7793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.13Δρmax = 0.97 e Å3
2760 reflectionsΔρmin = 0.63 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.00000.50001.50000.0478 (3)
N10.5587 (4)0.4273 (6)0.7851 (7)0.0592 (17)
O10.8888 (4)0.4749 (4)1.3094 (6)0.0591 (15)
O20.9173 (4)0.3047 (4)1.2333 (7)0.0740 (18)
O31.0768 (4)0.5897 (4)1.3338 (6)0.0684 (16)
H31.06980.66031.32690.103*
O41.0614 (3)0.3361 (4)1.4350 (6)0.0605 (14)
H41.02520.30531.36200.091*
O50.4108 (4)0.5348 (5)0.7011 (8)0.0810 (19)
H50.45770.51980.75420.122*
C10.8710 (5)0.3913 (6)1.2257 (8)0.0513 (18)
C20.7912 (5)0.3969 (6)1.1089 (7)0.0467 (17)
C30.7585 (5)0.3037 (6)1.0221 (9)0.062 (2)
H3A0.78810.23581.03730.075*
C40.6827 (5)0.3101 (6)0.9135 (9)0.066 (2)
H4A0.66220.24720.85700.079*
C50.6378 (5)0.4124 (6)0.8902 (8)0.0519 (19)
C60.6693 (5)0.5042 (7)0.9765 (9)0.061 (2)
H60.63980.57220.96190.073*
C70.7443 (6)0.4964 (6)1.0843 (8)0.062 (2)
H70.76380.55921.14190.074*
C80.5382 (5)0.3639 (7)0.6702 (9)0.063 (2)
H80.57760.31000.64910.076*
C90.4532 (5)0.3738 (7)0.5696 (9)0.059 (2)
C100.4316 (6)0.2979 (8)0.4527 (10)0.076 (3)
H100.47250.24490.43470.092*
C110.3504 (7)0.2990 (8)0.3616 (11)0.084 (3)
H110.33530.24450.28700.101*
C120.2932 (6)0.3808 (9)0.3826 (11)0.082 (3)
H120.24000.38410.31700.099*
C130.3112 (6)0.4603 (8)0.4994 (11)0.076 (3)
H130.27000.51360.51490.091*
C140.3917 (6)0.4568 (7)0.5904 (9)0.062 (2)
C151.0839 (5)0.5457 (5)1.1902 (7)0.091 (3)
H15A1.11810.59551.13920.137*
H15B1.02690.53781.13050.137*
H15C1.11180.47381.20270.137*
C161.1049 (5)0.2536 (5)1.5305 (7)0.079 (3)
H16A1.12360.19421.47080.118*
H16B1.06630.22411.59430.118*
H16C1.15470.28671.59310.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0584 (5)0.0351 (4)0.0469 (4)0.0027 (4)0.0006 (3)0.0028 (3)
N10.055 (4)0.069 (4)0.053 (4)0.000 (3)0.004 (3)0.003 (3)
O10.064 (4)0.047 (3)0.061 (3)0.006 (2)0.005 (3)0.015 (2)
O20.073 (4)0.047 (3)0.090 (4)0.010 (3)0.022 (3)0.015 (3)
O30.098 (5)0.048 (3)0.063 (3)0.011 (3)0.023 (3)0.006 (2)
O40.063 (4)0.043 (3)0.069 (3)0.011 (2)0.006 (3)0.008 (2)
O50.064 (4)0.086 (4)0.094 (5)0.018 (3)0.015 (4)0.003 (3)
C10.060 (5)0.047 (4)0.046 (4)0.004 (4)0.005 (4)0.000 (3)
C20.045 (4)0.054 (4)0.041 (4)0.008 (3)0.006 (3)0.001 (3)
C30.066 (6)0.046 (4)0.069 (5)0.001 (4)0.004 (4)0.003 (4)
C40.066 (6)0.053 (4)0.068 (5)0.007 (4)0.018 (4)0.006 (4)
C50.051 (5)0.060 (5)0.045 (4)0.001 (4)0.006 (4)0.008 (3)
C60.064 (5)0.059 (4)0.056 (5)0.006 (4)0.001 (4)0.000 (4)
C70.085 (6)0.050 (4)0.045 (4)0.000 (4)0.007 (4)0.001 (3)
C80.057 (5)0.067 (5)0.065 (5)0.004 (4)0.008 (4)0.003 (4)
C90.043 (5)0.070 (5)0.060 (5)0.007 (4)0.001 (4)0.013 (4)
C100.078 (7)0.072 (6)0.074 (6)0.002 (5)0.002 (5)0.003 (5)
C110.078 (7)0.082 (7)0.085 (7)0.013 (6)0.007 (6)0.007 (5)
C120.061 (6)0.097 (7)0.082 (7)0.010 (5)0.010 (5)0.022 (6)
C130.056 (6)0.085 (6)0.085 (7)0.011 (5)0.005 (5)0.013 (5)
C140.057 (6)0.076 (5)0.055 (5)0.009 (4)0.012 (4)0.000 (4)
C150.137 (10)0.059 (5)0.084 (7)0.012 (6)0.036 (7)0.005 (5)
C160.085 (7)0.055 (5)0.096 (7)0.023 (5)0.016 (6)0.020 (5)
Geometric parameters (Å, º) top
Cd1—O12.230 (5)C5—C61.380 (10)
Cd1—O1i2.230 (5)C6—C71.384 (11)
Cd1—O4i2.295 (5)C6—H60.9300
Cd1—O42.295 (5)C7—H70.9300
Cd1—O3i2.315 (5)C8—C91.472 (10)
Cd1—O32.315 (5)C8—H80.9300
N1—C81.270 (9)C9—C101.377 (11)
N1—C51.425 (9)C9—C141.412 (11)
O1—C11.248 (8)C10—C111.382 (12)
O2—C11.255 (8)C10—H100.9300
O3—C151.403 (8)C11—C121.356 (13)
O3—H30.8507C11—H110.9300
O4—C161.398 (7)C12—C131.401 (13)
O4—H40.8668C12—H120.9300
O5—C141.352 (10)C13—C141.373 (12)
O5—H50.8200C13—H130.9300
C1—C21.481 (9)C15—H15A0.9600
C2—C71.391 (10)C15—H15B0.9600
C2—C31.400 (9)C15—H15C0.9600
C3—C41.395 (10)C16—H16A0.9600
C3—H3A0.9300C16—H16B0.9599
C4—C51.405 (10)C16—H16C0.9601
C4—H4A0.9300
O1—Cd1—O1i180.000 (1)C5—C6—C7120.7 (7)
O1—Cd1—O4i90.19 (17)C5—C6—H6119.6
O1i—Cd1—O4i89.81 (17)C7—C6—H6119.6
O1—Cd1—O489.81 (17)C6—C7—C2121.7 (7)
O1i—Cd1—O490.19 (17)C6—C7—H7119.1
O4i—Cd1—O4180.000 (1)C2—C7—H7119.1
O1—Cd1—O3i90.3 (2)N1—C8—C9121.4 (8)
O1i—Cd1—O3i89.7 (2)N1—C8—H8119.3
O4i—Cd1—O3i87.23 (19)C9—C8—H8119.3
O4—Cd1—O3i92.77 (19)C10—C9—C14118.4 (8)
O1—Cd1—O389.7 (2)C10—C9—C8119.1 (8)
O1i—Cd1—O390.3 (2)C14—C9—C8122.5 (8)
O4i—Cd1—O392.77 (19)C9—C10—C11121.3 (9)
O4—Cd1—O387.23 (19)C9—C10—H10119.4
O3i—Cd1—O3180.000 (1)C11—C10—H10119.4
C8—N1—C5121.8 (7)C12—C11—C10118.9 (9)
C1—O1—Cd1128.8 (5)C12—C11—H11120.5
C15—O3—Cd1122.5 (4)C10—C11—H11120.5
C15—O3—H3109.5C11—C12—C13122.4 (9)
Cd1—O3—H3115.5C11—C12—H12118.8
C16—O4—Cd1128.8 (4)C13—C12—H12118.8
C16—O4—H4110.1C14—C13—C12117.7 (9)
Cd1—O4—H4107.7C14—C13—H13121.1
C14—O5—H5109.5C12—C13—H13121.1
O1—C1—O2124.0 (7)O5—C14—C13118.4 (9)
O1—C1—C2117.3 (7)O5—C14—C9120.5 (7)
O2—C1—C2118.7 (6)C13—C14—C9121.0 (8)
C7—C2—C3117.3 (7)O3—C15—H15A109.5
C7—C2—C1120.3 (6)O3—C15—H15B109.5
C3—C2—C1122.3 (7)H15A—C15—H15B109.5
C4—C3—C2121.6 (7)O3—C15—H15C109.5
C4—C3—H3A119.2H15A—C15—H15C109.5
C2—C3—H3A119.2H15B—C15—H15C109.5
C3—C4—C5119.4 (7)O4—C16—H16A110.1
C3—C4—H4A120.3O4—C16—H16B109.4
C5—C4—H4A120.3H16A—C16—H16B109.5
C6—C5—C4119.1 (7)O4—C16—H16C108.9
C6—C5—N1116.9 (7)H16A—C16—H16C109.5
C4—C5—N1124.0 (7)H16B—C16—H16C109.5
O4i—Cd1—O1—C1171.4 (7)C3—C4—C5—N1178.4 (7)
O4—Cd1—O1—C18.6 (7)C8—N1—C5—C6157.7 (8)
O3i—Cd1—O1—C184.2 (7)C8—N1—C5—C424.4 (12)
O3—Cd1—O1—C195.8 (7)C4—C5—C6—C70.2 (12)
O1—Cd1—O3—C1547.5 (5)N1—C5—C6—C7178.2 (7)
O1i—Cd1—O3—C15132.5 (5)C5—C6—C7—C20.8 (13)
O4i—Cd1—O3—C15137.7 (5)C3—C2—C7—C61.3 (12)
O4—Cd1—O3—C1542.3 (5)C1—C2—C7—C6179.8 (7)
O1—Cd1—O4—C16140.8 (6)C5—N1—C8—C9174.8 (7)
O1i—Cd1—O4—C1639.2 (6)N1—C8—C9—C10175.5 (8)
O3i—Cd1—O4—C1650.5 (6)N1—C8—C9—C143.0 (13)
O3—Cd1—O4—C16129.5 (6)C14—C9—C10—C112.9 (13)
Cd1—O1—C1—O22.5 (12)C8—C9—C10—C11175.6 (8)
Cd1—O1—C1—C2178.8 (5)C9—C10—C11—C124.0 (15)
O1—C1—C2—C76.8 (11)C10—C11—C12—C134.0 (16)
O2—C1—C2—C7171.9 (8)C11—C12—C13—C143.0 (15)
O1—C1—C2—C3171.6 (7)C12—C13—C14—O5178.3 (8)
O2—C1—C2—C39.7 (11)C12—C13—C14—C91.9 (14)
C7—C2—C3—C41.0 (12)C10—C9—C14—O5178.3 (8)
C1—C2—C3—C4179.4 (7)C8—C9—C14—O53.2 (13)
C2—C3—C4—C50.1 (13)C10—C9—C14—C131.9 (13)
C3—C4—C5—C60.5 (12)C8—C9—C14—C13176.6 (8)
Symmetry code: (i) x+2, y+1, z+3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.871.872.653 (7)150
O5—H5···N10.821.902.632 (9)148
O3—H3···O2ii0.851.832.640 (7)160
Symmetry code: (ii) x+2, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formula[Cd(C14H10NO3)2(CH4O)4]
Mr721.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.564 (3), 11.937 (2), 8.8946 (18)
β (°) 99.69 (3)
V3)1629.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.21 × 0.19 × 0.16
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.862, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
7793, 2760, 2137
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.166, 1.13
No. of reflections2760
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.63

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.230 (5)Cd1—O32.315 (5)
Cd1—O42.295 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.871.872.653 (7)150
O5—H5···N10.821.902.632 (9)148
O3—H3···O2i0.851.832.640 (7)160
Symmetry code: (i) x+2, y+1/2, z+5/2.
 

Acknowledgements

The authors thank the Department of Science and Technology of Henan Province for financial support (No. 082102330003), and Professor Hong-Wei Hou and Meng Xiang-Ru of Zhengzhou University for their help.

References

First citationBanerjee, S., Gangopadhyay, J., Lu, C.-Z., Chen, J.-T. & Ghosh, A. (2004). Eur. J. Inorg. Chem. pp. 2533–2541.  CSD CrossRef Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationMeng, X.-R., Song, Y.-L., Hou, H.-W., Han, H.-Y., Xiao, B., Fan, Y.-T. & Zhu, Y. (2004). Inorg. Chem. 43, 3528–3536.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Li, Y.-X., Liu, Y.-J., Yang, H.-X. & Zhang, C.-C. (2010). Acta Cryst. E66, m1207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, M., Lin, J.-H., Shang, J., Huang, T.-H. & Wang, X.-J. (2009). Acta Cryst. E65, m634.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m685-m686
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds