metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di-μ2-chlorido-tri-μ2-terephthalato-tetra­lead(II)]

aThe Department of Physics–Chemistry, Henan Polytechnic University, Jiao Zuo 454150, People's Republic of China, and bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: xcy78413@tom.com

(Received 14 April 2011; accepted 11 May 2011; online 20 May 2011)

The title compound, [Pb4(C8H4O4)3Cl2]n, consists of a three-dimensional inorganic–organic hybrid framework. The asymmetric unit contains two Pb2+ cations, one Cl anion and one and a half terephthalate anions, the latter being completed by inversion symmetry. The two Pb2+ cations are each surrounded by five O atoms and one Cl atom in the form of irregular polyhedra. The cations are linked by μ2-O and μ2-Cl atoms into binuclear units, which are further extended through Pb—O inter­actions into an undulated inorganic layer parallel to (001). These layers are connected along [001] by the terephthalate groups into a three-dimensional framework.

Related literature

For a description of inorganic–organic hybrid compounds, see: Cheetham et al. (2006[Cheetham, A. K., Rao, C. N. R. & Feller, R. K. (2006). Chem. Commun. pp. 4780-4795.]). For Pb—Cl bond lengths, see: Casas (2003[Casas, J. (2003). Inorg. Chem. 42, 2584-2595.]). For a related structure, see: Zhang et al. (2009[Zhang, L., Zhao, J. L., Lin, Q. P., Qin, Y. Y., Zhang, J., Yin, P. X., Cheng, J. K. & Yao, Y. G. (2009). Inorg. Chem. 48, 6517-6525.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb4(C8H4O4)3Cl2]

  • Mr = 1392.00

  • Monoclinic, P 21 /c

  • a = 5.9900 (1) Å

  • b = 11.8529 (2) Å

  • c = 18.4737 (3) Å

  • β = 91.778 (1)°

  • V = 1310.98 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 25.88 mm−1

  • T = 296 K

  • 0.32 × 0.26 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.000, Tmax = 0.004

  • 9476 measured reflections

  • 2298 independent reflections

  • 2097 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.00

  • 2298 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 2.29 e Å−3

  • Δρmin = −1.89 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O2 2.407 (7)
Pb1—O1 2.572 (6)
Pb1—O6i 2.586 (6)
Pb1—O3 2.618 (6)
Pb1—O4ii 2.743 (6)
Pb1—Cl1 2.893 (2)
Pb2—O5i 2.408 (6)
Pb2—O4 2.516 (6)
Pb2—O3 2.616 (6)
Pb2—O6i 2.696 (7)
Pb2—O1iii 2.712 (6)
Pb2—Cl1iii 3.010 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

According to the classification scheme of Cheetham et al. (2006), hybrid compounds are divided into two categories: metal-organic coordination polymers and extended inorganic hybrids. In contrast to metal-organic coordination polymers, extended inorganic hybrids which contain extended arrays of inorganic connectivity, MXM (M = metal, X = O, Cl, N, and S), have been scarcely investigated. Up to now, only some lead-containing compounds with aromatic carboxylate ligands forming an extended inorganic hybrid network have been reported (Zhang et al., 2009).

The asymmetric unit of the title compound, [Pb4(C8H4O4)3Cl2]n, consists of two Pb2+ cations, one Cl- anion and one and a half crystallographically independent terephthalate ligands. The C5 containing terephthalate ligand lies in a general position and the other half one is located at a center of inversion. An ORTEP drawing of the coordination environment of the Pb2+ cations is shown in Figure 1. The two unique lead atoms are both six-coordinate by five O atoms from tetephtalate anions and one Cl atom in the form of irregular polyhedra. Pb1 is connected to O1 and O2 from a bidentately coordinating anion, to O3, O4 and O6 from three monodentately coordinating anions and to one Cl atom. Pb2 is coordinated by O3, O4, O5, O6 from two bidentatly coordinating anions and by O1 from a monodentately coordinating anion and by one Cl atom. Pb1 and Pb2 atoms are linked by µ2-O1 and µ2-Cl1 to form a binuclear unit. These units are further extended into a wave-like 2-D inorganic layer parallel to (001) by sharing additional O atoms (Fig. 2). The Pb—O bond lengths are in the range of 2.4077 (7) to 2.743 (6) Å. The Pb—Cl bond lengths lie in the range of 2.893 (2) to 3.010 (2) Å, values comparable with similar structures (Casas, 2003). The parallel 2-D inorganic layers are connected along [001] by terephthalic groups to form the 3-D framework, as shown in Figure 3.

It is worth noticing that it is rare that in the inorganic layers adjacent Pb atoms are linked by one bridging chloride atom and one bridging oxygen atom other than two Cl or O atoms.

Related literature top

For a description of inorganic–organic hybrid compounds, see: Cheetham et al. (2006). For Pb—Cl bond lengths, see: Casas (2003). For a related structure, see: Zhang et al. (2009).

Experimental top

The title compound was synthesized under hydrothermal conditions. All reagents were of analytical grade. A suspension of Pb(NO3)2 (1 mmol) and 4,4'-bipyridine (2 mmol) in water (5 ml) was slowly added into a solution of terephthalic acid (2 mmol) in ethanol (10 ml) and was subsequently stirred. The resulting mixture was further stirred for 4 h at 393 K, and then filtered off. The filtrate pH was adjusted to 3 by hydrochloric acid. The final reaction mixture was heated in a sealed Teflon-lined steel autoclave at 453 K for 7 days. The autoclave was then cooled down to room temperature and colourless block-shaped single crystals were isolated, washed with distilled water and dried in air.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The deepest hole and the highest remaining peak in the difference map are located 1.00 Å from Pb1 and 0.88 Å from Pb2, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP plot of the Pb-environment in the title compound showing 50% probability ellipsoids and the atom labeling scheme.
[Figure 2] Fig. 2. The (001) plane of the title compound, dispaying a wave-like 2-D 12-ring inorganic network with Pb atoms (grey) linked by O (red) and Cl atoms (green).
[Figure 3] Fig. 3. View of the structure along [100], showing the connection of the inorganic layers by terephthalic groups along [001].
Poly[di-µ2-chlorido-tri-µ2-terephthalato-tetralead(II)] top
Crystal data top
[Pb4(C8H4O4)3Cl2]F(000) = 1228
Mr = 1392.00Dx = 3.526 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 946 reflections
a = 5.9900 (1) Åθ = 2.6–25.0°
b = 11.8529 (2) ŵ = 25.88 mm1
c = 18.4737 (3) ÅT = 296 K
β = 91.778 (1)°Block, colourless
V = 1310.98 (4) Å30.32 × 0.26 × 0.21 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2298 independent reflections
Radiation source: fine-focus sealed tube2097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 77
Tmin = 0.000, Tmax = 0.004k = 1412
9476 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0714P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2298 reflectionsΔρmax = 2.29 e Å3
192 parametersΔρmin = 1.89 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (3)
Crystal data top
[Pb4(C8H4O4)3Cl2]V = 1310.98 (4) Å3
Mr = 1392.00Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.9900 (1) ŵ = 25.88 mm1
b = 11.8529 (2) ÅT = 296 K
c = 18.4737 (3) Å0.32 × 0.26 × 0.21 mm
β = 91.778 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2298 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2097 reflections with I > 2σ(I)
Tmin = 0.000, Tmax = 0.004Rint = 0.044
9476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.00Δρmax = 2.29 e Å3
2298 reflectionsΔρmin = 1.89 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.06200 (5)0.80676 (3)0.303842 (18)0.01898 (17)
Pb20.55452 (5)1.03175 (2)0.274731 (18)0.01933 (17)
O30.3541 (9)0.9266 (5)0.3789 (3)0.0218 (13)
O10.3892 (9)0.6746 (5)0.3379 (4)0.0225 (13)
O20.0928 (10)0.6826 (5)0.4068 (4)0.0294 (15)
O40.7213 (10)0.9102 (5)0.3742 (3)0.0267 (14)
C90.5436 (13)0.7355 (7)0.6138 (5)0.0172 (17)
C60.5453 (14)0.8489 (6)0.4809 (5)0.0187 (18)
C80.3524 (13)0.7937 (6)0.5872 (5)0.0185 (18)
H80.22400.79390.61420.022*
C70.3522 (13)0.8504 (7)0.5216 (5)0.0190 (18)
H70.22560.88900.50490.023*
C100.7317 (13)0.7385 (7)0.5731 (5)0.0210 (19)
H100.86010.70210.59040.025*
C50.5390 (13)0.8979 (6)0.4063 (4)0.0163 (17)
C110.7360 (13)0.7938 (7)0.5077 (5)0.0185 (18)
H110.86600.79440.48140.022*
O50.7114 (9)0.6137 (5)0.7009 (4)0.0289 (15)
O60.3527 (11)0.6448 (6)0.7080 (4)0.0341 (16)
C120.5354 (15)0.6614 (7)0.6791 (5)0.024 (2)
C30.2855 (14)0.5387 (6)0.5111 (5)0.0192 (19)
H30.14190.56530.51840.023*
C10.2880 (13)0.6461 (6)0.3939 (5)0.0175 (18)
C40.6133 (14)0.5318 (6)0.4382 (5)0.022 (2)
H40.68930.55330.39730.026*
C20.3971 (13)0.5706 (6)0.4485 (5)0.0188 (18)
Cl10.0398 (3)0.5962 (2)0.23077 (13)0.0308 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0220 (2)0.0166 (2)0.0183 (3)0.00318 (11)0.00007 (15)0.00127 (12)
Pb20.0310 (2)0.0113 (2)0.0157 (3)0.00216 (11)0.00038 (15)0.00016 (12)
O30.026 (3)0.014 (3)0.026 (4)0.002 (2)0.004 (3)0.009 (3)
O10.026 (3)0.017 (3)0.024 (4)0.003 (2)0.000 (3)0.003 (3)
O20.031 (3)0.030 (4)0.028 (4)0.008 (3)0.003 (3)0.003 (3)
O40.033 (3)0.032 (4)0.015 (4)0.003 (3)0.004 (3)0.005 (3)
C90.026 (4)0.015 (4)0.011 (5)0.005 (3)0.003 (3)0.003 (3)
C60.033 (4)0.006 (4)0.017 (5)0.005 (3)0.001 (4)0.003 (3)
C80.022 (4)0.013 (4)0.021 (5)0.003 (3)0.001 (4)0.000 (3)
C70.027 (4)0.011 (4)0.020 (5)0.002 (3)0.005 (4)0.005 (3)
C100.020 (4)0.021 (5)0.022 (5)0.001 (3)0.000 (4)0.004 (4)
C50.029 (4)0.008 (4)0.012 (4)0.003 (3)0.000 (3)0.002 (3)
C110.015 (4)0.020 (4)0.020 (5)0.000 (3)0.000 (3)0.000 (4)
O50.031 (3)0.026 (3)0.029 (4)0.001 (3)0.005 (3)0.017 (3)
O60.038 (3)0.034 (4)0.031 (4)0.002 (3)0.011 (3)0.008 (3)
C120.039 (5)0.009 (4)0.024 (5)0.002 (4)0.008 (4)0.003 (4)
C30.023 (4)0.010 (4)0.025 (5)0.002 (3)0.002 (4)0.000 (3)
C10.029 (4)0.005 (4)0.018 (5)0.000 (3)0.003 (4)0.004 (3)
C40.029 (4)0.012 (4)0.025 (5)0.006 (3)0.010 (4)0.002 (4)
C20.029 (4)0.006 (4)0.021 (5)0.001 (3)0.006 (3)0.008 (3)
Cl10.0314 (11)0.0227 (13)0.0378 (16)0.0032 (8)0.0046 (10)0.0067 (10)
Geometric parameters (Å, º) top
Pb1—O22.407 (7)C6—C71.400 (11)
Pb1—O12.572 (6)C6—C51.493 (12)
Pb1—O6i2.586 (6)C8—C71.386 (13)
Pb1—O32.618 (6)C8—H80.9300
Pb1—O4ii2.743 (6)C7—H70.9300
Pb1—Cl12.893 (2)C10—C111.376 (13)
Pb2—O5i2.408 (6)C10—H100.9300
Pb2—O42.516 (6)C11—H110.9300
Pb2—O32.616 (6)O5—C121.252 (11)
Pb2—O6i2.696 (7)O5—Pb2vi2.408 (6)
Pb2—O1iii2.712 (6)O6—C121.248 (11)
Pb2—Cl1iii3.010 (2)O6—Pb1vi2.586 (6)
O3—C51.250 (10)O6—Pb2vi2.696 (7)
O1—C11.261 (10)C3—C4vii1.381 (13)
O1—Pb2iv2.712 (6)C3—C21.404 (12)
O2—C11.276 (10)C3—H30.9300
O4—C51.268 (9)C1—C21.485 (12)
O4—Pb1v2.743 (6)C4—C21.393 (12)
C9—C101.374 (11)C4—C3vii1.381 (13)
C9—C81.412 (12)C4—H40.9300
C9—C121.494 (12)Cl1—Pb2iv3.010 (2)
C6—C111.394 (12)
O2—Pb1—O152.8 (2)C10—C9—C12120.3 (8)
O2—Pb1—O6i129.8 (2)C8—C9—C12121.4 (7)
O1—Pb1—O6i77.2 (2)C11—C6—C7119.8 (8)
O2—Pb1—O383.1 (2)C11—C6—C5120.5 (7)
O1—Pb1—O373.08 (18)C7—C6—C5119.6 (8)
O6i—Pb1—O377.8 (2)C7—C8—C9121.3 (8)
O2—Pb1—O4ii86.51 (19)C7—C8—H8119.3
O1—Pb1—O4ii136.8 (2)C9—C8—H8119.3
O6i—Pb1—O4ii138.75 (19)C8—C7—C6119.1 (8)
O3—Pb1—O4ii90.08 (19)C8—C7—H7120.5
O2—Pb1—Cl181.44 (17)C6—C7—H7120.5
O1—Pb1—Cl174.74 (15)C9—C10—C11122.1 (8)
O6i—Pb1—Cl190.49 (16)C9—C10—H10119.0
O3—Pb1—Cl1147.46 (13)C11—C10—H10119.0
O4ii—Pb1—Cl1117.23 (14)O3—C5—O4122.9 (8)
O5i—Pb2—O481.4 (2)O3—C5—C6118.4 (7)
O5i—Pb2—O3105.8 (2)O4—C5—C6118.7 (7)
O4—Pb2—O351.03 (18)C10—C11—C6119.9 (8)
O5i—Pb2—O6i50.39 (19)C10—C11—H11120.1
O4—Pb2—O6i93.0 (2)C6—C11—H11120.1
O3—Pb2—O6i75.9 (2)C12—O5—Pb2vi99.6 (5)
O5i—Pb2—O1iii87.3 (2)C12—O6—Pb1vi151.2 (6)
O4—Pb2—O1iii149.49 (18)C12—O6—Pb2vi86.1 (5)
O3—Pb2—O1iii158.89 (17)Pb1vi—O6—Pb2vi99.3 (2)
O6i—Pb2—O1iii101.5 (2)O6—C12—O5122.1 (9)
O5i—Pb2—Cl1iii76.61 (15)O6—C12—C9119.3 (8)
O4—Pb2—Cl1iii78.94 (14)O5—C12—C9118.5 (7)
O3—Pb2—Cl1iii127.69 (14)C4vii—C3—C2120.7 (8)
O6i—Pb2—Cl1iii126.97 (14)C4vii—C3—H3119.7
O1iii—Pb2—Cl1iii70.88 (13)C2—C3—H3119.7
C5—O3—Pb1129.5 (5)O1—C1—O2121.9 (8)
C5—O3—Pb290.4 (5)O1—C1—C2120.4 (7)
Pb1—O3—Pb2100.5 (2)O2—C1—C2117.6 (8)
C1—O1—Pb189.0 (5)C2—C4—C3vii119.9 (8)
C1—O1—Pb2iv122.4 (5)C2—C4—H4120.1
Pb1—O1—Pb2iv107.7 (2)C3vii—C4—H4120.1
C1—O2—Pb196.2 (5)C4—C2—C3119.4 (8)
C5—O4—Pb294.6 (5)C4—C2—C1119.8 (8)
C5—O4—Pb1v146.6 (5)C3—C2—C1120.7 (7)
Pb2—O4—Pb1v101.2 (2)Pb1—Cl1—Pb2iv92.57 (6)
C10—C9—C8117.9 (8)
O2—Pb1—O3—C553.6 (7)C11—C6—C7—C82.1 (12)
O1—Pb1—O3—C50.4 (6)C5—C6—C7—C8172.8 (8)
O6i—Pb1—O3—C579.7 (7)C8—C9—C10—C111.4 (13)
O4ii—Pb1—O3—C5140.1 (7)C12—C9—C10—C11171.3 (8)
Cl1—Pb1—O3—C58.4 (8)Pb1—O3—C5—O493.5 (9)
O2—Pb1—O3—Pb2152.9 (2)Pb2—O3—C5—O410.5 (8)
O1—Pb1—O3—Pb299.8 (2)Pb1—O3—C5—C687.7 (9)
O6i—Pb1—O3—Pb219.6 (2)Pb2—O3—C5—C6168.3 (6)
O4ii—Pb1—O3—Pb2120.60 (19)Pb2—O4—C5—O311.0 (8)
Cl1—Pb1—O3—Pb290.9 (3)Pb1v—O4—C5—O3107.5 (10)
O5i—Pb2—O3—C570.4 (5)Pb2—O4—C5—C6167.8 (6)
O4—Pb2—O3—C55.7 (4)Pb1v—O4—C5—C673.7 (12)
O6i—Pb2—O3—C5111.4 (5)C11—C6—C5—O3166.2 (7)
O1iii—Pb2—O3—C5163.2 (5)C7—C6—C5—O38.6 (11)
Cl1iii—Pb2—O3—C514.7 (5)C11—C6—C5—O415.0 (12)
O5i—Pb2—O3—Pb160.0 (2)C7—C6—C5—O4170.3 (7)
O4—Pb2—O3—Pb1124.7 (3)C9—C10—C11—C60.0 (13)
O6i—Pb2—O3—Pb118.97 (19)C7—C6—C11—C101.8 (13)
O1iii—Pb2—O3—Pb166.4 (6)C5—C6—C11—C10173.0 (8)
Cl1iii—Pb2—O3—Pb1145.12 (11)Pb1vi—O6—C12—O588.8 (13)
O2—Pb1—O1—C12.0 (5)Pb2vi—O6—C12—O513.2 (9)
O6i—Pb1—O1—C1173.1 (5)Pb1vi—O6—C12—C994.5 (15)
O3—Pb1—O1—C192.2 (5)Pb2vi—O6—C12—C9163.4 (7)
O4ii—Pb1—O1—C120.9 (6)Pb2vi—O5—C12—O615.0 (10)
Cl1—Pb1—O1—C192.8 (5)Pb2vi—O5—C12—C9161.6 (6)
O2—Pb1—O1—Pb2iv121.8 (3)C10—C9—C12—O6167.9 (8)
O6i—Pb1—O1—Pb2iv63.0 (2)C8—C9—C12—O64.6 (13)
O3—Pb1—O1—Pb2iv144.0 (2)C10—C9—C12—O58.9 (13)
O4ii—Pb1—O1—Pb2iv144.8 (2)C8—C9—C12—O5178.7 (8)
Cl1—Pb1—O1—Pb2iv31.07 (15)Pb1—O1—C1—O23.6 (8)
O1—Pb1—O2—C12.0 (4)Pb2iv—O1—C1—O2106.9 (8)
O6i—Pb1—O2—C14.1 (6)Pb1—O1—C1—C2174.6 (7)
O3—Pb1—O2—C172.0 (5)Pb2iv—O1—C1—C275.0 (9)
O4ii—Pb1—O2—C1162.5 (5)Pb1—O2—C1—O13.9 (9)
Cl1—Pb1—O2—C179.3 (5)Pb1—O2—C1—C2174.4 (6)
O5i—Pb2—O4—C5124.1 (5)C3vii—C4—C2—C30.8 (14)
O3—Pb2—O4—C55.6 (4)C3vii—C4—C2—C1179.8 (7)
O6i—Pb2—O4—C574.9 (5)C4vii—C3—C2—C40.8 (14)
O1iii—Pb2—O4—C5166.5 (4)C4vii—C3—C2—C1179.8 (8)
Cl1iii—Pb2—O4—C5158.0 (5)O1—C1—C2—C40.5 (12)
O5i—Pb2—O4—Pb1v26.4 (2)O2—C1—C2—C4177.7 (7)
O3—Pb2—O4—Pb1v144.8 (3)O1—C1—C2—C3179.9 (7)
O6i—Pb2—O4—Pb1v75.6 (2)O2—C1—C2—C31.7 (12)
O1iii—Pb2—O4—Pb1v43.1 (5)O2—Pb1—Cl1—Pb2iv79.96 (15)
Cl1iii—Pb2—O4—Pb1v51.54 (15)O1—Pb1—Cl1—Pb2iv26.31 (15)
C10—C9—C8—C71.1 (12)O6i—Pb1—Cl1—Pb2iv50.27 (17)
C12—C9—C8—C7171.5 (8)O3—Pb1—Cl1—Pb2iv17.5 (3)
C9—C8—C7—C60.6 (12)O4ii—Pb1—Cl1—Pb2iv161.53 (15)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x+1, y, z; (vi) x, y+3/2, z+1/2; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pb4(C8H4O4)3Cl2]
Mr1392.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.9900 (1), 11.8529 (2), 18.4737 (3)
β (°) 91.778 (1)
V3)1310.98 (4)
Z2
Radiation typeMo Kα
µ (mm1)25.88
Crystal size (mm)0.32 × 0.26 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.000, 0.004
No. of measured, independent and
observed [I > 2σ(I)] reflections
9476, 2298, 2097
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.00
No. of reflections2298
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.29, 1.89

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Pb1—O22.407 (7)Pb2—O5i2.408 (6)
Pb1—O12.572 (6)Pb2—O42.516 (6)
Pb1—O6i2.586 (6)Pb2—O32.616 (6)
Pb1—O32.618 (6)Pb2—O6i2.696 (7)
Pb1—O4ii2.743 (6)Pb2—O1iii2.712 (6)
Pb1—Cl12.893 (2)Pb2—Cl1iii3.010 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We would like to thank the National Science Fund for Young Scholars of China (No. 20901028/B0107) and the Open Research Fund of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (grant No. 2011–26).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. (2003). Inorg. Chem. 42, 2584–2595.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCheetham, A. K., Rao, C. N. R. & Feller, R. K. (2006). Chem. Commun. pp. 4780–4795.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Zhao, J. L., Lin, Q. P., Qin, Y. Y., Zhang, J., Yin, P. X., Cheng, J. K. & Yao, Y. G. (2009). Inorg. Chem. 48, 6517–6525.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds