metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m725-m726

Bis(1-methyl­piperidinium) tetra­chlorido­cuprate(II)

aDepartment of Chemistry, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
*Correspondence e-mail: bond@mbond2.st.semo.edu

(Received 19 April 2011; accepted 29 April 2011; online 7 May 2011)

The structure of the title compound, (C6H14N)2[CuCl4], consists of two inequivalent 1-methyl­piperidinium cations and a flattened tetra­hedral [CuCl4]2− anion. Each organic cation exhibits a chair conformation with the methyl group in the equatorial position. They are segregated into alternating layers parallel to (100) and stacked along [100]. The first cation is arranged in parallel stacks in a herringbone pattern with rows of [CuCl4]2− anions fitting between the stacks and with a Cl ion directed into the inter­ior of the layer. The second organic cation forms distorted hcp layers that separate the other organic cation/[CuCl4]2− slabs. N—H⋯Cl hydrogen bonding between the cations and the anions consolidates the crystal packing.

Related literature

For background to compounds with [CuCl4]2− anions, see: Awwadi et al. (2007[Awwadi, F. F., Willett, R. D. & Twamley, B. (2007). Cryst. Growth Des. 7, 624-632.]); Bloomquist et al. (1988[Bloomquist, D. R., Pressprich, M. R. & Willett, R. D. (1988). J. Am. Chem. Soc. 110, 7391-7398.]); Ihara (2007[Ihara, Y. (2007). Inorganic Chromotropism, edited by Y. Fukuda, pp. 78-81. Japan: Kondansha.]); Nelson et al. (1979[Nelson, H. C., Simonsen, S. H. & Watt, G. W. (1979). J. Chem. Soc. Chem. Commun. pp. 632-633.]); Schneider et al. (2007[Schneider, T. T., Landee, C. P., Turnbull, M. M., Awwadi, F. F. & Twamley, B. (2007). Polyhedron, 26, 1849-1858.]); Willett (1991[Willett, R. D. (1991). Coord. Chem. Rev. 109, 181-205.]); Willett & Twamley (2007[Willett, R. D. & Twamley, B. (2007). Acta Cryst. E63, m2591.]). For related structures, see: Fernandez et al. (1987[Fernandez, V., Moran, M., Gutierrez-Rios, M. T., Foces-Foces, C. & Cano, F. H. (1987). Inorg. Chim. Acta, 128, 239-243.]); Parent et al. (2007[Parent, A. R., Landee, C. P. & Turnbull, M. M. (2007). Inorg. Chim. Acta, 360, 1943-1953.]); Nalla & Bond (2011[Nalla, S. & Bond, M. R. (2011). Acta Cryst. C67. Submitted.]). For comparison bond lengths and angles, see: Ladd & Palmer (1994[Ladd, M. F. C. & Palmer, R. A. (1994). Structure Determination by X-ray Crystallography, 3rd ed., pp. 434-435. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H14N)2[CuCl4]

  • Mr = 405.7

  • Monoclinic, P 21 /c

  • a = 12.2264 (2) Å

  • b = 11.3442 (2) Å

  • c = 13.3455 (2) Å

  • β = 96.865 (1)°

  • V = 1837.73 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 100 K

  • 0.32 × 0.23 × 0.17 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.628, Tmax = 0.694

  • 16568 measured reflections

  • 8453 independent reflections

  • 6647 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.067

  • S = 1.05

  • 8453 reflections

  • 285 parameters

  • All H-atom parameters refined

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—Cl1 2.2816 (3)
Cu1—Cl2 2.2351 (3)
Cu1—Cl3 2.2539 (3)
Cu1—Cl4 2.2475 (3)
Cl1—Cu1—Cl2 100.615 (11)
Cl1—Cu1—Cl3 98.880 (12)
Cl1—Cu1—Cl4 128.967 (13)
Cl2—Cu1—Cl3 135.003 (13)
Cl2—Cu1—Cl4 100.840 (12)
Cl3—Cu1—Cl4 97.568 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯Cl1 0.895 (16) 2.331 (16) 3.188 (1) 160 (1)
N21—H21⋯Cl3 0.833 (17) 2.508 (16) 3.280 (1) 155 (1)
N21—H21⋯Cl4 0.833 (17) 2.821 (17) 3.364 (1) 125 (1)

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

[CuCl4]2- anions exhibit geometries ranging from tetrahedral to square planar. The exact geometry adopted results from factors such as packing forces (Schneider et al., 2007; Nelson et al., 1979), hydrogen bonding (Bloomquist et al., 1988; Willett and Twamley, 2007), and halide···halide interactions (Awwadi et al., 2007), although the most commonly observed geometry is flattened tetrahedral with a trans Cl—Cu—Cl angle of 130–135° (Willett, 1991). A small number of thermochromic A2[CuCl4] compounds are known in which the low temperature (green-coloured) phase contains square-planar [CuCl4]2- while the high-temperature (yellow) phase contains flattened tetrahedral [CuCl4]2- anions (Ihara, 2007).

The crystal structure of the title compound, (1-methylpiperidinium)2CuCl4, is comprised of a [CuCl4]2- anion and two symmetrically inequivalent 1-methylpiperidinium cations. The [CuCl4]2- anion displays the typical flattened tetrahedral geometry with an average trans Cl—Cu—Cl angle of 131.99° at 100 K, so no thermochromic phase transition is observed upon cooling to at least this temperature. Each 1-methylpiperidinium ion exhibits a chair conformation with the methyl group equatorial. Bond lengths and angles for the inorganic complex and organic cation conform to expected values (Ladd & Palmer, 1994). An ORTEP diagram of the asymmetric unit is presented in Figure 1.

The two inequivalent organic cations are segregated into alternating layers parallel to (100) and stacked along [100]. The cation #1 layer (containing N11) arranges cations in parallel stacks along [010] and in a herringbone pattern with the cation plane approximately perpendicular to the layer plane (mean plane normal forming an angle of 91.63 (3)° with respect to a). Neighboring cations in the stacks are related by inversion and neighboring stacks are related by the c-glide plane. The [CuCl4]2- anions form rows of translationally equivalent complexes parallel to [010] that fit in between the stacks and on both sides of the cation #1 layer. Atom Cl1 is directed almost into the middle of the cation layer with the rows of complexes on either side of the layer offset from one another to provide spacing between the Cl1 atoms inside the layer. The closest intermolecular Cl···Cl contact distance is, thus, Cl1···Cl1i= 5.891 (4) Å (i=-x, 1/2+y, 1/2-z) between Cl1 atoms from opposite rows of complexes. Cation #2 forms a layer at x = 0.5 to separate the cation #1/[CuCl4]2- slabs at x = 0.0 and 1.0. In this layer the mean plane of the cation is closer to the layer plane with the normal forming an angle of 41.34° with respect to a. The cations in this layer are arranged in a distorted hcp pattern with neighboring cations related by inversion, 21 rotation, or c-glide plane operations. A short, direct N11—H11···Cl1 hydrogen bond locks the Cl1 atoms into the interior of the cation #1 layer while a longer, less direct, and bifurcated N21—H21···Cl3 and ···Cl4 hydrogen bond links the cation #1/[CuCl4]2- slabs to the cation #2 layer. A packing diagram for the structure viewed along [010] is presented in Figure 2.

In contrast to the layer structure of (1-methylpiperidinium)2[CuCl4], in the related piperdinium salt (Fernandez et al., 1987; CSD refcode: PNCLCU01) translationally equivalent rows of [CuCl4]2- anions are surrounded by stacks of translationally equivalent organic cations. N—H···Cl hydrogen bonding from one inequivalent organic cation links neighboring complexes in the same row while hydrogen bonding from the other inequivalent organic cation links complexes in different rows. So there are four direct hydrogen bonds in the piperidinium salt, versus one direct and one bifurcated in the title structure. Yet in spite of the greater degree of hydrogen bonding the average trans Cl—Cu—Cl angle of 133.49° (at room temperature) is only slightly larger. (1-Methylmorpholinium)2[CuCl4] (Parent et al., 2007; CSD refcode: VICMIE) also has rows or chains of [CuCl4]2- anions with short Cl···Cl contacts surrounded by parallel stacks of organic cations. The two inequivalent organic cations each form a bifurcated hydrogen bond to all four Cl ligands of the complex, which has an average trans Cl—Cu—Cl angle of 134.32° (158 K). The N,N-dimethylpiperidinium system has been studied, although no examples of a [CuCl4]2- salt have yet been found. Crystals of a light green [CuCl3(H2O)]- salt do, however, form readily (Nalla and Bond, 2011).

Related literature top

For background to compounds with [CuCl4]2- anions, see: Awwadi et al. (2007); Bloomquist et al. (1988); Ihara (2007); Nelson et al. (1979); Schneider et al. (2007); Willett (1991); Willett & Twamley (2007). For related structures, see: Fernandez et al. (1987); Parent et al. (2007); Nalla & Bond (2011). For comparison bond lengths and angles, see: Ladd & Palmer (1994).

Experimental top

5 ml of 1-methylpiperidine were neutralized with concentrated HCl. This solution was mixed in a 2:1 molar ratio with copper(II) chloride dissolved in 6M HCl. Slow evaporation yielded yellow crystals of the title compound.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were visible on electron density difference maps and freely refined to give N—H = 0.833–0.895 Å, methylene C—H = 0.913–1.03 Å. and methyl C—H = 0.945–0.97 Å.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the asymmetric unit with atom labels. Displacement ellipsoids are drawn at the 50% level. The hydrogen bonding between N—H and Cl is indicated with dotted lines.
[Figure 2] Fig. 2. Unit cell packing diagram viewed along [010] showing the cation #1/[CuCl4]2- slabs at x = 0.0 and 1.0, and the cation #2 layer at x = 0.5. For clarity, hydrogen atoms are omitted and other atoms are drawn as circles of arbitrary radii ranked in size with Cu largest followed by Cl, then C and N smallest.
Bis(1-methylpiperidinium) tetrachloridocuprate(II) top
Crystal data top
(C6H14N)2[CuCl4]F(000) = 844
Mr = 405.7Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.2264 (2) ÅCell parameters from 8818 reflections
b = 11.3442 (2) Åθ = 1.0–35.6°
c = 13.3455 (2) ŵ = 1.76 mm1
β = 96.865 (1)°T = 100 K
V = 1837.73 (5) Å3Block, yellow
Z = 40.32 × 0.23 × 0.17 mm
Data collection top
Nonius KappaCCD
diffractometer
8453 independent reflections
Graphite monochromator6647 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.026
ω and ϕ scansθmax = 35.6°, θmin = 4.0°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1920
Tmin = 0.628, Tmax = 0.694k = 1818
16568 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030All H-atom parameters refined
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.6467P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.006
8453 reflectionsΔρmax = 0.57 e Å3
285 parametersΔρmin = 0.58 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (3)
Crystal data top
(C6H14N)2[CuCl4]V = 1837.73 (5) Å3
Mr = 405.7Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2264 (2) ŵ = 1.76 mm1
b = 11.3442 (2) ÅT = 100 K
c = 13.3455 (2) Å0.32 × 0.23 × 0.17 mm
β = 96.865 (1)°
Data collection top
Nonius KappaCCD
diffractometer
8453 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
6647 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.694Rint = 0.026
16568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.067All H-atom parameters refined
S = 1.05Δρmax = 0.57 e Å3
8453 reflectionsΔρmin = 0.58 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.251677 (12)0.415201 (12)0.299141 (10)0.01376 (4)
Cl10.06546 (2)0.42579 (2)0.25734 (2)0.01674 (5)
Cl20.27180 (2)0.52180 (2)0.44100 (2)0.01610 (5)
Cl30.30403 (3)0.43621 (3)0.14382 (2)0.02020 (6)
Cl40.35629 (3)0.25748 (3)0.34713 (2)0.01954 (6)
N110.07370 (8)0.22960 (9)0.08737 (7)0.01501 (17)
H110.0798 (13)0.2956 (15)0.1244 (12)0.020 (4)*
C110.14106 (11)0.13720 (12)0.14522 (10)0.0219 (2)
H11A0.1456 (15)0.0723 (16)0.1014 (13)0.028 (5)*
H11B0.2116 (14)0.1704 (15)0.1677 (12)0.024 (4)*
H11C0.1045 (16)0.1151 (17)0.2025 (15)0.037 (5)*
C120.04575 (10)0.19611 (12)0.07114 (10)0.0206 (2)
H12A0.0483 (14)0.1249 (16)0.0391 (12)0.023 (4)*
H12B0.0671 (14)0.1811 (15)0.1347 (13)0.024 (4)*
C130.11317 (11)0.29197 (12)0.01392 (10)0.0211 (2)
H13A0.1880 (15)0.2688 (15)0.0042 (13)0.026 (4)*
H13B0.1108 (14)0.3600 (16)0.0564 (13)0.026 (4)*
C140.07016 (12)0.32027 (14)0.08588 (10)0.0264 (3)
H14A0.0764 (15)0.2522 (17)0.1302 (14)0.033 (5)*
H14B0.1129 (15)0.3849 (17)0.1173 (14)0.033 (5)*
C150.05150 (12)0.35232 (14)0.06641 (11)0.0275 (3)
H15A0.0813 (15)0.3663 (17)0.1260 (14)0.031 (5)*
H15B0.0616 (17)0.4262 (18)0.0268 (15)0.040 (5)*
C160.11738 (11)0.25462 (11)0.01073 (9)0.0190 (2)
H16A0.1110 (13)0.1833 (14)0.0472 (11)0.017 (4)*
H16B0.1918 (14)0.2742 (14)0.0066 (12)0.019 (4)*
N210.51192 (8)0.25190 (9)0.15565 (8)0.01564 (18)
H210.4620 (13)0.2945 (14)0.1731 (12)0.017 (4)*
C210.45664 (12)0.14160 (12)0.11569 (11)0.0232 (2)
H21A0.5108 (15)0.0891 (16)0.0926 (14)0.030 (5)*
H21B0.4240 (16)0.1038 (17)0.1704 (15)0.036 (5)*
H21C0.4060 (14)0.1605 (16)0.0588 (13)0.028 (4)*
C220.55885 (11)0.31840 (12)0.07359 (9)0.0203 (2)
H22A0.6091 (13)0.2664 (14)0.0498 (12)0.020 (4)*
H22B0.4995 (15)0.3324 (16)0.0233 (13)0.027 (4)*
C230.61029 (13)0.43323 (12)0.11370 (11)0.0259 (3)
H23A0.6408 (16)0.4715 (17)0.0596 (14)0.034 (5)*
H23B0.5515 (15)0.4840 (16)0.1296 (13)0.030 (5)*
C240.69579 (12)0.41383 (14)0.20480 (11)0.0276 (3)
H24A0.7614 (16)0.3662 (18)0.1844 (14)0.039 (5)*
H24B0.7199 (17)0.491 (2)0.2345 (15)0.045 (6)*
C250.64709 (12)0.34239 (14)0.28531 (10)0.0256 (3)
H25A0.7000 (15)0.3232 (16)0.3397 (13)0.030 (5)*
H25B0.5928 (15)0.3843 (16)0.3125 (13)0.025 (4)*
C260.59873 (11)0.22741 (12)0.24265 (9)0.0206 (2)
H26A0.6515 (13)0.1796 (14)0.2156 (11)0.019 (4)*
H26B0.5624 (13)0.1821 (14)0.2901 (12)0.018 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01396 (7)0.01435 (7)0.01306 (6)0.00173 (5)0.00206 (4)0.00012 (5)
Cl10.01474 (12)0.01853 (12)0.01674 (11)0.00235 (9)0.00100 (9)0.00114 (9)
Cl20.01717 (12)0.01518 (12)0.01603 (11)0.00021 (9)0.00233 (9)0.00179 (9)
Cl30.02281 (14)0.02322 (14)0.01554 (12)0.00504 (11)0.00628 (10)0.00299 (10)
Cl40.02184 (14)0.01968 (13)0.01715 (12)0.00794 (10)0.00254 (10)0.00137 (9)
N110.0150 (4)0.0163 (4)0.0139 (4)0.0004 (3)0.0024 (3)0.0013 (3)
C110.0210 (6)0.0241 (6)0.0199 (5)0.0035 (5)0.0001 (4)0.0035 (5)
C120.0159 (5)0.0209 (6)0.0249 (6)0.0028 (4)0.0024 (4)0.0056 (5)
C130.0153 (5)0.0222 (6)0.0259 (6)0.0016 (4)0.0030 (4)0.0026 (5)
C140.0264 (7)0.0306 (7)0.0219 (6)0.0090 (6)0.0013 (5)0.0068 (5)
C150.0279 (7)0.0290 (7)0.0278 (6)0.0073 (6)0.0127 (5)0.0135 (5)
C160.0194 (6)0.0216 (6)0.0171 (5)0.0023 (4)0.0067 (4)0.0005 (4)
N210.0142 (4)0.0144 (4)0.0184 (4)0.0005 (3)0.0022 (3)0.0018 (3)
C210.0212 (6)0.0185 (6)0.0307 (7)0.0037 (5)0.0059 (5)0.0071 (5)
C220.0211 (6)0.0225 (6)0.0174 (5)0.0028 (5)0.0024 (4)0.0005 (4)
C230.0281 (7)0.0207 (6)0.0295 (7)0.0066 (5)0.0062 (5)0.0004 (5)
C240.0211 (6)0.0306 (7)0.0312 (7)0.0085 (5)0.0031 (5)0.0106 (6)
C250.0223 (6)0.0334 (7)0.0200 (6)0.0009 (5)0.0009 (5)0.0086 (5)
C260.0202 (6)0.0228 (6)0.0185 (5)0.0056 (5)0.0014 (4)0.0001 (4)
Geometric parameters (Å, º) top
Cu1—Cl12.2816 (3)C16—H16A0.943 (16)
Cu1—Cl22.2351 (3)C16—H16B0.938 (16)
Cu1—Cl32.2539 (3)N21—C211.4903 (16)
Cu1—Cl42.2475 (3)N21—C221.4992 (16)
N11—C111.4904 (16)N21—C261.5024 (16)
N11—C161.4990 (15)N21—H210.833 (16)
N11—C121.4995 (16)C21—H21A0.968 (19)
N11—H110.895 (17)C21—H21B0.97 (2)
C11—H11A0.946 (18)C21—H21C0.945 (18)
C11—H11B0.957 (17)C22—C231.5160 (19)
C11—H11C0.96 (2)C22—H22A0.934 (17)
C12—C131.5148 (18)C22—H22B0.941 (18)
C12—H12A0.913 (18)C23—C241.522 (2)
C12—H12B0.932 (17)C23—H23A0.955 (19)
C13—C141.5233 (19)C23—H23B0.964 (19)
C13—H13A0.946 (18)C24—C251.523 (2)
C13—H13B0.956 (18)C24—H24A1.03 (2)
C14—C151.523 (2)C24—H24B0.99 (2)
C14—H14A0.970 (19)C25—C261.515 (2)
C14—H14B0.966 (19)C25—H25A0.938 (18)
C15—C161.5121 (19)C25—H25B0.925 (18)
C15—H15A0.927 (18)C26—H26A0.948 (16)
C15—H15B0.99 (2)C26—H26B0.964 (16)
Cl1—Cu1—Cl2100.615 (11)N11—C16—H16B105.4 (10)
Cl1—Cu1—Cl398.880 (12)C15—C16—H16B113.0 (10)
Cl1—Cu1—Cl4128.967 (13)H16A—C16—H16B110.4 (13)
Cl2—Cu1—Cl3135.003 (13)C21—N21—C22110.98 (10)
Cl2—Cu1—Cl4100.840 (12)C21—N21—C26111.69 (10)
Cl3—Cu1—Cl497.568 (12)C22—N21—C26111.15 (10)
C11—N11—C16110.68 (10)C21—N21—H21105.7 (11)
C11—N11—C12111.41 (10)C22—N21—H21105.7 (11)
C16—N11—C12111.37 (10)C26—N21—H21111.4 (11)
C11—N11—H11107.3 (10)N21—C21—H21A109.4 (11)
C16—N11—H11108.0 (10)N21—C21—H21B108.1 (11)
C12—N11—H11107.9 (10)H21A—C21—H21B109.0 (15)
N11—C11—H11A107.3 (11)N21—C21—H21C108.8 (11)
N11—C11—H11B107.9 (10)H21A—C21—H21C106.9 (15)
H11A—C11—H11B112.6 (15)H21B—C21—H21C114.5 (16)
N11—C11—H11C108.3 (12)N21—C22—C23110.69 (10)
H11A—C11—H11C110.8 (16)N21—C22—H22A104.8 (10)
H11B—C11—H11C109.9 (15)C23—C22—H22A113.6 (10)
N11—C12—C13110.66 (10)N21—C22—H22B106.0 (11)
N11—C12—H12A105.7 (11)C23—C22—H22B111.0 (11)
C13—C12—H12A114.4 (11)H22A—C22—H22B110.3 (14)
N11—C12—H12B106.7 (10)C22—C23—C24111.97 (12)
C13—C12—H12B113.3 (10)C22—C23—H23A107.8 (11)
H12A—C12—H12B105.4 (15)C24—C23—H23A112.2 (11)
C12—C13—C14111.60 (11)C22—C23—H23B107.6 (11)
C12—C13—H13A109.2 (10)C24—C23—H23B111.7 (10)
C14—C13—H13A111.6 (10)H23A—C23—H23B105.3 (15)
C12—C13—H13B107.7 (10)C23—C24—C25110.59 (12)
C14—C13—H13B111.1 (10)C23—C24—H24A110.3 (11)
H13A—C13—H13B105.4 (14)C25—C24—H24A106.9 (11)
C15—C14—C13109.47 (11)C23—C24—H24B109.7 (12)
C15—C14—H14A107.4 (11)C25—C24—H24B108.0 (12)
C13—C14—H14A110.8 (11)H24A—C24—H24B111.3 (16)
C15—C14—H14B111.1 (11)C26—C25—C24111.17 (11)
C13—C14—H14B108.3 (11)C26—C25—H25A107.1 (11)
H14A—C14—H14B109.9 (15)C24—C25—H25A112.2 (11)
C16—C15—C14111.15 (12)C26—C25—H25B108.9 (11)
C16—C15—H15A107.8 (12)C24—C25—H25B111.3 (11)
C14—C15—H15A111.8 (11)H25A—C25—H25B106.1 (15)
C16—C15—H15B109.5 (12)N21—C26—C25109.82 (11)
C14—C15—H15B110.5 (12)N21—C26—H26A105.2 (9)
H15A—C15—H15B106.0 (16)C25—C26—H26A112.5 (10)
N11—C16—C15110.09 (10)N21—C26—H26B105.5 (9)
N11—C16—H16A105.8 (9)C25—C26—H26B113.7 (9)
C15—C16—H16A111.7 (9)H26A—C26—H26B109.5 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···Cl10.895 (16)2.331 (16)3.188 (1)160 (1)
N21—H21···Cl30.833 (17)2.508 (16)3.280 (1)155 (1)
N21—H21···Cl40.833 (17)2.821 (17)3.364 (1)125 (1)

Experimental details

Crystal data
Chemical formula(C6H14N)2[CuCl4]
Mr405.7
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.2264 (2), 11.3442 (2), 13.3455 (2)
β (°) 96.865 (1)
V3)1837.73 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.32 × 0.23 × 0.17
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.628, 0.694
No. of measured, independent and
observed [I > 2σ(I)] reflections
16568, 8453, 6647
Rint0.026
(sin θ/λ)max1)0.820
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.067, 1.05
No. of reflections8453
No. of parameters285
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.57, 0.58

Computer programs: COLLECT (Hooft, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—Cl12.2816 (3)Cu1—Cl32.2539 (3)
Cu1—Cl22.2351 (3)Cu1—Cl42.2475 (3)
Cl1—Cu1—Cl2100.615 (11)Cl2—Cu1—Cl3135.003 (13)
Cl1—Cu1—Cl398.880 (12)Cl2—Cu1—Cl4100.840 (12)
Cl1—Cu1—Cl4128.967 (13)Cl3—Cu1—Cl497.568 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···Cl10.895 (16)2.331 (16)3.188 (1)160 (1)
N21—H21···Cl30.833 (17)2.508 (16)3.280 (1)155 (1)
N21—H21···Cl40.833 (17)2.821 (17)3.364 (1)125 (1)
 

Acknowledgements

The authors wish to thank the National Science Foundation DUE CCLI-A&I program (grant No. 9951348) and Southeast Missouri State University for funding the X-ray diffraction facility.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAwwadi, F. F., Willett, R. D. & Twamley, B. (2007). Cryst. Growth Des. 7, 624–632.  CrossRef CAS Google Scholar
First citationBloomquist, D. R., Pressprich, M. R. & Willett, R. D. (1988). J. Am. Chem. Soc. 110, 7391–7398.  CSD CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFernandez, V., Moran, M., Gutierrez-Rios, M. T., Foces-Foces, C. & Cano, F. H. (1987). Inorg. Chim. Acta, 128, 239–243.  CrossRef CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationIhara, Y. (2007). Inorganic Chromotropism, edited by Y. Fukuda, pp. 78–81. Japan: Kondansha.  Google Scholar
First citationLadd, M. F. C. & Palmer, R. A. (1994). Structure Determination by X-ray Crystallography, 3rd ed., pp. 434–435. New York: Plenum Press.  Google Scholar
First citationNalla, S. & Bond, M. R. (2011). Acta Cryst. C67. Submitted.  CrossRef IUCr Journals Google Scholar
First citationNelson, H. C., Simonsen, S. H. & Watt, G. W. (1979). J. Chem. Soc. Chem. Commun. pp. 632–633.  CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParent, A. R., Landee, C. P. & Turnbull, M. M. (2007). Inorg. Chim. Acta, 360, 1943–1953.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchneider, T. T., Landee, C. P., Turnbull, M. M., Awwadi, F. F. & Twamley, B. (2007). Polyhedron, 26, 1849–1858.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillett, R. D. (1991). Coord. Chem. Rev. 109, 181–205.  CrossRef CAS Web of Science Google Scholar
First citationWillett, R. D. & Twamley, B. (2007). Acta Cryst. E63, m2591.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m725-m726
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds