metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-benzoato-κ3O,O′:O;κ3O:O,O′-bis­­[(benzoato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)lead(II)]

aSchool of Chemistry and Biology Engineering, Taiyuan University of Science and Technology, Taiyuan 030021, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: zqgao2008@163.com

(Received 4 May 2011; accepted 15 May 2011; online 20 May 2011)

In the centrosymmetric dinuclear title compound, [Pb2(C7H5O2)4(C12H8N2)2], two Pb2+ ions are connected by two tridentate bridging benzoate anions. The Pb2+ ion is seven-coordinated by five O atoms from three benzoate anions and two N atoms from the 1,10-phenanthroline ligands. The benzoate anions adopt two different coordination modes, one bidentate–chelating and one tridentate bridging–chelating. The three-dimensional supra­molecular framework is achieved by inter­molecular ππ stacking inter­actions, with a shortest centroid–centroid distance of 3.617 (4) Å.

Related literature

For bond lengths and angles in other lead(II) compounds, see: Fan et al. (2006[Fan, S. R. & Zhu, L. G. (2006). Inorg. Chem. Commun. 45, 7935-7942.]); Hu et al. (2011[Hu, R. R., Cai, H. & Luo, J. H. (2011). Inorg. Chem. Commun. 14, 433-436.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C7H5O2)4(C12H8N2)2]

  • Mr = 1259.23

  • Triclinic, [P \overline 1]

  • a = 9.011 (3) Å

  • b = 10.923 (3) Å

  • c = 11.920 (4) Å

  • α = 83.760 (3)°

  • β = 87.626 (3)°

  • γ = 71.601 (3)°

  • V = 1106.6 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.66 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.223, Tmax = 0.261

  • 7969 measured reflections

  • 4059 independent reflections

  • 3296 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.069

  • S = 0.96

  • 4059 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 1.95 e Å−3

  • Δρmin = −1.35 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O4 2.394 (4)
Pb1—N1 2.578 (5)
Pb1—O1 2.584 (4)
Pb1—N2 2.703 (5)
Pb1—O2 2.723 (5)
Pb1—O3 2.788 (5)
Pb1—O3i 2.924 (5)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Lead(II) compounds have been increasingly studied owing to their interesting physical and chemical properties (Fan et al., 2006; Hu et al., 2011). In order to extend our investigations in this field, we crystallised the lead(II) title compound [Pb2(C7H5O2)4(C12H8N2)2], and report its structure here.

The asymmetric unit of the title complex (Fig. 1) contains one Pb2+ ion, two benzoate anions, and one 1,10-phenanthroline ligand. The Pb2+ ion is seven-coordinated by five O atoms from three benzoate ligands and by two N atoms from 1,10-phenanthroline. The coordination environment around the Pb2+ ion may be described as a distorted mono-capped trigonal prism. Two adjacent PbII complexes are connected by two bridging benzoate anions to generate a centrosymmetric dinuclear unit. The benzoate anions adopt two kinds of coordination modes, viz. a bidentate chelating and a tridentate bridging-chelating mode.

The Pb—N and Pb—O bond lengths range between 2.578 (5)–2.703 (5) Å and 2.394 (4)–2.924 (5) Å, respectively. These values are in good agreement with those reported for other Pb(II)—O and Pb(II)—N donor complexes (Fan et al., 2006; Hu et al., 2011).

In the crystal structure, ππ stacking interactions between adjacent 1,10-phenanthroline ligands [centroid—centroid distance = 3.617 (4) Å] are observed. Furthermore, adjacent benzene rings from benzoate anions are also involved in ππ stacking interactions [centroid—centroid distance = 4.083 (3) Å]. ππ stacking interactions between adjacent 1,10-phenanthroline ligands and benzene rings from benzoate anions [centroid—centroid distance = 3.945 (4) Å] are also observed. These interactions of the discrete neutral molecules lead to a three-dimensional supramolecular framework (Fig. 2).

Related literature top

For bond lengths and angles in other lead(II) compounds, see: Fan et al. (2006); Hu et al. (2011).

Experimental top

A mixture of Pb(CH3COO)2.3H2O (0.20 g, 0.54 mmol), benzoic acid (0.12 g, 1.0 mmol), 1,10-phenanthroline (0.11 g, 0.54 mmol), NaOH (0.04 g, 1.0 mmol), and water (10 ml) was stirred at room temperature for 15 min, and then sealed in a 25 ml Teflon-lined, stainless-steel Parr autoclave. The autoclave was heated at 433 K for 3 d. Upon cooling, the solution contained single crystals of the title complex in ca 80% yield. Anal./calc. for C26H18N2O4Pb: C, 49.60; H, 2.88; N, 4.45; found: C, 49.43; H, 3.07; N, 4.13.

Refinement top

The carbon-bound H atoms were placed in geometrically idealized positions, with C–H = 0.93 Å, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C). The highest peak and the deepest hole in the final difference map are 0.98 Å and 0.89 Å, respectively, from Pb1.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in the structure of the title complex, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View approximately along the a axis, showing the three-dimensional framework structure in the title complex.
Di-µ-benzoato- κ3O,O':O;κ3O:O,O'- bis[(benzoato-κ2O,O')(1,10-phenanthroline- κ2N,N')lead(II)] top
Crystal data top
[Pb2(C7H5O2)4(C12H8N2)2]Z = 1
Mr = 1259.23F(000) = 604
Triclinic, P1Dx = 1.889 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.011 (3) ÅCell parameters from 3450 reflections
b = 10.923 (3) Åθ = 2.4–24.1°
c = 11.920 (4) ŵ = 7.66 mm1
α = 83.760 (3)°T = 293 K
β = 87.626 (3)°Block, colorless
γ = 71.601 (3)°0.28 × 0.26 × 0.24 mm
V = 1106.6 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4059 independent reflections
Radiation source: fine-focus sealed tube3296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.223, Tmax = 0.261k = 1213
7969 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0271P)2]
where P = (Fo2 + 2Fc2)/3
4059 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 1.95 e Å3
0 restraintsΔρmin = 1.35 e Å3
Crystal data top
[Pb2(C7H5O2)4(C12H8N2)2]γ = 71.601 (3)°
Mr = 1259.23V = 1106.6 (6) Å3
Triclinic, P1Z = 1
a = 9.011 (3) ÅMo Kα radiation
b = 10.923 (3) ŵ = 7.66 mm1
c = 11.920 (4) ÅT = 293 K
α = 83.760 (3)°0.28 × 0.26 × 0.24 mm
β = 87.626 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4059 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3296 reflections with I > 2σ(I)
Tmin = 0.223, Tmax = 0.261Rint = 0.041
7969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 0.96Δρmax = 1.95 e Å3
4059 reflectionsΔρmin = 1.35 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.24985 (3)0.97230 (2)0.484550 (19)0.03770 (9)
C30.1241 (8)0.5411 (7)0.4132 (6)0.060 (2)
H30.09790.46790.40090.072*
C20.0639 (8)0.6531 (8)0.3469 (7)0.064 (2)
H20.00420.65770.28900.077*
C10.1049 (8)0.7616 (7)0.3660 (6)0.0556 (18)
H10.06210.83840.32020.067*
N10.2020 (5)0.7600 (5)0.4465 (4)0.0415 (12)
C50.2638 (7)0.6483 (6)0.5128 (5)0.0383 (14)
C90.3737 (7)0.6449 (6)0.5979 (5)0.0392 (14)
N20.4171 (6)0.7506 (5)0.6046 (4)0.0414 (12)
C120.5255 (8)0.7451 (6)0.6789 (6)0.0515 (17)
H120.55800.81750.68210.062*
C110.5919 (8)0.6347 (7)0.7520 (6)0.062 (2)
H110.66690.63400.80360.074*
C100.5474 (8)0.5294 (7)0.7478 (6)0.0603 (19)
H100.58900.45620.79810.072*
C80.4388 (8)0.5296 (6)0.6680 (6)0.0484 (17)
C70.3938 (9)0.4183 (6)0.6538 (7)0.0591 (19)
H70.43320.34310.70230.071*
C60.2968 (9)0.4201 (7)0.5725 (7)0.060 (2)
H60.27460.34440.56240.072*
C40.2253 (7)0.5353 (6)0.5000 (5)0.0460 (16)
O10.0004 (5)1.0690 (4)0.3639 (4)0.0515 (11)
O20.1272 (6)1.2117 (5)0.3714 (4)0.0702 (15)
C130.0280 (8)1.1731 (6)0.3290 (6)0.0466 (16)
C140.0619 (7)1.2544 (6)0.2281 (5)0.0417 (15)
C190.1491 (8)1.2081 (8)0.1642 (6)0.068 (2)
H190.15571.12500.18250.081*
C150.0538 (8)1.3785 (7)0.1983 (6)0.0580 (19)
H150.00681.41120.24060.070*
C180.2279 (11)1.2843 (12)0.0720 (8)0.104 (3)
H180.28791.25210.02870.125*
C170.2193 (12)1.4049 (12)0.0435 (8)0.108 (4)
H170.27181.45460.01970.130*
C160.1348 (11)1.4533 (9)0.1065 (7)0.086 (3)
H160.13121.53720.08800.103*
O30.5456 (6)0.9341 (5)0.3871 (4)0.0672 (14)
O40.3436 (6)0.9290 (5)0.2975 (4)0.0689 (14)
C200.4843 (8)0.9206 (6)0.3015 (6)0.0436 (15)
C210.5768 (7)0.8906 (5)0.1958 (5)0.0410 (15)
C260.5161 (9)0.8558 (7)0.1053 (6)0.0612 (19)
H260.41490.85060.11000.073*
C250.5999 (13)0.8290 (8)0.0091 (7)0.089 (3)
H250.55630.80680.05190.106*
C220.7265 (8)0.8974 (7)0.1879 (6)0.067 (2)
H220.76980.92080.24850.080*
C230.8124 (11)0.8697 (9)0.0907 (10)0.097 (3)
H230.91360.87490.08560.116*
C240.7511 (14)0.8349 (9)0.0027 (8)0.100 (4)
H240.81050.81500.06230.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.04097 (14)0.03437 (14)0.04007 (15)0.01488 (10)0.00285 (9)0.00557 (10)
C30.060 (5)0.050 (5)0.081 (6)0.027 (4)0.015 (4)0.028 (4)
C20.059 (5)0.068 (5)0.074 (5)0.028 (4)0.009 (4)0.023 (4)
C10.058 (4)0.053 (5)0.059 (5)0.017 (4)0.007 (4)0.012 (4)
N10.041 (3)0.038 (3)0.049 (3)0.015 (2)0.002 (2)0.012 (3)
C50.042 (3)0.034 (3)0.044 (4)0.017 (3)0.015 (3)0.014 (3)
C90.041 (3)0.036 (4)0.042 (4)0.015 (3)0.014 (3)0.009 (3)
N20.053 (3)0.033 (3)0.039 (3)0.015 (3)0.008 (2)0.007 (2)
C120.058 (4)0.044 (4)0.055 (4)0.018 (3)0.002 (3)0.011 (3)
C110.064 (5)0.055 (5)0.060 (5)0.010 (4)0.011 (4)0.001 (4)
C100.078 (5)0.045 (4)0.048 (4)0.008 (4)0.007 (4)0.007 (3)
C80.057 (4)0.036 (4)0.050 (4)0.013 (3)0.015 (3)0.005 (3)
C70.074 (5)0.034 (4)0.067 (5)0.015 (4)0.014 (4)0.003 (4)
C60.071 (5)0.037 (4)0.078 (6)0.023 (4)0.026 (4)0.021 (4)
C40.047 (4)0.041 (4)0.059 (4)0.023 (3)0.014 (3)0.019 (3)
O10.057 (3)0.040 (3)0.058 (3)0.017 (2)0.003 (2)0.001 (2)
O20.072 (3)0.063 (3)0.082 (4)0.034 (3)0.032 (3)0.012 (3)
C130.047 (4)0.037 (4)0.054 (4)0.011 (3)0.007 (3)0.008 (3)
C140.040 (4)0.050 (4)0.038 (4)0.018 (3)0.008 (3)0.006 (3)
C190.073 (5)0.091 (6)0.053 (5)0.046 (5)0.000 (4)0.005 (4)
C150.063 (5)0.057 (5)0.054 (4)0.021 (4)0.004 (4)0.001 (4)
C180.122 (8)0.155 (11)0.062 (6)0.081 (8)0.024 (5)0.000 (7)
C170.123 (9)0.143 (10)0.057 (6)0.050 (8)0.034 (6)0.034 (7)
C160.094 (7)0.084 (6)0.068 (6)0.023 (5)0.004 (5)0.024 (5)
O30.093 (4)0.074 (4)0.046 (3)0.038 (3)0.002 (3)0.019 (3)
O40.069 (3)0.093 (4)0.050 (3)0.032 (3)0.018 (2)0.017 (3)
C200.058 (4)0.027 (3)0.048 (4)0.017 (3)0.004 (3)0.005 (3)
C210.051 (4)0.030 (3)0.042 (4)0.013 (3)0.012 (3)0.006 (3)
C260.081 (5)0.061 (5)0.047 (4)0.029 (4)0.014 (4)0.013 (4)
C250.129 (9)0.086 (7)0.056 (5)0.038 (6)0.025 (5)0.027 (5)
C220.060 (5)0.075 (5)0.064 (5)0.021 (4)0.017 (4)0.012 (4)
C230.073 (6)0.094 (7)0.114 (8)0.018 (5)0.044 (6)0.010 (7)
C240.137 (10)0.069 (6)0.074 (7)0.007 (6)0.060 (7)0.017 (5)
Geometric parameters (Å, º) top
Pb1—O42.394 (4)O1—C131.263 (7)
Pb1—N12.578 (5)O1—Pb1ii2.946 (4)
Pb1—O12.584 (4)O2—C131.247 (8)
Pb1—N22.703 (5)C13—C141.512 (9)
Pb1—O22.723 (5)C13—Pb1ii3.874 (6)
Pb1—O32.788 (5)C14—C191.356 (9)
Pb1—O3i2.924 (5)C14—C151.387 (9)
C3—C21.350 (10)C19—C181.377 (11)
C3—C41.390 (9)C19—H190.9300
C3—H30.9300C15—C161.376 (10)
C2—C11.390 (9)C15—H150.9300
C2—H20.9300C18—C171.350 (13)
C1—N11.320 (8)C18—H180.9300
C1—H10.9300C17—C161.345 (12)
N1—C51.350 (7)C17—H170.9300
C5—C41.408 (8)C16—H160.9300
C5—C91.436 (8)O3—C201.224 (7)
C9—N21.342 (7)O3—Pb1i2.923 (5)
C9—C81.404 (8)O4—C201.244 (7)
N2—C121.329 (8)C20—C211.490 (8)
C12—C111.389 (9)C21—C261.370 (9)
C12—H120.9300C21—C221.374 (9)
C11—C101.339 (10)C26—C251.353 (10)
C11—H110.9300C26—H260.9300
C10—C81.392 (9)C25—C241.383 (13)
C10—H100.9300C25—H250.9300
C8—C71.425 (9)C22—C231.374 (11)
C7—C61.326 (10)C22—H220.9300
C7—H70.9300C23—C241.348 (13)
C6—C41.429 (9)C23—H230.9300
C6—H60.9300C24—H240.9300
O4—Pb1—N173.03 (16)C6—C7—H7119.4
O4—Pb1—O176.92 (16)C8—C7—H7119.4
N1—Pb1—O180.92 (15)C7—C6—C4121.7 (6)
O4—Pb1—N2100.85 (16)C7—C6—H6119.1
N1—Pb1—N262.22 (16)C4—C6—H6119.1
O1—Pb1—N2141.48 (15)C3—C4—C5117.5 (6)
O4—Pb1—O279.49 (17)C3—C4—C6123.6 (6)
N1—Pb1—O2127.45 (15)C5—C4—C6118.9 (6)
O1—Pb1—O249.27 (13)C13—O1—Pb195.5 (4)
N2—Pb1—O2169.20 (13)C13—O1—Pb1ii129.6 (4)
O4—Pb1—O348.70 (15)Pb1—O1—Pb1ii103.74 (14)
N1—Pb1—O3100.12 (14)C13—O2—Pb189.4 (4)
O1—Pb1—O3120.86 (14)O2—C13—O1124.0 (6)
N2—Pb1—O378.88 (14)O2—C13—C14117.9 (6)
O2—Pb1—O393.68 (15)O1—C13—C14118.1 (6)
O4—Pb1—O3i113.45 (15)C19—C14—C15118.7 (7)
N1—Pb1—O3i140.87 (15)C19—C14—C13121.5 (6)
O1—Pb1—O3i137.97 (14)C15—C14—C13119.8 (6)
N2—Pb1—O3i78.83 (15)C14—C19—C18119.9 (8)
O2—Pb1—O3i91.08 (14)C14—C19—H19120.1
O3—Pb1—O3i66.84 (16)C18—C19—H19120.1
C2—C3—C4120.0 (6)C16—C15—C14120.3 (7)
C2—C3—H3120.0C16—C15—H15119.8
C4—C3—H3120.0C14—C15—H15119.8
C3—C2—C1119.3 (7)C17—C18—C19121.0 (9)
C3—C2—H2120.3C17—C18—H18119.5
C1—C2—H2120.3C19—C18—H18119.5
N1—C1—C2122.8 (7)C16—C17—C18120.1 (9)
N1—C1—H1118.6C16—C17—H17120.0
C2—C1—H1118.6C18—C17—H17120.0
Pb1—C1—H178.0C17—C16—C15120.0 (9)
Pb1ii—C1—H166.1C17—C16—H16120.0
C1—N1—C5118.4 (5)C15—C16—H16120.0
C1—N1—Pb1119.7 (4)C20—O3—Pb185.0 (4)
C5—N1—Pb1121.7 (4)C20—O3—Pb1i155.1 (4)
N1—C5—C4122.0 (6)Pb1—O3—Pb1i113.16 (16)
N1—C5—C9118.6 (5)C20—O4—Pb1103.6 (4)
C4—C5—C9119.3 (6)O3—C20—O4122.8 (6)
N2—C9—C8121.7 (6)O3—C20—C21121.1 (6)
N2—C9—C5118.8 (5)O4—C20—C21116.1 (6)
C8—C9—C5119.4 (6)C26—C21—C22118.7 (6)
C12—N2—C9118.9 (5)C26—C21—C20121.5 (6)
C12—N2—Pb1123.4 (4)C22—C21—C20119.8 (6)
C9—N2—Pb1117.2 (4)C25—C26—C21121.5 (8)
N2—C12—C11122.0 (6)C25—C26—H26119.2
N2—C12—H12119.0C21—C26—H26119.2
C11—C12—H12119.0C26—C25—C24119.2 (9)
Pb1—C12—H1280.8C26—C25—H25120.4
C10—C11—C12119.7 (7)C24—C25—H25120.4
C10—C11—H11120.2C23—C22—C21120.1 (8)
C12—C11—H11120.2C23—C22—H22120.0
C11—C10—C8119.9 (6)C21—C22—H22120.0
C11—C10—H10120.0C24—C23—C22120.4 (9)
C8—C10—H10120.0C24—C23—H23119.8
C10—C8—C9117.7 (6)C22—C23—H23119.8
C10—C8—C7122.9 (6)C23—C24—C25120.1 (8)
C9—C8—C7119.4 (6)C23—C24—H24120.0
C6—C7—C8121.1 (7)C25—C24—H24120.0
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Pb2(C7H5O2)4(C12H8N2)2]
Mr1259.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.011 (3), 10.923 (3), 11.920 (4)
α, β, γ (°)83.760 (3), 87.626 (3), 71.601 (3)
V3)1106.6 (6)
Z1
Radiation typeMo Kα
µ (mm1)7.66
Crystal size (mm)0.28 × 0.26 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.223, 0.261
No. of measured, independent and
observed [I > 2σ(I)] reflections
7969, 4059, 3296
Rint0.041
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.069, 0.96
No. of reflections4059
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.95, 1.35

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pb1—O42.394 (4)Pb1—O22.723 (5)
Pb1—N12.578 (5)Pb1—O32.788 (5)
Pb1—O12.584 (4)Pb1—O3i2.924 (5)
Pb1—N22.703 (5)
Symmetry code: (i) x+1, y+2, z+1.
 

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, S. R. & Zhu, L. G. (2006). Inorg. Chem. Commun. 45, 7935–7942.  CrossRef CAS Google Scholar
First citationHu, R. R., Cai, H. & Luo, J. H. (2011). Inorg. Chem. Commun. 14, 433–436.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds