organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1440-o1441

N-{3-[2-(4-Fluoro­phen­­oxy)eth­yl]-2,4-dioxo-1,3-di­aza­spiro­[4.5]decan-7-yl}-4-methyl­benzamide

aDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, cDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, and dDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 7 March 2011; accepted 12 May 2011; online 20 May 2011)

In the title compound, C24H26FN3O4, the two aromatic rings form a dihedral angle of 88.81 (15)°. The cyclo­hexane ring adopts a chair conformation and the five-membered ring is essentially planar, with a maximum deviation from planarity of 0.041 (2) Å. The crystal structure displays inter­molecular C—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the biological activity of related compounds, see: Cartwright et al. (2007[Cartwright, M. W., Sandford, G., Bousbaa, J., Yufit, D. S., Howard, J. A. K., Christopher, J. A. & Miller, D. D. (2007). Tetrahedron, 63, 7027-7035.]); Collins (2000[Collins, I. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2845-2861.]); Warshakoon et al. (2006[Warshakoon, N. C., Wu, S., Boyer, A., Kawamoto, R., Sheville, J., Renock, S., Xu, K., Pokross, M., Evdokimov, A. G., Walter, R. & Mekel, M. (2006). Bioorg. Med. Chem. Lett. 16, 5598-5601.]). For the pharmaceutical activity of related compounds, see: Kiselyov et al. (2006[Kiselyov, A. S., Semenova, M., Semenov, V. V. & Piatnitski, E. (2006). Bioorg. Med. Chem. Lett. 16, 1726-1730.]); Sakthivel & Cook (2005[Sakthivel, K. & Cook, P. D. (2005). Tetrahedron Lett. 46, 3883-3887.]); Eldrup et al. (2004[Eldrup, A. B., et al. (2004). J. Med. Chem. 47, 5284-5297.]); Bamford et al. (2005[Bamford, M. J., et al. (2005). Bioorg. Med. Chem. Lett. 15, 3402-3406.]); Puerstinger et al. (2006[Puerstinger, G., Paeshuyse, J., Herdewijn, P., Rozenski, J., Clercq, D. & Neyts, J. (2006). Bioorg. Med. Chem. Lett. 16, 5345-5349.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26FN3O4

  • Mr = 439.48

  • Triclinic, [P \overline 1]

  • a = 9.1436 (17) Å

  • b = 10.103 (2) Å

  • c = 13.939 (2) Å

  • α = 99.239 (15)°

  • β = 106.550 (14)°

  • γ = 107.417 (18)°

  • V = 1134.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.770, Tmax = 1.000

  • 7145 measured reflections

  • 3967 independent reflections

  • 2163 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.135

  • S = 0.90

  • 3967 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O5i 0.86 2.06 2.892 (3) 163
N8—H8⋯O4ii 0.86 2.22 3.060 (3) 165
C27—H27⋯O4ii 0.93 2.45 3.370 (3) 172
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+2, -z.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

One of the challenges of medicinal chemistry is the promotion of structural diversity, which can be achieved by the attachment of pharmacophoric groups to the significant molecular scaffold in combinatorial chemistry. Examples of such a process include di and tri-substituted hydantoins, which have been widely used in biological screenings, resulting in numerous pharmaceutical applications (Cartwright et al., 2007; Collins, 2000; Warshakoon et al., 2006). Hydantoin analogues have shown versatile therapeutic applications and some of them have been approved as drugs. For example, fosphenytoin as a sodium channel antagonist is used for the treatment of epilepsy. Phenytoin has antiarrhythmic, anticonvulsant, and antineuralgic activities. Ethotoin and mephenytoin both show anticonvulsant effects. Nilutamide is used in the treatment of prostate cancer (Kiselyov et al., 2006; Sakthivel & Cook, 2005; Eldrup et al., 2004; Bamford et al., 2005; Puerstinger et al., 2006).

The asymmetric unit of N-(3-(2-(4-fluorophenoxy)ethyl)-2,4- dioxo-1,3-diazaspiro[4.5]decan-7-yl)-4-methylbenzamide, C24H26FN3O4, contains just one molecule (Fig. 1). The two benzene rings (C9–C14) and (C26–C31) form a dihedral angle of 88.81 (15)°. The cyclohexane (C19–C24) ring adopts a chair conformation, and the five-membered ring is essentially planar, with a maximum deviation from planarity of 0.041 (2) Å for atom C17. Bond lengths (Allen et al., 1987) and angles are normal.

The crystal structure displays intermolecular hydrogen bonds C27—H27···O4, N7—H7···O5 and N8—H8···O4 (Table 1 and Fig. 2). The packing of molecules in the crystal structure is depicted in Fig. 2.

Related literature top

For the biological activity of related compounds, see: Cartwright et al. (2007); Collins (2000); Warshakoon et al. (2006). For the pharmaceutical activity of related compounds, see: Kiselyov et al. (2006); Sakthivel & Cook (2005); Eldrup et al. (2004); Bamford et al. (2005); Puerstinger et al. (2006). For reference bond-length data, see: Allen et al. (1987).

Experimental top

tert-Butyl 4-oxocyclohexylcarbamate (5 g, 0.251 mol) and ammonium carbonate (4.99 g, 0.051 mol) were taken up in methanol (20 ml) and water (20 ml). A solution of sodium cyanide (2.41 g, 0.049 mol) in water (10 ml) was added dropwise and the reaction mixture stirred at RT for 24 hrs. It was then heated to 323 K for 2 days and cooled to RT. The resulting solid was filtered, washed with water and dried to yield hydantoin. This was taken up in acetonitrile (50 ml), K2CO3 (3.28 g, 0.023 mol) and 1-(2-bromoethoxy)-4- fluorobenzene (4.17 g, 0.019 mol) was added. The reaction mixture was heated at 358 K for 6 hrs, cooled to RT and filtered. The filtrate was concentrated to yield a white solid. The tert-butyl dicarbonate (BOC) was deprotected using dioxane-HCl (10 ml) and it was basified to obtain the free amine. The solid thus obtained was taken up (100 mg, 0.311 mmol) in dichloromethane (2 ml), and Et3N (0.2 ml) added. The mixture was then added to 4-methylbenzoyl chloride (57.7 mg, 0.373 mmol) and stirred at RT overnight. It was extracted in dichloromethane, concentrated, and purified using column chromatography over silica gel to yield the title compound (50 mg, 36.7%).

Refinement top

All H atoms were placed at calculated positions and refined using a riding model. N—H = 0.86 Å, C—H = 0.98 Å for methine, C—H = 0.97 Å for methylene, C—H = 0.93 Å for Csp2 and C—H = 0.96 Å for methyl. Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C, N) for all other H atoms.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecular structure with displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the crystal structure, viewed down the a axis. Dashed lines indicate hydrogen bonds.
N-{3-[2-(4-Fluorophenoxy)ethyl]-2,4-dioxo-1,3-diazaspiro[4.5]decan- 7-yl}-4-methylbenzamide top
Crystal data top
C24H26FN3O4Z = 2
Mr = 439.48F(000) = 464
Triclinic, P1Dx = 1.287 Mg m3
Hall symbol: -P 1Melting point: 419 K
a = 9.1436 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.103 (2) ÅCell parameters from 3967 reflections
c = 13.939 (2) Åθ = 2.7–25.0°
α = 99.239 (15)°µ = 0.09 mm1
β = 106.550 (14)°T = 293 K
γ = 107.417 (18)°Prism, colourless
V = 1134.5 (4) Å30.22 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3967 independent reflections
Radiation source: fine-focus sealed tube2163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.7°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.770, Tmax = 1.000l = 1616
7145 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0758P)2]
where P = (Fo2 + 2Fc2)/3
3967 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C24H26FN3O4γ = 107.417 (18)°
Mr = 439.48V = 1134.5 (4) Å3
Triclinic, P1Z = 2
a = 9.1436 (17) ÅMo Kα radiation
b = 10.103 (2) ŵ = 0.09 mm1
c = 13.939 (2) ÅT = 293 K
α = 99.239 (15)°0.22 × 0.15 × 0.12 mm
β = 106.550 (14)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3967 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
2163 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.045
7145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 0.90Δρmax = 0.21 e Å3
3967 reflectionsΔρmin = 0.19 e Å3
289 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01–2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

1H NMR 400 MHz, DMSO-d6:δ 9.00 (s, 1H), 8.18 (d, J = 8.12 Hz, 1H), 7.72 (d, J = 8.16 Hz, 2H), 6.87–7.25 (m, 6H), 4.12 (q, J = 5.76 Hz, 3H), 3.71 (t, J = 5.84 Hz, 2H), 2.49–2.51 (m, 1H), 2.34 (s, 3H), 1.13–1.85 (m, 7H); MS:m/z 439.5 (M+), 440.5 (M+1); Anal.calcd for C24H26FN3O4: C, 65.59; H, 5.96; N, 9.56%; Found: C, 65.54; H, 5.92; N, 9.53%.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.5189 (2)1.1248 (2)0.66068 (14)0.1221 (8)
O20.0604 (2)1.1356 (2)0.30513 (13)0.0641 (5)
O30.1769 (2)0.91403 (17)0.11175 (13)0.0591 (5)
O40.32910 (19)1.06151 (17)0.14001 (13)0.0621 (5)
O50.18882 (18)0.46876 (16)0.09178 (12)0.0594 (5)
N60.0690 (2)1.01919 (18)0.13490 (14)0.0458 (5)
N70.0049 (2)0.79320 (18)0.12864 (13)0.0459 (5)
H70.06610.70840.13130.055*
N80.3607 (2)0.67071 (18)0.07755 (14)0.0447 (5)
H80.45470.73970.10500.054*
C90.4037 (4)1.1332 (3)0.5707 (3)0.0780 (10)
C100.4070 (4)1.1951 (3)0.4784 (3)0.0768 (9)
H100.48581.23500.47620.092*
C110.2930 (3)1.1989 (3)0.3869 (2)0.0626 (7)
H110.29401.24260.32310.075*
C120.1786 (3)1.1383 (3)0.39054 (19)0.0532 (7)
C130.1785 (3)1.0763 (3)0.4859 (2)0.0733 (8)
H130.10141.03470.48910.088*
C140.2902 (4)1.0748 (4)0.5763 (2)0.0835 (10)
H140.28791.03430.64040.100*
C150.0734 (3)1.1746 (3)0.20599 (18)0.0560 (7)
H15A0.17571.11040.20520.067*
H15B0.07231.27210.19160.067*
C160.0680 (3)1.1645 (2)0.12513 (19)0.0585 (7)
H16A0.16911.22580.12930.070*
H16B0.06561.20100.05710.070*
C170.0530 (3)0.9055 (2)0.12341 (17)0.0447 (6)
C180.2006 (3)0.9841 (2)0.13550 (16)0.0458 (6)
C190.1618 (2)0.8280 (2)0.12944 (16)0.0393 (5)
C200.2797 (3)0.8245 (2)0.02788 (16)0.0402 (6)
H20A0.39160.86750.02490.048*
H20B0.26710.88080.03040.048*
C210.2468 (3)0.6706 (2)0.01947 (16)0.0411 (6)
H210.13540.63070.01890.049*
C220.2571 (3)0.5788 (3)0.11345 (19)0.0598 (7)
H22A0.36780.61490.11380.072*
H22B0.23240.48050.10830.072*
C230.1382 (3)0.5806 (3)0.21441 (19)0.0645 (8)
H23A0.02670.53730.21680.077*
H23B0.15040.52400.27270.077*
C240.1700 (3)0.7340 (3)0.22326 (18)0.0571 (7)
H24A0.08900.73340.28600.069*
H24B0.27730.77380.22820.069*
C250.3252 (3)0.5671 (2)0.12644 (17)0.0408 (6)
C260.4538 (2)0.5767 (2)0.22404 (17)0.0391 (5)
C270.6002 (3)0.6884 (3)0.27164 (19)0.0662 (8)
H270.62380.76470.24200.079*
C280.7148 (3)0.6921 (3)0.3625 (2)0.0723 (9)
H280.81330.77050.39210.087*
C290.6874 (3)0.5846 (3)0.40928 (19)0.0638 (8)
C300.5429 (4)0.4727 (4)0.3620 (3)0.1180 (16)
H300.51980.39690.39220.142*
C310.4285 (3)0.4671 (3)0.2704 (3)0.1025 (13)
H310.33210.38680.23970.123*
C320.8132 (4)0.5897 (4)0.5090 (2)0.1124 (14)
H32A0.77190.50520.53090.169*
H32B0.83470.67390.56190.169*
H32C0.91270.59330.49750.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1175 (15)0.1150 (16)0.0906 (13)0.0165 (13)0.0120 (12)0.0524 (12)
O20.0677 (11)0.0840 (14)0.0567 (11)0.0419 (10)0.0252 (9)0.0281 (10)
O30.0558 (11)0.0495 (10)0.0745 (12)0.0177 (9)0.0234 (10)0.0255 (9)
O40.0522 (10)0.0471 (10)0.0820 (12)0.0029 (8)0.0205 (9)0.0392 (9)
O50.0469 (10)0.0457 (10)0.0702 (11)0.0024 (8)0.0085 (9)0.0339 (9)
N60.0492 (11)0.0292 (10)0.0504 (11)0.0061 (9)0.0094 (10)0.0186 (9)
N70.0410 (10)0.0278 (10)0.0575 (12)0.0006 (8)0.0088 (9)0.0200 (9)
N80.0381 (10)0.0322 (10)0.0571 (11)0.0031 (8)0.0111 (9)0.0236 (9)
C90.078 (2)0.071 (2)0.067 (2)0.0094 (17)0.0062 (18)0.0400 (18)
C100.077 (2)0.075 (2)0.091 (2)0.0356 (17)0.0264 (19)0.0465 (19)
C110.0764 (19)0.0647 (18)0.0670 (17)0.0395 (16)0.0321 (16)0.0322 (15)
C120.0574 (15)0.0552 (15)0.0560 (16)0.0213 (13)0.0253 (14)0.0277 (13)
C130.0655 (18)0.088 (2)0.067 (2)0.0270 (17)0.0276 (16)0.0163 (17)
C140.094 (2)0.084 (2)0.0567 (19)0.011 (2)0.0255 (19)0.0180 (17)
C150.0770 (18)0.0440 (14)0.0574 (16)0.0267 (13)0.0279 (14)0.0244 (13)
C160.0807 (18)0.0293 (12)0.0588 (15)0.0152 (12)0.0164 (14)0.0185 (12)
C170.0451 (14)0.0358 (13)0.0418 (13)0.0047 (11)0.0057 (11)0.0175 (11)
C180.0488 (14)0.0351 (12)0.0381 (12)0.0004 (12)0.0041 (11)0.0182 (11)
C190.0408 (12)0.0308 (11)0.0415 (13)0.0054 (10)0.0116 (10)0.0168 (10)
C200.0437 (12)0.0306 (12)0.0428 (12)0.0062 (10)0.0149 (11)0.0155 (10)
C210.0406 (12)0.0327 (12)0.0490 (13)0.0083 (10)0.0150 (11)0.0196 (11)
C220.0767 (18)0.0399 (14)0.0686 (17)0.0234 (13)0.0290 (15)0.0192 (13)
C230.089 (2)0.0459 (15)0.0531 (15)0.0195 (14)0.0259 (15)0.0058 (13)
C240.0681 (17)0.0527 (15)0.0434 (14)0.0113 (13)0.0174 (13)0.0190 (13)
C250.0421 (12)0.0301 (12)0.0529 (13)0.0106 (10)0.0192 (11)0.0191 (11)
C260.0404 (12)0.0315 (12)0.0490 (13)0.0121 (10)0.0186 (11)0.0175 (10)
C270.0681 (17)0.0468 (15)0.0579 (15)0.0049 (13)0.0059 (14)0.0257 (13)
C280.0620 (17)0.0583 (18)0.0632 (17)0.0048 (14)0.0006 (14)0.0215 (15)
C290.0542 (15)0.0684 (18)0.0593 (16)0.0170 (14)0.0058 (13)0.0281 (14)
C300.078 (2)0.092 (2)0.133 (3)0.0113 (19)0.023 (2)0.086 (2)
C310.0685 (19)0.070 (2)0.117 (3)0.0167 (16)0.0207 (18)0.067 (2)
C320.082 (2)0.121 (3)0.092 (2)0.010 (2)0.0166 (19)0.055 (2)
Geometric parameters (Å, º) top
F1—C91.360 (3)C19—C241.522 (3)
O2—C121.372 (3)C19—C201.529 (3)
O2—C151.423 (3)C20—C211.523 (3)
O3—C171.216 (3)C20—H20A0.9700
O4—C181.226 (2)C20—H20B0.9700
O5—C251.239 (2)C21—C221.522 (3)
N6—C181.355 (3)C21—H210.9800
N6—C171.408 (3)C22—C231.520 (3)
N6—C161.455 (3)C22—H22A0.9700
N7—C171.332 (3)C22—H22B0.9700
N7—C191.462 (3)C23—C241.521 (3)
N7—H70.8600C23—H23A0.9700
N8—C251.348 (2)C23—H23B0.9700
N8—C211.453 (3)C24—H24A0.9700
N8—H80.8600C24—H24B0.9700
C9—C101.350 (4)C25—C261.490 (3)
C9—C141.353 (4)C26—C271.362 (3)
C10—C111.385 (4)C26—C311.364 (3)
C10—H100.9300C27—C281.381 (3)
C11—C121.369 (3)C27—H270.9300
C11—H110.9300C28—C291.351 (3)
C12—C131.377 (4)C28—H280.9300
C13—C141.372 (4)C29—C301.352 (4)
C13—H130.9300C29—C321.513 (4)
C14—H140.9300C30—C311.381 (4)
C15—C161.496 (3)C30—H300.9300
C15—H15A0.9700C31—H310.9300
C15—H15B0.9700C32—H32A0.9600
C16—H16A0.9700C32—H32B0.9600
C16—H16B0.9700C32—H32C0.9600
C18—C191.531 (3)
C12—O2—C15118.2 (2)C21—C20—H20B109.4
C18—N6—C17111.22 (18)C19—C20—H20B109.4
C18—N6—C16123.88 (18)H20A—C20—H20B108.0
C17—N6—C16123.7 (2)N8—C21—C22112.08 (19)
C17—N7—C19113.54 (17)N8—C21—C20109.75 (17)
C17—N7—H7123.2C22—C21—C20110.07 (16)
C19—N7—H7123.2N8—C21—H21108.3
C25—N8—C21122.74 (17)C22—C21—H21108.3
C25—N8—H8118.6C20—C21—H21108.3
C21—N8—H8118.6C23—C22—C21111.5 (2)
C10—C9—C14121.4 (3)C23—C22—H22A109.3
C10—C9—F1120.1 (4)C21—C22—H22A109.3
C14—C9—F1118.5 (4)C23—C22—H22B109.3
C9—C10—C11119.9 (3)C21—C22—H22B109.3
C9—C10—H10120.0H22A—C22—H22B108.0
C11—C10—H10120.0C22—C23—C24110.7 (2)
C12—C11—C10119.8 (3)C22—C23—H23A109.5
C12—C11—H11120.1C24—C23—H23A109.5
C10—C11—H11120.1C22—C23—H23B109.5
C11—C12—O2124.8 (2)C24—C23—H23B109.5
C11—C12—C13118.9 (3)H23A—C23—H23B108.1
O2—C12—C13116.3 (3)C23—C24—C19110.85 (17)
C14—C13—C12121.1 (3)C23—C24—H24A109.5
C14—C13—H13119.5C19—C24—H24A109.5
C12—C13—H13119.5C23—C24—H24B109.5
C9—C14—C13118.9 (3)C19—C24—H24B109.5
C9—C14—H14120.5H24A—C24—H24B108.1
C13—C14—H14120.5O5—C25—N8120.7 (2)
O2—C15—C16108.8 (2)O5—C25—C26121.51 (17)
O2—C15—H15A109.9N8—C25—C26117.78 (18)
C16—C15—H15A109.9C27—C26—C31115.8 (2)
O2—C15—H15B109.9C27—C26—C25124.64 (18)
C16—C15—H15B109.9C31—C26—C25119.5 (2)
H15A—C15—H15B108.3C26—C27—C28122.2 (2)
N6—C16—C15114.0 (2)C26—C27—H27118.9
N6—C16—H16A108.7C28—C27—H27118.9
C15—C16—H16A108.7C29—C28—C27121.6 (2)
N6—C16—H16B108.7C29—C28—H28119.2
C15—C16—H16B108.7C27—C28—H28119.2
H16A—C16—H16B107.6C28—C29—C30116.6 (2)
O3—C17—N7128.92 (19)C28—C29—C32121.3 (2)
O3—C17—N6124.1 (2)C30—C29—C32122.1 (2)
N7—C17—N6106.9 (2)C29—C30—C31122.2 (2)
O4—C18—N6127.1 (2)C29—C30—H30118.9
O4—C18—C19125.1 (2)C31—C30—H30118.9
N6—C18—C19107.82 (17)C26—C31—C30121.5 (2)
N7—C19—C24112.72 (18)C26—C31—H31119.2
N7—C19—C20111.68 (16)C30—C31—H31119.2
C24—C19—C20111.41 (19)C29—C32—H32A109.5
N7—C19—C1899.91 (19)C29—C32—H32B109.5
C24—C19—C18111.22 (16)H32A—C32—H32B109.5
C20—C19—C18109.34 (17)C29—C32—H32C109.5
C21—C20—C19111.03 (17)H32A—C32—H32C109.5
C21—C20—H20A109.4H32B—C32—H32C109.5
C19—C20—H20A109.4
C14—C9—C10—C110.4 (4)O4—C18—C19—C2064.1 (3)
F1—C9—C10—C11177.8 (2)N6—C18—C19—C20115.9 (2)
C9—C10—C11—C120.8 (4)N7—C19—C20—C2171.2 (2)
C10—C11—C12—O2179.9 (2)C24—C19—C20—C2155.8 (2)
C10—C11—C12—C130.9 (4)C18—C19—C20—C21179.18 (19)
C15—O2—C12—C1111.8 (3)C25—N8—C21—C2284.7 (2)
C15—O2—C12—C13168.9 (2)C25—N8—C21—C20152.6 (2)
C11—C12—C13—C140.1 (4)C19—C20—C21—N8179.89 (18)
O2—C12—C13—C14179.2 (2)C19—C20—C21—C2256.1 (2)
C10—C9—C14—C131.4 (4)N8—C21—C22—C23179.60 (16)
F1—C9—C14—C13176.8 (2)C20—C21—C22—C2357.2 (2)
C12—C13—C14—C91.2 (4)C21—C22—C23—C2457.2 (3)
C12—O2—C15—C16179.74 (19)C22—C23—C24—C1955.8 (3)
C18—N6—C16—C15129.5 (2)N7—C19—C24—C2371.1 (2)
C17—N6—C16—C1564.1 (3)C20—C19—C24—C2355.4 (3)
O2—C15—C16—N664.6 (2)C18—C19—C24—C23177.7 (2)
C19—N7—C17—O3172.4 (2)C21—N8—C25—O52.8 (3)
C19—N7—C17—N68.0 (2)C21—N8—C25—C26178.4 (2)
C18—N6—C17—O3173.5 (2)O5—C25—C26—C27173.7 (2)
C16—N6—C17—O35.6 (3)N8—C25—C26—C275.1 (3)
C18—N6—C17—N76.9 (2)O5—C25—C26—C317.3 (4)
C16—N6—C17—N7174.82 (19)N8—C25—C26—C31173.8 (3)
C17—N6—C18—O4176.8 (2)C31—C26—C27—C281.3 (4)
C16—N6—C18—O48.9 (4)C25—C26—C27—C28179.7 (3)
C17—N6—C18—C193.2 (2)C26—C27—C28—C290.2 (5)
C16—N6—C18—C19171.07 (18)C27—C28—C29—C300.7 (5)
C17—N7—C19—C24124.0 (2)C27—C28—C29—C32179.7 (3)
C17—N7—C19—C20109.7 (2)C28—C29—C30—C310.2 (6)
C17—N7—C19—C185.9 (2)C32—C29—C30—C31179.4 (4)
O4—C18—C19—N7178.6 (2)C27—C26—C31—C302.2 (5)
N6—C18—C19—N71.4 (2)C25—C26—C31—C30178.7 (3)
O4—C18—C19—C2459.4 (3)C29—C30—C31—C261.7 (6)
N6—C18—C19—C24120.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O5i0.862.062.892 (3)163
N8—H8···O4ii0.862.223.060 (3)165
C27—H27···O4ii0.932.453.370 (3)172
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC24H26FN3O4
Mr439.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1436 (17), 10.103 (2), 13.939 (2)
α, β, γ (°)99.239 (15), 106.550 (14), 107.417 (18)
V3)1134.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7145, 3967, 2163
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.135, 0.90
No. of reflections3967
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O5i0.862.062.892 (3)163
N8—H8···O4ii0.862.223.060 (3)165
C27—H27···O4ii0.932.453.370 (3)172
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z.
 

Acknowledgements

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for help with the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBamford, M. J., et al. (2005). Bioorg. Med. Chem. Lett. 15, 3402–3406.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCartwright, M. W., Sandford, G., Bousbaa, J., Yufit, D. S., Howard, J. A. K., Christopher, J. A. & Miller, D. D. (2007). Tetrahedron, 63, 7027–7035.  Web of Science CSD CrossRef CAS Google Scholar
First citationCollins, I. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2845–2861.  Web of Science CrossRef Google Scholar
First citationEldrup, A. B., et al. (2004). J. Med. Chem. 47, 5284–5297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKiselyov, A. S., Semenova, M., Semenov, V. V. & Piatnitski, E. (2006). Bioorg. Med. Chem. Lett. 16, 1726–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPuerstinger, G., Paeshuyse, J., Herdewijn, P., Rozenski, J., Clercq, D. & Neyts, J. (2006). Bioorg. Med. Chem. Lett. 16, 5345–5349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSakthivel, K. & Cook, P. D. (2005). Tetrahedron Lett. 46, 3883–3887.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarshakoon, N. C., Wu, S., Boyer, A., Kawamoto, R., Sheville, J., Renock, S., Xu, K., Pokross, M., Evdokimov, A. G., Walter, R. & Mekel, M. (2006). Bioorg. Med. Chem. Lett. 16, 5598–5601.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1440-o1441
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds