organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-3-(4-nitro­benz­yl­oxy)benzaldehyde

aCollege of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
*Correspondence e-mail: duan_zhongyu99@163.com

(Received 12 April 2011; accepted 3 May 2011; online 11 May 2011)

In the title compound, C15H13NO5, the two benzene rings make a dihedral angle of 3.98 (7)°. The crystal packing is stabilized by weak non-classical inter­molecular C—H⋯O inter­actions that link mol­ecules into centrosymmetric tetra­mers.

Related literature

For general background to the use of Schiff base derivatives in the development protein and enzyme mimics, see: Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For a closely related crystal structure, see: Li & Chen (2008[Li, M. & Chen, X. (2008). Acta Cryst. E64, o2291.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO5

  • Mr = 287.26

  • Monoclinic, P 21 /c

  • a = 6.853 (1) Å

  • b = 11.994 (2) Å

  • c = 16.405 (3) Å

  • β = 98.28 (3)°

  • V = 1334.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 294 K

  • 0.22 × 0.16 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.932, Tmax = 0.988

  • 10078 measured reflections

  • 3161 independent reflections

  • 2441 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.133

  • S = 1.12

  • 3161 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O3i 0.93 2.42 3.280 (2) 154
C9—H9A⋯O5ii 0.97 2.53 3.383 (2) 147
C8—H8B⋯O4iii 0.96 2.55 3.410 (3) 150
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics (Santos et al., 2001). The synthesis and crystal structures of numerous derivatives have been published. In particular, the isomeric 3-methoxy-4-(4-nitrobenzyloxy)benzaldehyde crystal structure has been reported (Li & Chen, 2008). As a part of our interest in the coordination properties of Schiff bases functioning as ligands, we have investigated the title compound, which has been used as a precursor in the preparation of Schiff bases.

In the title molecule (Fig. 1), bond lengths (Allen et al., 1987) and angles are within normal ranges. The two benzene rings make a dihedral angle of 3.98 (7)° with each other. A similar value of 4.99 (6)° is observed in 3-methoxy-4-(4-nitrobenzyloxy)benzaldehyde (Li & Chen, 2008).

The crystal packing is stabilised by weak, non-classical intermolecular C12—H12···O3C7, C8—H8B···O4 and C9—H9A···O5 interactions that link adjacent molecules into centrosymmetric tetramers (Table 1, Fig. 2).

Related literature top

For general background to the use of Schiff base derivatives in the development

protein and enzyme mimics, see: Santos et al. (2001). For a closely related crystal structure, see: Li & Chen (2008). For reference bond-length data, see: Allen et al. (1987).

Experimental top

An anhydrous acetonitrile solution (100 ml) of 3-hydroxy-4-methoxybenzaldehyde (1.52 g, 10 mmol) was added dropwise to a solution (50 ml) of 1-(bromomethyl)-4-nitrobenzene (2.16 g, 10 mmol) and pyridine (0.79 g, 10 mmol) in acetonitrile, over a period of 30 min., and the mixture refluxed for 24 h under a nitrogen atmosphere. The solvent was removed and the resultant mixture poured into ice-water (100 ml). The yellow precipitate was then isolated and recrystallized from acetonitrile. It was then dried in a vacuum to give the pure compound in 78% yield. Pale-yellow single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Refinement top

The H atoms were included at calculated positions and refined using a riding model approximation. Constrained C—H bond lengths and isotropic U parameters: 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene C—H; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C—H.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A packing diagram of the crystal structure, with H bonds drawn as dashed lines. The tetramers are indicated by red and green lines.
4-Methoxy-3-(4-nitrobenzyloxy)benzaldehyde top
Crystal data top
C15H13NO5F(000) = 600
Mr = 287.26Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3519 reflections
a = 6.853 (1) Åθ = 2.3–26.2°
b = 11.994 (2) ŵ = 0.11 mm1
c = 16.405 (3) ÅT = 294 K
β = 98.28 (3)°Block, pale-yellow
V = 1334.4 (4) Å30.22 × 0.16 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3161 independent reflections
Radiation source: fine-focus sealed tube2441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.932, Tmax = 0.988k = 1415
10078 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.2245P]
where P = (Fo2 + 2Fc2)/3
3161 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H13NO5V = 1334.4 (4) Å3
Mr = 287.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.853 (1) ŵ = 0.11 mm1
b = 11.994 (2) ÅT = 294 K
c = 16.405 (3) Å0.22 × 0.16 × 0.11 mm
β = 98.28 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3161 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2441 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.988Rint = 0.047
10078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.12Δρmax = 0.26 e Å3
3161 reflectionsΔρmin = 0.21 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3564 (2)0.20291 (14)0.78771 (10)0.0282 (4)
O10.23378 (17)0.07084 (9)0.45431 (7)0.0228 (3)
O20.27616 (18)0.28142 (10)0.46497 (8)0.0261 (3)
O30.1082 (2)0.00461 (10)0.13474 (9)0.0356 (4)
O40.3643 (2)0.13342 (13)0.84335 (9)0.0419 (4)
O50.3704 (2)0.30380 (11)0.79970 (9)0.0387 (4)
C10.1427 (2)0.14338 (14)0.23296 (11)0.0216 (4)
C20.1670 (2)0.07594 (14)0.30415 (11)0.0204 (4)
H20.15620.00120.29950.024*
C30.2070 (2)0.12507 (14)0.38043 (11)0.0199 (4)
C40.2282 (2)0.24204 (14)0.38720 (11)0.0214 (4)
C50.2003 (3)0.30806 (14)0.31727 (12)0.0241 (4)
H5A0.21040.38520.32180.029*
C60.1573 (2)0.25824 (14)0.24028 (11)0.0237 (4)
H60.13800.30240.19320.028*
C70.1090 (3)0.09431 (15)0.15046 (12)0.0274 (4)
H70.08620.14320.10610.033*
C80.3346 (3)0.39608 (15)0.47346 (13)0.0326 (5)
H8A0.43330.41110.43890.049*
H8B0.38740.41100.52980.049*
H8C0.22210.44300.45730.049*
C90.2195 (2)0.04779 (13)0.45450 (11)0.0196 (4)
H9A0.31480.08000.42290.024*
H9B0.08860.07090.42980.024*
C100.2599 (2)0.08656 (13)0.54244 (10)0.0174 (3)
C110.2435 (2)0.19985 (14)0.55914 (11)0.0221 (4)
H110.21010.24960.51590.027*
C120.2765 (2)0.23909 (14)0.63929 (12)0.0226 (4)
H120.26540.31460.65050.027*
C130.3264 (2)0.16299 (14)0.70222 (11)0.0209 (4)
C140.3467 (2)0.05042 (14)0.68780 (11)0.0210 (4)
H140.38200.00110.73120.025*
C150.3131 (2)0.01262 (14)0.60716 (11)0.0198 (4)
H150.32630.06290.59620.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0235 (7)0.0388 (9)0.0219 (9)0.0008 (7)0.0020 (6)0.0092 (7)
O10.0325 (7)0.0192 (6)0.0165 (7)0.0005 (5)0.0032 (5)0.0041 (5)
O20.0361 (7)0.0228 (7)0.0194 (7)0.0045 (5)0.0035 (5)0.0001 (5)
O30.0508 (9)0.0282 (7)0.0270 (8)0.0017 (6)0.0027 (7)0.0002 (6)
O40.0527 (9)0.0535 (9)0.0186 (8)0.0001 (7)0.0021 (7)0.0008 (7)
O50.0439 (8)0.0390 (8)0.0325 (9)0.0001 (6)0.0031 (6)0.0191 (7)
C10.0198 (8)0.0251 (9)0.0200 (9)0.0004 (7)0.0036 (7)0.0021 (7)
C20.0184 (8)0.0222 (8)0.0205 (9)0.0006 (6)0.0027 (7)0.0027 (7)
C30.0184 (8)0.0226 (9)0.0194 (9)0.0013 (6)0.0048 (7)0.0059 (7)
C40.0190 (8)0.0246 (9)0.0213 (9)0.0002 (6)0.0051 (7)0.0005 (7)
C50.0269 (9)0.0210 (8)0.0247 (10)0.0006 (7)0.0044 (7)0.0041 (7)
C60.0239 (8)0.0253 (9)0.0221 (10)0.0025 (7)0.0045 (7)0.0081 (7)
C70.0303 (10)0.0307 (10)0.0211 (10)0.0016 (8)0.0037 (7)0.0060 (8)
C80.0448 (11)0.0232 (9)0.0286 (11)0.0065 (8)0.0007 (9)0.0028 (8)
C90.0209 (8)0.0189 (8)0.0194 (9)0.0004 (6)0.0039 (6)0.0016 (7)
C100.0153 (7)0.0218 (8)0.0159 (9)0.0011 (6)0.0047 (6)0.0025 (7)
C110.0235 (8)0.0218 (8)0.0212 (10)0.0009 (7)0.0037 (7)0.0004 (7)
C120.0222 (8)0.0194 (8)0.0264 (10)0.0004 (6)0.0037 (7)0.0051 (7)
C130.0174 (8)0.0281 (9)0.0173 (9)0.0029 (7)0.0031 (6)0.0066 (7)
C140.0194 (8)0.0245 (9)0.0186 (9)0.0017 (7)0.0013 (7)0.0013 (7)
C150.0186 (8)0.0193 (8)0.0218 (9)0.0010 (6)0.0041 (7)0.0018 (7)
Geometric parameters (Å, º) top
N1—O51.228 (2)C7—H70.9300
N1—O41.232 (2)C8—H8A0.9600
N1—C131.468 (2)C8—H8B0.9600
O1—C31.365 (2)C8—H8C0.9600
O1—C91.4262 (19)C9—C101.503 (2)
O2—C41.356 (2)C9—H9A0.9700
O2—C81.433 (2)C9—H9B0.9700
O3—C71.214 (2)C10—C151.391 (2)
C1—C61.385 (2)C10—C111.394 (2)
C1—C21.411 (2)C11—C121.384 (2)
C1—C71.463 (3)C11—H110.9300
C2—C31.374 (2)C12—C131.383 (3)
C2—H20.9300C12—H120.9300
C3—C41.413 (2)C13—C141.381 (2)
C4—C51.384 (2)C14—C151.386 (2)
C5—C61.390 (3)C14—H140.9300
C5—H5A0.9300C15—H150.9300
C6—H60.9300
O5—N1—O4123.67 (17)H8A—C8—H8B109.5
O5—N1—C13118.13 (16)O2—C8—H8C109.5
O4—N1—C13118.20 (15)H8A—C8—H8C109.5
C3—O1—C9118.49 (13)H8B—C8—H8C109.5
C4—O2—C8116.89 (14)O1—C9—C10107.92 (13)
C6—C1—C2120.00 (16)O1—C9—H9A110.1
C6—C1—C7118.69 (16)C10—C9—H9A110.1
C2—C1—C7121.27 (16)O1—C9—H9B110.1
C3—C2—C1119.48 (16)C10—C9—H9B110.1
C3—C2—H2120.3H9A—C9—H9B108.4
C1—C2—H2120.3C15—C10—C11119.41 (16)
O1—C3—C2126.01 (15)C15—C10—C9121.81 (15)
O1—C3—C4113.84 (15)C11—C10—C9118.78 (15)
C2—C3—C4120.13 (16)C12—C11—C10120.76 (16)
O2—C4—C5124.50 (16)C12—C11—H11119.6
O2—C4—C3115.35 (15)C10—C11—H11119.6
C5—C4—C3120.15 (17)C13—C12—C11118.26 (16)
C4—C5—C6119.54 (16)C13—C12—H12120.9
C4—C5—H5A120.2C11—C12—H12120.9
C6—C5—H5A120.2C14—C13—C12122.49 (16)
C1—C6—C5120.64 (16)C14—C13—N1118.61 (16)
C1—C6—H6119.7C12—C13—N1118.90 (16)
C5—C6—H6119.7C13—C14—C15118.45 (16)
O3—C7—C1125.79 (17)C13—C14—H14120.8
O3—C7—H7117.1C15—C14—H14120.8
C1—C7—H7117.1C14—C15—C10120.61 (15)
O2—C8—H8A109.5C14—C15—H15119.7
O2—C8—H8B109.5C10—C15—H15119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O3i0.932.423.280 (2)154
C9—H9A···O5ii0.972.533.383 (2)147
C8—H8B···O4iii0.962.553.410 (3)150
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1/2, z1/2; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H13NO5
Mr287.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)6.853 (1), 11.994 (2), 16.405 (3)
β (°) 98.28 (3)
V3)1334.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.16 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10078, 3161, 2441
Rint0.047
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.133, 1.12
No. of reflections3161
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O3i0.932.423.280 (2)154
C9—H9A···O5ii0.972.533.383 (2)147
C8—H8B···O4iii0.962.553.410 (3)150
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1/2, z1/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The project was supported by Hebei Provincial Natural Science Foundation of China (project grant No. B2010000039).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, M. & Chen, X. (2008). Acta Cryst. E64, o2291.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds