organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Pyridin-2-ylmeth­yl)pyridin-2-amine

aDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 616-701, Republic of Korea, and bDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, kmpark@gnu.ac.kr

(Received 3 May 2011; accepted 4 May 2011; online 7 May 2011)

The title compound, C11H11N3, crystallizes with two mol­ecules (A and B) in the asymmetric unit. The geometries of both mol­ecules are very similar, with the exception of the torsion angles of the inter-ring chains; the values for C—N—C—C are 67.4 (5) and −69.3 (5)° for mol­ecules A and B, respectively. The dihedral angles between the pyridyl ring planes are 84.0 (2) and 83.2 (2)° for mol­ecules A and B, respectively. In the crystal, weak inter­molecular N—H⋯N hydrogen bonds and C—H⋯π inter­actions contribute to the stabilization of the packing.

Related literature

For details of the synthesis, see: Foxon et al. (2002[Foxon, S. P., Walter, O. & Schindler, S. (2002). Eur. J. Inorg. Chem. pp. 111-121.]). For the crystal structures of Cu complexes of the title compound, see: Lee et al. (2008[Lee, S., Park, S., Kang, Y., Moon, S.-H., Lee, S. S. & Park, K.-M. (2008). Bull. Korean Chem. Soc. 29, 1811-1814.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N3

  • Mr = 185.23

  • Orthorhombic, P c a 21

  • a = 14.5434 (14) Å

  • b = 5.8198 (6) Å

  • c = 23.045 (2) Å

  • V = 1950.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.45 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 11034 measured reflections

  • 2182 independent reflections

  • 1814 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.124

  • S = 1.10

  • 2182 reflections

  • 253 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the N4/C12–C16, N2/C7–C11 and N5/C18–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N4 0.89 2.14 3.019 (5) 172
N6—H6N⋯N1 0.93 2.10 3.012 (5) 168
C1—H1⋯Cg1i 0.95 2.77 3.53 137
C3—H3⋯Cg2ii 0.95 2.85 3.69 147
C14—H14⋯Cg3iii 0.95 2.65 3.51 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+2, z]; (ii) [x+{\script{1\over 2}}, -y+1, z]; (iii) [x-{\script{1\over 2}}, -y+2, z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was prepared for use as a multidentate ligand in the formation of metallosupramolecules according to a published literature procedure (Foxon et al., 2002). The crystal structures of Cu complexes of the title compound have already been reported (Lee et al., 2008). However the crystal structure of the free form has not yet been reported.

The title compound (Scheme, Fig. 1) crystallized in the non-centrosymmetric space group Pca21. The asymmetric unit contains two crystallographically independent molecules (A and B). The geometries of both molecules are very similar, with the exception of the torsion angles of the inter-ring chains; the value for C5—N3—C6—C7 is 67.4 (5) ° and for C16—N6—C17—C18 is -69.3 (5) °. The dihedral angles between the pyridyl ring planes are 84.0 (2)° and 83.2 (2) ° for molecules A and B, respectively.

In the crystal structure, the amine groups of both molecules are involved in pair-wise intermolecular N—H···N interactions, leading to the formation of dimers (Table 1, Fig. 1, Fig. 2). Weak intermolecular C—H···π interactions are also present (Fig. 2). These intermolecular interactions contribute to the stabilization of the packing.

Related literature top

For details of the synthesis, see: Foxon et al. (2002). For the crystal structures of Cu complexes of the title compound, see: Lee et al. (2008).

Experimental top

The title compound was synthesized according to a literature procedure (Foxon et al., 2002). Slow evaporation of a solution in CH3OH gave single crystals suitable for X-ray analysis.

Refinement top

All H atoms except those of the amine groups were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å for Csp2—H and 0.99 Å for methylene C—H. H atoms of the amine groups were located in difference electron density maps and then refined using a riding model with N—H = 0.89 Å and 0.93 Å. For all H atoms Uiso(H) = 1.2Ueq(C,N). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Dashed lines indicate hydrogen bonds
[Figure 2] Fig. 2. Crystal packing of the title compound with intermolecular N—H···N hydrogen bonds and C—H···π interactions shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. Cg1 Cg2 and Cg3 are the centroids of the N4/C12–C16, N2/C7–C11 and N5/C18–C22 rings, respectively. (Symmetry codes: i) x + 1/2, -y + 2, z; ii) x + 1/2, -y + 1, z; iii) x - 1/2, -y + 2, z; iv) x - 1/2, -y + 1, z)
N-(Pyridin-2-ylmethyl)pyridin-2-amine top
Crystal data top
C11H11N3F(000) = 784
Mr = 185.23Dx = 1.262 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4097 reflections
a = 14.5434 (14) Åθ = 2.3–27.2°
b = 5.8198 (6) ŵ = 0.08 mm1
c = 23.045 (2) ÅT = 173 K
V = 1950.5 (3) Å3Block, colorless
Z = 80.45 × 0.30 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
1814 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 27.0°, θmin = 2.8°
ϕ and ω scansh = 1818
11034 measured reflectionsk = 77
2182 independent reflectionsl = 2129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0449P)2 + 1.1368P]
where P = (Fo2 + 2Fc2)/3
2182 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C11H11N3V = 1950.5 (3) Å3
Mr = 185.23Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 14.5434 (14) ŵ = 0.08 mm1
b = 5.8198 (6) ÅT = 173 K
c = 23.045 (2) Å0.45 × 0.30 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
1814 reflections with I > 2σ(I)
11034 measured reflectionsRint = 0.060
2182 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.124H-atom parameters constrained
S = 1.10Δρmax = 0.20 e Å3
2182 reflectionsΔρmin = 0.26 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4906 (2)0.8350 (5)0.22165 (14)0.0310 (7)
N20.3345 (2)0.2870 (6)0.38908 (15)0.0372 (8)
N30.4145 (3)0.5075 (5)0.24813 (15)0.0324 (8)
H3N0.36910.54450.22420.039*
C10.5596 (3)0.9839 (7)0.2290 (2)0.0361 (10)
H10.56331.11000.20290.043*
C20.6248 (3)0.9682 (8)0.2711 (2)0.0416 (12)
H20.67281.07810.27410.050*
C30.6183 (3)0.7845 (8)0.30973 (18)0.0398 (10)
H30.66170.76930.34030.048*
C40.5493 (3)0.6254 (7)0.30356 (17)0.0346 (9)
H40.54490.49780.32910.041*
C50.4854 (2)0.6557 (6)0.25870 (16)0.0273 (8)
C60.3857 (3)0.3394 (6)0.29081 (18)0.0332 (9)
H6A0.44000.24700.30210.040*
H6B0.34110.23400.27230.040*
C70.3424 (2)0.4366 (6)0.34538 (18)0.0256 (8)
C80.3101 (3)0.6580 (6)0.3489 (2)0.0435 (11)
H80.31840.76230.31760.052*
C90.2650 (4)0.7265 (7)0.3993 (2)0.0528 (13)
H90.24120.87790.40260.063*
C100.2553 (3)0.5742 (7)0.4439 (2)0.0421 (11)
H100.22450.61600.47870.050*
C110.2916 (3)0.3591 (8)0.43671 (19)0.0424 (10)
H110.28570.25370.46800.051*
N40.2551 (2)0.6738 (5)0.17549 (13)0.0287 (7)
N50.4108 (2)1.2720 (5)0.01448 (14)0.0331 (7)
N60.3312 (3)1.0014 (5)0.14957 (16)0.0347 (9)
H6N0.37700.96410.17610.042*
C120.1866 (3)0.5246 (7)0.1674 (2)0.0336 (10)
H120.18070.40160.19430.040*
C130.1236 (3)0.5373 (7)0.1227 (2)0.0396 (11)
H130.07630.42600.11840.048*
C140.1323 (3)0.7189 (8)0.08444 (18)0.0417 (10)
H140.09060.73380.05290.050*
C150.2011 (3)0.8777 (7)0.09179 (17)0.0359 (9)
H150.20721.00330.06570.043*
C160.2625 (2)0.8514 (6)0.13870 (17)0.0282 (8)
C170.3582 (3)1.1827 (6)0.11029 (17)0.0323 (8)
H17A0.40071.28690.13110.039*
H17B0.30271.27280.10010.039*
C180.4040 (2)1.1067 (6)0.05466 (17)0.0255 (8)
C190.4391 (3)0.8888 (6)0.0460 (2)0.0381 (10)
H190.43160.77330.07470.046*
C200.4848 (3)0.8417 (7)0.0045 (2)0.0487 (12)
H200.51080.69390.01060.058*
C210.4930 (4)1.0085 (8)0.0462 (2)0.0458 (12)
H210.52440.97970.08160.055*
C220.4541 (3)1.2192 (7)0.03478 (18)0.0387 (9)
H220.45831.33450.06390.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0295 (17)0.0376 (17)0.0260 (17)0.0019 (14)0.0012 (13)0.0025 (14)
N20.043 (2)0.0342 (17)0.0342 (18)0.0037 (15)0.0029 (16)0.0128 (15)
N30.030 (2)0.0433 (18)0.024 (2)0.0028 (14)0.0009 (17)0.0062 (14)
C10.032 (2)0.037 (2)0.040 (3)0.0005 (16)0.005 (2)0.0010 (18)
C20.028 (2)0.053 (3)0.044 (3)0.0048 (19)0.002 (2)0.008 (2)
C30.024 (2)0.061 (3)0.034 (2)0.0052 (18)0.0063 (17)0.005 (2)
C40.0283 (19)0.050 (2)0.025 (2)0.0041 (18)0.0005 (16)0.0060 (18)
C50.0246 (18)0.0343 (18)0.0230 (18)0.0020 (15)0.0050 (15)0.0028 (16)
C60.035 (2)0.0266 (17)0.038 (2)0.0008 (16)0.0008 (18)0.0007 (18)
C70.0192 (17)0.0283 (17)0.0292 (19)0.0044 (14)0.0030 (16)0.0050 (15)
C80.047 (3)0.0277 (19)0.056 (3)0.0024 (18)0.016 (2)0.014 (2)
C90.056 (3)0.033 (2)0.069 (3)0.000 (2)0.026 (3)0.003 (2)
C100.039 (2)0.052 (2)0.036 (3)0.008 (2)0.009 (2)0.008 (2)
C110.043 (2)0.055 (2)0.029 (2)0.001 (2)0.0033 (19)0.011 (2)
N40.0276 (17)0.0320 (15)0.0265 (17)0.0025 (13)0.0021 (13)0.0006 (13)
N50.0383 (18)0.0299 (16)0.0310 (17)0.0081 (14)0.0028 (15)0.0027 (15)
N60.032 (2)0.0382 (18)0.034 (2)0.0037 (14)0.0074 (19)0.0087 (15)
C120.028 (2)0.0363 (19)0.037 (2)0.0048 (16)0.009 (2)0.0018 (17)
C130.025 (2)0.051 (2)0.044 (3)0.0010 (18)0.001 (2)0.012 (2)
C140.027 (2)0.067 (3)0.031 (2)0.0088 (19)0.0016 (17)0.004 (2)
C150.0261 (19)0.048 (2)0.033 (2)0.0044 (17)0.0009 (17)0.0066 (19)
C160.0249 (18)0.0361 (18)0.0237 (18)0.0085 (15)0.0019 (15)0.0006 (16)
C170.035 (2)0.0317 (19)0.0303 (19)0.0053 (16)0.0031 (17)0.0011 (17)
C180.0223 (16)0.0235 (16)0.0306 (19)0.0014 (15)0.0085 (16)0.0005 (16)
C190.034 (2)0.0250 (18)0.055 (3)0.0012 (16)0.011 (2)0.0082 (19)
C200.047 (3)0.0262 (19)0.073 (3)0.0009 (18)0.022 (2)0.008 (2)
C210.042 (3)0.052 (2)0.043 (3)0.0035 (19)0.012 (2)0.014 (2)
C220.045 (2)0.046 (2)0.0252 (19)0.0010 (19)0.0057 (19)0.0028 (18)
Geometric parameters (Å, º) top
N1—C11.336 (5)N4—C121.335 (5)
N1—C51.350 (5)N4—C161.341 (5)
N2—C111.331 (6)N5—C221.334 (5)
N2—C71.337 (5)N5—C181.339 (5)
N3—C51.365 (5)N6—C161.351 (5)
N3—C61.449 (5)N6—C171.445 (5)
N3—H3N0.8867N6—H6N0.9301
C1—C21.360 (7)C12—C131.382 (6)
C1—H10.9500C12—H120.9500
C2—C31.394 (7)C13—C141.382 (6)
C2—H20.9500C13—H130.9500
C3—C41.373 (6)C14—C151.373 (6)
C3—H30.9500C14—H140.9500
C4—C51.401 (5)C15—C161.410 (5)
C4—H40.9500C15—H150.9500
C6—C71.516 (6)C17—C181.511 (6)
C6—H6A0.9900C17—H17A0.9900
C6—H6B0.9900C17—H17B0.9900
C7—C81.374 (5)C18—C191.381 (5)
C8—C91.391 (7)C19—C201.367 (6)
C8—H80.9500C19—H190.9500
C9—C101.365 (7)C20—C211.372 (7)
C9—H90.9500C20—H200.9500
C10—C111.368 (6)C21—C221.376 (6)
C10—H100.9500C21—H210.9500
C11—H110.9500C22—H220.9500
C1—N1—C5117.6 (3)C12—N4—C16118.2 (3)
C11—N2—C7117.2 (3)C22—N5—C18117.2 (3)
C5—N3—C6121.6 (3)C16—N6—C17123.8 (4)
C5—N3—H3N121.3C16—N6—H6N120.1
C6—N3—H3N111.7C17—N6—H6N112.9
N1—C1—C2124.8 (4)N4—C12—C13124.4 (4)
N1—C1—H1117.6N4—C12—H12117.8
C2—C1—H1117.6C13—C12—H12117.8
C1—C2—C3117.4 (4)C12—C13—C14117.1 (4)
C1—C2—H2121.3C12—C13—H13121.4
C3—C2—H2121.3C14—C13—H13121.4
C4—C3—C2120.0 (4)C15—C14—C13120.2 (4)
C4—C3—H3120.0C15—C14—H14119.9
C2—C3—H3120.0C13—C14—H14119.9
C3—C4—C5118.5 (4)C14—C15—C16118.9 (4)
C3—C4—H4120.8C14—C15—H15120.6
C5—C4—H4120.8C16—C15—H15120.6
N1—C5—N3114.7 (3)N4—C16—N6116.1 (3)
N1—C5—C4121.7 (3)N4—C16—C15121.2 (3)
N3—C5—C4123.5 (3)N6—C16—C15122.7 (4)
N3—C6—C7115.5 (3)N6—C17—C18115.9 (3)
N3—C6—H6A108.4N6—C17—H17A108.3
C7—C6—H6A108.4C18—C17—H17A108.3
N3—C6—H6B108.4N6—C17—H17B108.3
C7—C6—H6B108.4C18—C17—H17B108.3
H6A—C6—H6B107.5H17A—C17—H17B107.4
N2—C7—C8122.5 (4)N5—C18—C19122.2 (4)
N2—C7—C6114.7 (3)N5—C18—C17114.1 (3)
C8—C7—C6122.8 (4)C19—C18—C17123.7 (3)
C7—C8—C9118.6 (4)C20—C19—C18119.1 (4)
C7—C8—H8120.7C20—C19—H19120.5
C9—C8—H8120.7C18—C19—H19120.5
C10—C9—C8119.4 (4)C19—C20—C21119.8 (4)
C10—C9—H9120.3C19—C20—H20120.1
C8—C9—H9120.3C21—C20—H20120.1
C9—C10—C11117.6 (4)C20—C21—C22117.4 (4)
C9—C10—H10121.2C20—C21—H21121.3
C11—C10—H10121.2C22—C21—H21121.3
N2—C11—C10124.7 (4)N5—C22—C21124.2 (4)
N2—C11—H11117.7N5—C22—H22117.9
C10—C11—H11117.7C21—C22—H22117.9
C5—N1—C1—C20.0 (6)N4—C12—C13—C140.8 (6)
N1—C1—C2—C30.8 (7)C12—C13—C14—C150.2 (6)
C1—C2—C3—C41.5 (6)C13—C14—C15—C160.3 (6)
C2—C3—C4—C51.3 (6)C12—N4—C16—N6178.1 (4)
C1—N1—C5—N3178.8 (4)C12—N4—C16—C151.6 (5)
C1—N1—C5—C40.2 (5)C17—N6—C16—N4170.6 (3)
C6—N3—C5—N1165.2 (3)C17—N6—C16—C159.7 (6)
C6—N3—C5—C415.8 (6)C14—C15—C16—N40.6 (6)
C3—C4—C5—N10.5 (6)C14—C15—C16—N6179.0 (4)
C3—C4—C5—N3179.3 (4)C16—N6—C17—C1869.3 (5)
C5—N3—C6—C767.4 (5)C22—N5—C18—C190.7 (6)
C11—N2—C7—C81.5 (6)C22—N5—C18—C17177.2 (3)
C11—N2—C7—C6175.8 (3)N6—C17—C18—N5166.9 (3)
N3—C6—C7—N2166.2 (3)N6—C17—C18—C1915.2 (5)
N3—C6—C7—C816.5 (5)N5—C18—C19—C202.1 (6)
N2—C7—C8—C92.0 (7)C17—C18—C19—C20175.6 (4)
C6—C7—C8—C9175.1 (4)C18—C19—C20—C211.7 (7)
C7—C8—C9—C101.0 (8)C19—C20—C21—C220.1 (7)
C8—C9—C10—C110.4 (7)C18—N5—C22—C211.1 (6)
C7—N2—C11—C100.0 (7)C20—C21—C22—N51.4 (7)
C9—C10—C11—N21.0 (7)C5—N3—C6—C767.4 (5)
C16—N4—C12—C131.7 (6)C16—N6—C17—C1869.3 (5)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N4/C12–C16, N2/C7–C11 and N5/C18–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3N···N40.892.143.019 (5)172
N6—H6N···N10.932.103.012 (5)168
C1—H1···Cg1i0.952.773.53137
C3—H3···Cg2ii0.952.853.69147
C14—H14···Cg3iii0.952.653.51149
Symmetry codes: (i) x+1/2, y+2, z; (ii) x+1/2, y+1, z; (iii) x1/2, y+2, z.

Experimental details

Crystal data
Chemical formulaC11H11N3
Mr185.23
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)14.5434 (14), 5.8198 (6), 23.045 (2)
V3)1950.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11034, 2182, 1814
Rint0.060
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.124, 1.10
No. of reflections2182
No. of parameters253
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.26

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the N4/C12–C16, N2/C7–C11 and N5/C18–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3N···N40.892.143.019 (5)172
N6—H6N···N10.932.103.012 (5)168
C1—H1···Cg1i0.952.773.53137
C3—H3···Cg2ii0.952.853.69147
C14—H14···Cg3iii0.952.653.51149
Symmetry codes: (i) x+1/2, y+2, z; (ii) x+1/2, y+1, z; (iii) x1/2, y+2, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0022675).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFoxon, S. P., Walter, O. & Schindler, S. (2002). Eur. J. Inorg. Chem. pp. 111–121.  CSD CrossRef Google Scholar
First citationLee, S., Park, S., Kang, Y., Moon, S.-H., Lee, S. S. & Park, K.-M. (2008). Bull. Korean Chem. Soc. 29, 1811–1814.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds