organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Neoline from Aconitum flavum Hand

aFaculty of Biotechnology Industry, Chengdu University, Chengdu 610016, People's Republic of China
*Correspondence e-mail: fzchen7200@163.com

(Received 24 February 2011; accepted 22 April 2011; online 20 May 2011)

The title compound, C24H39NO6 [systematic name: (1α,6α,14α,16β)-N-ethyl-6,16-dimeth­oxy-4-meth­oxy­methylaconitane-1,8,14-triol], is a C19-diterpenoid alkaloid from the roots of Aconitum flavum Hand. The mol­ecule has an aconitane carbon skeleton with four six-membered rings and two five-membered rings. Both five-membered rings adopt envelope conformations. Two six-membered rings adopt chair conformations, whereas the other two adopt boat conformations. Intra­molecular O—H⋯O and O—H⋯N and inter­molecular O—H⋯O hydrogen bonds are present in the structure. In the crystal, one methyl group is disordered over two sites with an occupancy ratio of 0.70 (3):0.30 (3).

Related literature

The title compound is a diterpenoid alkaloid; for the structures of related diterpenoid alkaloids, see: Wang et al. (2009[Wang, F.-P., Chen, Q.-H. & Liu, X.-Y. (2009). The Alkaloids: Chemistry and Biology, Vol. 67, edited by G. A. Cordell, pp. 1-78. New York: Elsevier.]). The title compound had been previously isolated from the roots of Aconitum carmichaeli Debx, and the chemical structure was established from NMR and MS data, see: Pelletier & Dailey (1976[Pelletier, S. W. & Dailey, Z. (1976). J. Am. Chem. Soc. 98, 2626-2632.]).

[Scheme 1]

Experimental

Crystal data
  • C24H39NO6

  • Mr = 437.56

  • Orthorhombic, P 21 21 21

  • a = 9.5423 (6) Å

  • b = 13.4727 (9) Å

  • c = 18.4251 (13) Å

  • V = 2368.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.42 × 0.33 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • 18153 measured reflections

  • 2422 independent reflections

  • 2130 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.177

  • S = 1.09

  • 2422 reflections

  • 295 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N 0.93 1.87 2.699 (4) 146
O4—H4A⋯O5 0.89 2.33 2.925 (4) 125
O5—H5A⋯O1i 0.93 1.80 2.682 (4) 158
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound of this report, neoline, is a diterpenoid alkaloid and had been previously isolated from the roots of Aconitum carmichaeli Debx. (Pelletier & Dailey, 1976), and its structure was established from the NMR and MS data. The compound itself has analgesic properties, and the plant Aconitum flavum Hand has also been therapeutically used to treatrheumatic pain, paralysis due to stroke, rheumatoid arthritis and some other inflammations. In order to obtain further evidence for the exact configuration and conformation of the title compound, we have here determined its singlecrystal structure. The naming and the rings conforming referred to the literature (Wang et al. 2009). The molecular structure of the title compound is shown in Fig. 1. Six-membered rings A (C1/C2/C3/C4/C5/C11) and D (C8/C9/C14/C13/C16/C15) adopt boat conformations; six-membered ring B (C7/C8/C9/C10/C11/C17) and six-membered N-containing heterocyclic ring E (C4/C5/C11/C17/N1/C19) adopt chair conformations; five-membered rings C (C9/C10/C12/C13/C14) and F (C5/C6/C7/C17/C11) adopt envelope conformations. The crystal structure contains intermolecular O–H···O and O–H···N hydrogen bonds (Table 1).

Related literature top

The title compound is a diterpenoid alkaloid; for the structures of related diterpenoid alkaloids, see: Wang et al. (2009). The title compound had been previously isolated from the roots of Aconitum carmichaeli Debx, and the chemical structure was established from NMR and MS data, see: Pelletier & Dailey (1976).

Experimental top

The title compound was isolated from the roots of Aconitum flavum Hand. And crystals suitable for X-ray structure analysis were obtained by slow evaporation from an acetone solution at room temperature.

Refinement top

Hydroxy H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were located geometrically with C—H = 0.96–0.98 Å and refined with a riding model, Uiso(H) = 1.2 Ueq(C). As no significant anomalous scatterings, Friedel pairs were merged.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probabiliy displacement ellipsoids for no-H atoms. H atoms have been omitted clarity.
(1α,6α,14α,16β)-N-ethyl-6,16- dimethoxy-4-methoxymethylaconitane-1,8,14-triol top
Crystal data top
C24H39NO6F(000) = 952
Mr = 437.56Dx = 1.227 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7450 reflections
a = 9.5423 (6) Åθ = 3.0–29.1°
b = 13.4727 (9) ŵ = 0.09 mm1
c = 18.4251 (13) ÅT = 293 K
V = 2368.7 (3) Å3Block, colorless
Z = 40.42 × 0.33 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2130 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.2°, θmin = 3.0°
Detector resolution: 10.0 pixels mm-1h = 1111
ω scansk = 1516
18153 measured reflectionsl = 1722
2422 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1203P)2 + 0.5493P]
where P = (Fo2 + 2Fc2)/3
2422 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H39NO6V = 2368.7 (3) Å3
Mr = 437.56Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.5423 (6) ŵ = 0.09 mm1
b = 13.4727 (9) ÅT = 293 K
c = 18.4251 (13) Å0.42 × 0.33 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2130 reflections with I > 2σ(I)
18153 measured reflectionsRint = 0.027
2422 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.09Δρmax = 1.02 e Å3
2422 reflectionsΔρmin = 0.18 e Å3
295 parameters
Special details top

Experimental. Because C19-deterpenoid alkaloids from nature have same absolute configurations, although the configuration can?t be determined by present X-ray analysis, it could be confirmed throng comparison with the analogues of the title compound.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7798 (3)0.62800 (19)0.74631 (16)0.0520 (7)
H1A0.86420.59710.75830.078*
O21.0936 (4)0.5268 (3)0.50259 (19)0.0754 (10)
O31.0460 (3)0.3044 (2)0.6038 (2)0.0673 (9)
O40.7543 (3)0.16599 (19)0.67409 (18)0.0569 (8)
H4A0.67660.13940.65620.085*
O50.4505 (3)0.1912 (2)0.68421 (17)0.0569 (8)
H5A0.36180.18500.70460.085*
O60.4605 (3)0.2734 (2)0.85463 (15)0.0546 (8)
N0.9676 (3)0.4789 (2)0.75691 (18)0.0444 (8)
C10.7509 (4)0.5921 (3)0.6746 (2)0.0438 (9)
H10.65160.60450.66470.053*
C20.8354 (5)0.6511 (3)0.6195 (3)0.0511 (10)
H2A0.80520.63400.57080.061*
H2B0.81940.72150.62670.061*
C30.9901 (4)0.6284 (3)0.6280 (3)0.0513 (10)
H3A1.02280.65640.67340.062*
H3B1.04120.66040.58900.062*
C41.0239 (4)0.5152 (3)0.6270 (2)0.0468 (9)
C50.8907 (4)0.4534 (3)0.6083 (2)0.0401 (8)
H50.85760.46820.55910.048*
C60.9098 (4)0.3402 (3)0.6191 (2)0.0446 (9)
H60.84350.30580.58730.053*
C70.8646 (4)0.3216 (3)0.6992 (2)0.0397 (8)
H70.93770.28570.72580.048*
C80.7251 (4)0.2647 (3)0.7017 (2)0.0411 (8)
C90.6198 (4)0.3157 (3)0.6503 (2)0.0400 (8)
H90.63320.29180.60050.048*
C100.6288 (4)0.4310 (3)0.6524 (2)0.0374 (8)
H100.59430.45590.60570.045*
C110.7761 (4)0.4789 (3)0.66603 (19)0.0353 (8)
C120.5185 (4)0.4590 (3)0.7114 (2)0.0431 (9)
H12A0.56190.49800.74950.052*
H12B0.44320.49760.69010.052*
C130.4617 (4)0.3614 (3)0.7422 (2)0.0437 (9)
H130.36420.36940.75780.052*
C140.4700 (4)0.2950 (3)0.6752 (2)0.0454 (9)
H140.40440.31950.63840.054*
C150.6700 (4)0.2528 (3)0.7800 (2)0.0460 (9)
H15A0.63700.18510.78560.055*
H15B0.74830.26150.81290.055*
C160.5518 (4)0.3230 (3)0.8043 (2)0.0409 (8)
H160.59410.38000.82900.049*
C170.8417 (4)0.4253 (3)0.7316 (2)0.0378 (8)
H170.77310.42140.77110.045*
C181.1442 (5)0.5029 (4)0.5726 (3)0.0576 (11)
H18A1.22120.54660.58540.069*
H18B1.17810.43510.57330.069*
C191.0790 (4)0.4814 (3)0.7014 (2)0.0504 (10)
H19A1.11960.41570.69680.060*
H19B1.15250.52620.71710.060*
C201.0242 (5)0.4409 (4)0.8249 (2)0.0631 (12)
H20A1.10760.47850.83700.076*
H20B1.05230.37240.81770.076*
C210.9240 (7)0.4454 (6)0.8884 (3)0.095 (2)
H21A0.88930.51190.89360.143*
H21B0.97200.42610.93190.143*
H21C0.84690.40110.87990.143*
C221.2024 (8)0.5246 (7)0.4501 (4)0.124 (3)
H22A1.27680.56810.46490.185*
H22B1.16630.54620.40410.185*
H22C1.23770.45820.44570.185*
C23A1.0543 (11)0.2077 (7)0.5829 (9)0.089 (5)0.70 (3)
H23A0.99770.19760.54050.133*0.70 (3)
H23B1.02110.16580.62140.133*0.70 (3)
H23C1.15000.19130.57210.133*0.70 (3)
C23B1.052 (2)0.254 (2)0.5398 (13)0.075 (8)0.30 (3)
H23D1.14330.22540.53420.112*0.30 (3)
H23E1.03460.29950.50050.112*0.30 (3)
H23F0.98240.20290.53960.112*0.30 (3)
C240.5239 (7)0.2531 (4)0.9228 (2)0.0751 (15)
H24A0.59580.20390.91660.113*
H24B0.45430.22870.95590.113*
H24C0.56450.31280.94180.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0503 (15)0.0427 (14)0.0629 (17)0.0046 (13)0.0031 (15)0.0123 (13)
O20.068 (2)0.094 (3)0.064 (2)0.006 (2)0.0269 (18)0.0062 (18)
O30.0496 (18)0.0652 (19)0.087 (2)0.0161 (16)0.0240 (17)0.0100 (17)
O40.0625 (19)0.0354 (14)0.0727 (19)0.0028 (14)0.0122 (16)0.0096 (13)
O50.0566 (18)0.0467 (15)0.0675 (19)0.0189 (14)0.0077 (15)0.0066 (13)
O60.0521 (17)0.0628 (17)0.0488 (15)0.0125 (15)0.0090 (13)0.0020 (13)
N0.0336 (16)0.0517 (17)0.0479 (17)0.0041 (15)0.0059 (14)0.0014 (15)
C10.038 (2)0.0348 (17)0.058 (2)0.0039 (16)0.0029 (18)0.0010 (16)
C20.048 (2)0.0353 (19)0.070 (3)0.0028 (18)0.004 (2)0.0041 (19)
C30.045 (2)0.045 (2)0.064 (3)0.0098 (18)0.010 (2)0.0011 (19)
C40.0333 (18)0.050 (2)0.057 (2)0.0019 (18)0.0062 (18)0.0031 (18)
C50.0345 (18)0.0416 (19)0.0441 (19)0.0010 (16)0.0041 (15)0.0004 (16)
C60.0383 (19)0.0405 (19)0.055 (2)0.0029 (17)0.0067 (18)0.0040 (18)
C70.0313 (17)0.0379 (18)0.050 (2)0.0079 (15)0.0014 (15)0.0056 (16)
C80.0393 (19)0.0315 (17)0.052 (2)0.0017 (16)0.0057 (17)0.0005 (16)
C90.0395 (19)0.0395 (19)0.0410 (19)0.0066 (16)0.0023 (15)0.0056 (16)
C100.0327 (18)0.0351 (17)0.0443 (19)0.0006 (15)0.0019 (15)0.0054 (15)
C110.0303 (17)0.0340 (17)0.0417 (18)0.0005 (15)0.0017 (15)0.0005 (14)
C120.0298 (17)0.0411 (19)0.059 (2)0.0032 (16)0.0020 (17)0.0038 (17)
C130.0317 (17)0.046 (2)0.053 (2)0.0043 (17)0.0048 (17)0.0044 (17)
C140.039 (2)0.047 (2)0.050 (2)0.0105 (18)0.0013 (17)0.0013 (17)
C150.046 (2)0.0397 (18)0.052 (2)0.0004 (18)0.0017 (18)0.0067 (16)
C160.0405 (19)0.0381 (18)0.044 (2)0.0064 (16)0.0051 (16)0.0028 (15)
C170.0273 (16)0.0372 (17)0.049 (2)0.0011 (15)0.0001 (15)0.0019 (16)
C180.045 (2)0.060 (3)0.067 (3)0.000 (2)0.017 (2)0.004 (2)
C190.0309 (18)0.059 (2)0.062 (2)0.0050 (18)0.0025 (17)0.001 (2)
C200.052 (2)0.080 (3)0.057 (3)0.009 (2)0.016 (2)0.008 (2)
C210.081 (4)0.150 (6)0.056 (3)0.024 (4)0.017 (3)0.007 (3)
C220.122 (6)0.154 (7)0.095 (5)0.040 (5)0.066 (5)0.037 (5)
C23A0.089 (6)0.062 (5)0.115 (11)0.026 (5)0.034 (6)0.007 (6)
C23B0.075 (12)0.088 (17)0.061 (12)0.025 (11)0.027 (9)0.008 (11)
C240.090 (4)0.091 (4)0.044 (2)0.003 (4)0.008 (3)0.008 (2)
Geometric parameters (Å, º) top
O1—C11.434 (5)C9—H90.9800
O1—H1A0.9332C10—C121.559 (5)
O2—C181.414 (6)C10—C111.566 (5)
O2—C221.419 (6)C10—H100.9800
O3—C23B1.359 (17)C11—C171.540 (5)
O3—C23A1.361 (9)C12—C131.531 (5)
O3—C61.415 (5)C12—H12A0.9700
O4—C81.451 (4)C12—H12B0.9700
O4—H4A0.8861C13—C161.523 (5)
O5—C141.421 (5)C13—C141.526 (6)
O5—H5A0.9305C13—H130.9800
O6—C241.421 (6)C14—H140.9800
O6—C161.437 (4)C15—C161.539 (5)
N—C201.456 (5)C15—H15A0.9700
N—C191.475 (5)C15—H15B0.9700
N—C171.478 (4)C16—H160.9800
C1—C21.521 (6)C17—H170.9800
C1—C111.552 (5)C18—H18A0.9700
C1—H10.9800C18—H18B0.9700
C2—C31.516 (6)C19—H19A0.9700
C2—H2A0.9700C19—H19B0.9700
C2—H2B0.9700C20—C211.512 (8)
C3—C41.558 (6)C20—H20A0.9700
C3—H3A0.9700C20—H20B0.9700
C3—H3B0.9700C21—H21A0.9600
C4—C181.534 (5)C21—H21B0.9600
C4—C191.537 (6)C21—H21C0.9600
C4—C51.559 (5)C22—H22A0.9600
C5—C61.549 (5)C22—H22B0.9600
C5—C111.565 (5)C22—H22C0.9600
C5—H50.9800C23A—H23A0.9600
C6—C71.558 (5)C23A—H23B0.9600
C6—H60.9800C23A—H23C0.9600
C7—C171.535 (5)C23B—H23D0.9600
C7—C81.537 (5)C23B—H23E0.9600
C7—H70.9800C23B—H23F0.9600
C8—C91.543 (5)C24—H24A0.9600
C8—C151.543 (5)C24—H24B0.9600
C9—C141.527 (6)C24—H24C0.9600
C9—C101.556 (5)
C1—O1—H1A103.5C10—C12—H12A110.3
C18—O2—C22111.6 (4)C13—C12—H12B110.3
C23B—O3—C23A43.7 (10)C10—C12—H12B110.3
C23B—O3—C6112.4 (9)H12A—C12—H12B108.6
C23A—O3—C6115.9 (5)C16—C13—C14112.3 (3)
C8—O4—H4A109.9C16—C13—C12111.8 (3)
C14—O5—H5A104.7C14—C13—C12100.7 (3)
C24—O6—C16113.7 (4)C16—C13—H13110.6
C20—N—C19109.7 (3)C14—C13—H13110.6
C20—N—C17113.7 (3)C12—C13—H13110.6
C19—N—C17112.2 (3)O5—C14—C13118.4 (3)
O1—C1—C2109.7 (3)O5—C14—C9109.7 (3)
O1—C1—C11113.3 (3)C13—C14—C9100.7 (3)
C2—C1—C11111.4 (3)O5—C14—H14109.2
O1—C1—H1107.4C13—C14—H14109.2
C2—C1—H1107.4C9—C14—H14109.2
C11—C1—H1107.4C16—C15—C8117.2 (3)
C3—C2—C1110.0 (4)C16—C15—H15A108.0
C3—C2—H2A109.7C8—C15—H15A108.0
C1—C2—H2A109.7C16—C15—H15B108.0
C3—C2—H2B109.7C8—C15—H15B108.0
C1—C2—H2B109.7H15A—C15—H15B107.2
H2A—C2—H2B108.2O6—C16—C13107.5 (3)
C2—C3—C4113.5 (3)O6—C16—C15110.3 (3)
C2—C3—H3A108.9C13—C16—C15113.8 (3)
C4—C3—H3A108.9O6—C16—H16108.3
C2—C3—H3B108.9C13—C16—H16108.3
C4—C3—H3B108.9C15—C16—H16108.3
H3A—C3—H3B107.7N—C17—C7116.9 (3)
C18—C4—C19107.2 (3)N—C17—C11110.4 (3)
C18—C4—C3105.5 (3)C7—C17—C11100.4 (3)
C19—C4—C3110.6 (4)N—C17—H17109.6
C18—C4—C5114.0 (3)C7—C17—H17109.6
C19—C4—C5108.5 (3)C11—C17—H17109.6
C3—C4—C5110.9 (3)O2—C18—C4108.5 (4)
C6—C5—C4113.7 (3)O2—C18—H18A110.0
C6—C5—C11102.2 (3)C4—C18—H18A110.0
C4—C5—C11107.6 (3)O2—C18—H18B110.0
C6—C5—H5111.0C4—C18—H18B110.0
C4—C5—H5111.0H18A—C18—H18B108.4
C11—C5—H5111.0N—C19—C4112.2 (3)
O3—C6—C5114.7 (3)N—C19—H19A109.2
O3—C6—C7112.8 (3)C4—C19—H19A109.2
C5—C6—C7104.4 (3)N—C19—H19B109.2
O3—C6—H6108.2C4—C19—H19B109.2
C5—C6—H6108.2H19A—C19—H19B107.9
C7—C6—H6108.2N—C20—C21114.6 (4)
C17—C7—C8108.6 (3)N—C20—H20A108.6
C17—C7—C6105.1 (3)C21—C20—H20A108.6
C8—C7—C6110.4 (3)N—C20—H20B108.6
C17—C7—H7110.9C21—C20—H20B108.6
C8—C7—H7110.9H20A—C20—H20B107.6
C6—C7—H7110.9C20—C21—H21A109.5
O4—C8—C7106.3 (3)C20—C21—H21B109.5
O4—C8—C9108.5 (3)H21A—C21—H21B109.5
C7—C8—C9108.9 (3)C20—C21—H21C109.5
O4—C8—C15107.3 (3)H21A—C21—H21C109.5
C7—C8—C15112.1 (3)H21B—C21—H21C109.5
C9—C8—C15113.5 (3)O2—C22—H22A109.5
C14—C9—C8110.1 (3)O2—C22—H22B109.5
C14—C9—C10103.1 (3)H22A—C22—H22B109.5
C8—C9—C10113.2 (3)O2—C22—H22C109.5
C14—C9—H9110.1H22A—C22—H22C109.5
C8—C9—H9110.1H22B—C22—H22C109.5
C10—C9—H9110.1O3—C23A—H23A109.5
C9—C10—C12102.8 (3)O3—C23A—H23B109.5
C9—C10—C11117.7 (3)O3—C23A—H23C109.5
C12—C10—C11113.2 (3)O3—C23B—H23D109.5
C9—C10—H10107.6O3—C23B—H23E109.5
C12—C10—H10107.6H23D—C23B—H23E109.5
C11—C10—H10107.6O3—C23B—H23F109.5
C17—C11—C1116.4 (3)H23D—C23B—H23F109.5
C17—C11—C598.4 (3)H23E—C23B—H23F109.5
C1—C11—C5113.1 (3)O6—C24—H24A109.5
C17—C11—C10107.3 (3)O6—C24—H24B109.5
C1—C11—C10106.4 (3)H24A—C24—H24B109.5
C5—C11—C10115.3 (3)O6—C24—H24C109.5
C13—C12—C10106.9 (3)H24A—C24—H24C109.5
C13—C12—H12A110.3H24B—C24—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N0.931.872.699 (4)146
O4—H4A···O50.892.332.925 (4)125
O5—H5A···O1i0.931.802.682 (4)158
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC24H39NO6
Mr437.56
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.5423 (6), 13.4727 (9), 18.4251 (13)
V3)2368.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.33 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18153, 2422, 2130
Rint0.027
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.177, 1.09
No. of reflections2422
No. of parameters295
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.18

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N0.931.872.699 (4)146
O4—H4A···O50.892.332.925 (4)125
O5—H5A···O1i0.931.802.682 (4)158
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

This project was supported by the Scientific Research Fund of Chengdu University, China.

References

First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPelletier, S. W. & Dailey, Z. (1976). J. Am. Chem. Soc. 98, 2626–2632.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F.-P., Chen, Q.-H. & Liu, X.-Y. (2009). The Alkaloids: Chemistry and Biology, Vol. 67, edited by G. A. Cordell, pp. 1–78. New York: Elsevier.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds