metal-organic compounds
Aqua(2,2′-diamino-4,4′-bi-1,3-thiazole-κ2N3,N3′)(thiodiacetato-κ3O,S,O′)nickel(II) monohydrate
aDepartment of Chemistry, Shanghai University, People's Republic of China
*Correspondence e-mail: r5744011@yahoo.com.cn
In the title compound, [Ni(C4H4O4S)(C6H6N4S2)(H2O)]·H2O, the NiII cation assumes a distorted octahedral coordination geometry formed by a diaminobithiazole (DABT) ligand, a thiodiacetate (TDA) dianion and a coordinated water molecule. The tridentate TDA chelates to the Ni cation in a facial configuration, and both chelating rings display the envelope conformations. The two thiazole rings of the DABT ligand are twisted with respect to each other, making a dihedral angle of 9.96 (9)°. Extensive O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonding is present in the crystal structure.
Related literature
For general background to diaminobithiazole complexes, see: Waring (1981); Fisher et al. (1985). For the synthesis, see: Erlenmeyer (1948). For related structures, see: Liu et al. (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811015157/xu5191sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811015157/xu5191Isup2.hkl
The DABT was prepared according to the literature (Erlenmeyer, 1948). An aqueous solution (20 ml) containing DABT (1 mmol) and NiCl2 (1 mmol) was mixed with an aqueous solution (10 ml) of thiodiacetic acid (1 mmol) and NaOH (2 mmol). The mixture was refluxed for 5 h. The solution was filtered after cooling to room temperature. Green single crystals were obtained from the filtrate after 7 d.
H atoms on carbon atoms were placed in calculated positions, with C—H distances = 0.93 Å (thiazole ring), and were included in the final cycles of
in riding mode with Uiso(H) = 1.2Ueq(C). Amino H atoms and water H atoms were located in a difference Fourier map and included in the calculations with fixed positional, and Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids, dashed lines showing hydrogen bonding. | |
Fig. 2. A molecular packing diagram, dashed lines showing the hydrogen bonding between NiII complex molecules. |
[Ni(C4H4O4S)(C6H6N4S2)(H2O)]·H2O | F(000) = 904 |
Mr = 441.14 | Dx = 1.782 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2650 reflections |
a = 11.856 (4) Å | θ = 2.0–25.0° |
b = 12.197 (4) Å | µ = 1.60 mm−1 |
c = 12.507 (4) Å | T = 295 K |
β = 114.622 (3)° | Prism, green |
V = 1644.3 (9) Å3 | 0.30 × 0.24 × 0.18 mm |
Z = 4 |
Bruker SMART 1000 diffractometer | 2888 independent reflections |
Radiation source: fine-focus sealed tube | 2627 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ω scans | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −14→14 |
Tmin = 0.638, Tmax = 0.750 | k = −10→14 |
8263 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0349P)2 + 0.4782P] where P = (Fo2 + 2Fc2)/3 |
2888 reflections | (Δ/σ)max = 0.001 |
217 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[Ni(C4H4O4S)(C6H6N4S2)(H2O)]·H2O | V = 1644.3 (9) Å3 |
Mr = 441.14 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.856 (4) Å | µ = 1.60 mm−1 |
b = 12.197 (4) Å | T = 295 K |
c = 12.507 (4) Å | 0.30 × 0.24 × 0.18 mm |
β = 114.622 (3)° |
Bruker SMART 1000 diffractometer | 2888 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2627 reflections with I > 2σ(I) |
Tmin = 0.638, Tmax = 0.750 | Rint = 0.016 |
8263 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.23 e Å−3 |
2888 reflections | Δρmin = −0.38 e Å−3 |
217 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni | 0.70472 (2) | 0.163736 (19) | 0.32141 (2) | 0.02339 (9) | |
O21 | 0.74187 (13) | 0.28151 (11) | 0.21850 (12) | 0.0346 (3) | |
O22 | 0.73617 (12) | 0.45346 (12) | 0.16017 (12) | 0.0365 (3) | |
O23 | 0.53565 (12) | 0.13917 (11) | 0.18614 (12) | 0.0328 (3) | |
O24 | 0.37049 (13) | 0.21909 (12) | 0.04991 (12) | 0.0422 (4) | |
O1 | 0.64613 (13) | 0.06045 (11) | 0.42019 (12) | 0.0353 (3) | |
H1A | 0.5731 | 0.0782 | 0.4093 | 0.053* | |
H1B | 0.6862 | 0.0612 | 0.4894 | 0.053* | |
N11 | 0.79168 (13) | 0.04751 (12) | 0.26220 (13) | 0.0244 (3) | |
N12 | 0.63575 (15) | −0.03738 (15) | 0.09932 (14) | 0.0364 (4) | |
H12A | 0.6217 | −0.0852 | 0.0508 | 0.044* | |
H12B | 0.5822 | 0.0034 | 0.1111 | 0.044* | |
N13 | 0.88791 (14) | 0.17581 (12) | 0.45192 (13) | 0.0258 (3) | |
N14 | 0.88728 (17) | 0.30143 (15) | 0.59448 (16) | 0.0419 (4) | |
H14A | 0.8266 | 0.2753 | 0.6018 | 0.050* | |
H14B | 0.9332 | 0.3406 | 0.6512 | 0.050* | |
S11 | 0.87354 (5) | −0.09125 (4) | 0.15646 (5) | 0.03800 (14) | |
S12 | 1.10452 (5) | 0.24840 (5) | 0.58486 (5) | 0.03957 (14) | |
S21 | 0.60333 (4) | 0.32092 (4) | 0.36574 (4) | 0.02772 (12) | |
O1W | 0.41649 (16) | 0.13394 (15) | 0.39419 (16) | 0.0567 (5) | |
H1WA | 0.4000 | 0.1775 | 0.4391 | 0.085* | |
H1WB | 0.3648 | 0.0823 | 0.3752 | 0.085* | |
C11 | 0.75308 (18) | −0.02181 (15) | 0.17266 (16) | 0.0271 (4) | |
C12 | 0.97924 (18) | −0.02114 (17) | 0.27670 (17) | 0.0340 (5) | |
H12 | 1.0649 | −0.0297 | 0.3071 | 0.041* | |
C13 | 0.91989 (16) | 0.04749 (15) | 0.31994 (16) | 0.0260 (4) | |
C14 | 0.97254 (16) | 0.12436 (16) | 0.41806 (16) | 0.0258 (4) | |
C15 | 1.09151 (19) | 0.15449 (17) | 0.47761 (19) | 0.0357 (5) | |
H15 | 1.1574 | 0.1284 | 0.4630 | 0.043* | |
C16 | 0.94546 (18) | 0.24140 (16) | 0.54155 (16) | 0.0297 (4) | |
C21 | 0.72366 (16) | 0.38186 (16) | 0.22579 (16) | 0.0283 (4) | |
C22 | 0.68729 (19) | 0.42159 (17) | 0.32255 (18) | 0.0351 (5) | |
H22A | 0.6365 | 0.4868 | 0.2955 | 0.042* | |
H22B | 0.7618 | 0.4418 | 0.3908 | 0.042* | |
C23 | 0.45736 (17) | 0.21590 (16) | 0.14957 (16) | 0.0281 (4) | |
C24 | 0.46281 (18) | 0.31021 (17) | 0.23123 (18) | 0.0331 (4) | |
H24A | 0.3931 | 0.3032 | 0.2522 | 0.040* | |
H24B | 0.4521 | 0.3782 | 0.1879 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.02234 (14) | 0.02582 (15) | 0.02243 (14) | 0.00214 (9) | 0.00973 (10) | −0.00135 (9) |
O21 | 0.0427 (8) | 0.0327 (8) | 0.0364 (8) | 0.0069 (6) | 0.0245 (7) | 0.0029 (6) |
O22 | 0.0365 (7) | 0.0379 (8) | 0.0385 (8) | 0.0002 (6) | 0.0191 (6) | 0.0072 (7) |
O23 | 0.0279 (7) | 0.0337 (8) | 0.0318 (7) | 0.0052 (6) | 0.0074 (6) | −0.0068 (6) |
O24 | 0.0369 (8) | 0.0446 (9) | 0.0313 (8) | 0.0066 (7) | 0.0005 (7) | −0.0055 (7) |
O1 | 0.0366 (7) | 0.0374 (8) | 0.0335 (8) | −0.0030 (6) | 0.0162 (6) | 0.0014 (6) |
N11 | 0.0262 (8) | 0.0248 (8) | 0.0228 (8) | 0.0027 (6) | 0.0109 (6) | 0.0005 (6) |
N12 | 0.0359 (9) | 0.0368 (10) | 0.0322 (9) | −0.0008 (8) | 0.0100 (8) | −0.0114 (7) |
N13 | 0.0250 (8) | 0.0302 (9) | 0.0223 (8) | −0.0005 (6) | 0.0100 (7) | −0.0013 (6) |
N14 | 0.0450 (10) | 0.0488 (11) | 0.0376 (10) | −0.0144 (9) | 0.0229 (9) | −0.0197 (9) |
S11 | 0.0450 (3) | 0.0377 (3) | 0.0358 (3) | 0.0105 (2) | 0.0213 (2) | −0.0049 (2) |
S12 | 0.0302 (3) | 0.0519 (3) | 0.0318 (3) | −0.0123 (2) | 0.0082 (2) | −0.0044 (2) |
S21 | 0.0294 (3) | 0.0303 (3) | 0.0257 (2) | 0.00101 (19) | 0.0137 (2) | −0.00348 (19) |
O1W | 0.0560 (10) | 0.0546 (10) | 0.0718 (12) | −0.0176 (9) | 0.0388 (10) | −0.0175 (9) |
C11 | 0.0357 (10) | 0.0229 (10) | 0.0255 (9) | 0.0026 (8) | 0.0157 (8) | 0.0020 (7) |
C12 | 0.0307 (10) | 0.0388 (11) | 0.0338 (11) | 0.0095 (9) | 0.0147 (8) | 0.0016 (9) |
C13 | 0.0265 (9) | 0.0284 (10) | 0.0240 (9) | 0.0044 (8) | 0.0113 (8) | 0.0057 (8) |
C14 | 0.0237 (9) | 0.0295 (10) | 0.0252 (9) | 0.0028 (7) | 0.0113 (8) | 0.0063 (8) |
C15 | 0.0281 (10) | 0.0443 (13) | 0.0348 (11) | 0.0006 (9) | 0.0132 (9) | 0.0017 (9) |
C16 | 0.0326 (10) | 0.0332 (11) | 0.0232 (10) | −0.0061 (8) | 0.0117 (8) | 0.0004 (8) |
C21 | 0.0195 (9) | 0.0342 (11) | 0.0289 (10) | −0.0007 (8) | 0.0078 (8) | 0.0019 (8) |
C22 | 0.0404 (11) | 0.0297 (11) | 0.0383 (12) | −0.0026 (9) | 0.0194 (9) | −0.0029 (9) |
C23 | 0.0247 (9) | 0.0308 (11) | 0.0293 (10) | −0.0009 (8) | 0.0118 (8) | −0.0012 (8) |
C24 | 0.0280 (10) | 0.0344 (11) | 0.0334 (11) | 0.0056 (8) | 0.0091 (9) | −0.0039 (9) |
Ni—O1 | 2.0763 (14) | N14—H14B | 0.8401 |
Ni—O21 | 2.0944 (14) | S11—C12 | 1.730 (2) |
Ni—O23 | 2.0357 (14) | S11—C11 | 1.7434 (19) |
Ni—N11 | 2.0634 (15) | S12—C15 | 1.721 (2) |
Ni—N13 | 2.1094 (16) | S12—C16 | 1.734 (2) |
Ni—S21 | 2.4461 (7) | S21—C22 | 1.800 (2) |
O21—C21 | 1.253 (2) | S21—C24 | 1.813 (2) |
O22—C21 | 1.249 (2) | O1W—H1WA | 0.8530 |
O23—C23 | 1.262 (2) | O1W—H1WB | 0.8413 |
O24—C23 | 1.244 (2) | C12—C13 | 1.344 (3) |
O1—H1A | 0.8465 | C12—H12 | 0.9300 |
O1—H1B | 0.7947 | C13—C14 | 1.462 (3) |
N11—C11 | 1.323 (2) | C14—C15 | 1.343 (3) |
N11—C13 | 1.385 (2) | C15—H15 | 0.9300 |
N12—C11 | 1.323 (2) | C21—C22 | 1.523 (3) |
N12—H12A | 0.8078 | C22—H22A | 0.9700 |
N12—H12B | 0.8657 | C22—H22B | 0.9700 |
N13—C16 | 1.313 (2) | C23—C24 | 1.522 (3) |
N13—C14 | 1.391 (2) | C24—H24A | 0.9700 |
N14—C16 | 1.353 (3) | C24—H24B | 0.9700 |
N14—H14A | 0.8259 | ||
O23—Ni—N11 | 93.83 (6) | H1WA—O1W—H1WB | 108.2 |
O23—Ni—O1 | 86.99 (6) | N12—C11—N11 | 124.86 (17) |
N11—Ni—O1 | 97.92 (6) | N12—C11—S11 | 121.70 (15) |
O23—Ni—O21 | 88.66 (6) | N11—C11—S11 | 113.42 (14) |
N11—Ni—O21 | 89.21 (6) | C13—C12—S11 | 110.28 (15) |
O1—Ni—O21 | 171.88 (5) | C13—C12—H12 | 124.9 |
O23—Ni—N13 | 173.36 (6) | S11—C12—H12 | 124.9 |
N11—Ni—N13 | 79.53 (6) | C12—C13—N11 | 115.81 (17) |
O1—Ni—N13 | 94.23 (6) | C12—C13—C14 | 128.72 (17) |
O21—Ni—N13 | 90.88 (6) | N11—C13—C14 | 115.46 (15) |
O23—Ni—S21 | 84.09 (4) | C15—C14—N13 | 115.59 (18) |
N11—Ni—S21 | 170.43 (4) | C15—C14—C13 | 128.58 (18) |
O1—Ni—S21 | 91.31 (4) | N13—C14—C13 | 115.80 (15) |
O21—Ni—S21 | 81.42 (4) | C14—C15—S12 | 110.29 (16) |
N13—Ni—S21 | 102.40 (5) | C14—C15—H15 | 124.9 |
C21—O21—Ni | 122.59 (12) | S12—C15—H15 | 124.9 |
C23—O23—Ni | 120.86 (12) | N13—C16—N14 | 123.90 (18) |
Ni—O1—H1A | 108.8 | N13—C16—S12 | 114.04 (14) |
Ni—O1—H1B | 116.4 | N14—C16—S12 | 122.03 (15) |
H1A—O1—H1B | 106.3 | O22—C21—O21 | 124.33 (18) |
C11—N11—C13 | 111.02 (15) | O22—C21—C22 | 116.75 (18) |
C11—N11—Ni | 133.97 (12) | O21—C21—C22 | 118.89 (17) |
C13—N11—Ni | 114.65 (12) | C21—C22—S21 | 113.36 (14) |
C11—N12—H12A | 116.9 | C21—C22—H22A | 108.9 |
C11—N12—H12B | 115.7 | S21—C22—H22A | 108.9 |
H12A—N12—H12B | 127.3 | C21—C22—H22B | 108.9 |
C16—N13—C14 | 110.52 (16) | S21—C22—H22B | 108.9 |
C16—N13—Ni | 134.78 (13) | H22A—C22—H22B | 107.7 |
C14—N13—Ni | 111.95 (12) | O24—C23—O23 | 124.30 (18) |
C16—N14—H14A | 119.4 | O24—C23—C24 | 115.78 (17) |
C16—N14—H14B | 115.9 | O23—C23—C24 | 119.87 (16) |
H14A—N14—H14B | 114.5 | C23—C24—S21 | 116.29 (13) |
C12—S11—C11 | 89.46 (9) | C23—C24—H24A | 108.2 |
C15—S12—C16 | 89.49 (10) | S21—C24—H24A | 108.2 |
C22—S21—C24 | 100.37 (10) | C23—C24—H24B | 108.2 |
C22—S21—Ni | 94.66 (7) | S21—C24—H24B | 108.2 |
C24—S21—Ni | 94.68 (7) | H24A—C24—H24B | 107.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O1W | 0.85 | 1.91 | 2.7540 | 173 |
O1—H1B···O22i | 0.79 | 1.97 | 2.7399 | 162 |
N12—H12A···O24ii | 0.81 | 2.09 | 2.8785 | 166 |
N12—H12B···O23 | 0.87 | 2.09 | 2.8807 | 152 |
N14—H14A···O21i | 0.83 | 2.20 | 2.9378 | 149 |
O1W—H1WA···O24i | 0.85 | 2.01 | 2.8616 | 177 |
O1W—H1WB···O22iii | 0.84 | 1.91 | 2.7493 | 173 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z; (iii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C4H4O4S)(C6H6N4S2)(H2O)]·H2O |
Mr | 441.14 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 11.856 (4), 12.197 (4), 12.507 (4) |
β (°) | 114.622 (3) |
V (Å3) | 1644.3 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.60 |
Crystal size (mm) | 0.30 × 0.24 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART 1000 diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.638, 0.750 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8263, 2888, 2627 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.061, 1.06 |
No. of reflections | 2888 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.38 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Ni—O1 | 2.0763 (14) | Ni—N11 | 2.0634 (15) |
Ni—O21 | 2.0944 (14) | Ni—N13 | 2.1094 (16) |
Ni—O23 | 2.0357 (14) | Ni—S21 | 2.4461 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O1W | 0.85 | 1.91 | 2.7540 | 173 |
O1—H1B···O22i | 0.79 | 1.97 | 2.7399 | 162 |
N12—H12A···O24ii | 0.81 | 2.09 | 2.8785 | 166 |
N12—H12B···O23 | 0.87 | 2.09 | 2.8807 | 152 |
N14—H14A···O21i | 0.83 | 2.20 | 2.9378 | 149 |
O1W—H1WA···O24i | 0.85 | 2.01 | 2.8616 | 177 |
O1W—H1WB···O22iii | 0.84 | 1.91 | 2.7493 | 173 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z; (iii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The project was supported by the Foundation of Shanghai University, China.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA. Google Scholar
Erlenmeyer, H. (1948). Helv. Chim. Acta, 31, 206–210. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199–3207. CrossRef CAS PubMed Web of Science Google Scholar
Liu, J.-G., Xu, D.-J., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, o929–o930. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Waring, M. J. (1981). Annu. Rev. Biochem. 50, 159–192. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes of DABT have shown potential application in some fields, such as the effective inhibitors of DNA synthesis of the tumor cells (Waring, 1981; Fisher et al., 1985). As part of a series of investigations of metal complexes of DABT, the title NiII complex, (I), was prepared in the laboratory and its X-ray structure is reported here.
The molecular structure of the title compound is shown in Fig. 1. The complex has a distorted octahedral coordination geometry formed by one of DABT, one of TDA and one of coordinated water.
The tridentate TDA chelates to NiII atom in an envelope configuration. Two carboxyl groups of TDA monodentately coordinate to the NiII atom. Uncoordinated carboxyl oxygen atoms O22 and O24 are hydrogen bonded to the hydrogen atoms of coordinated water of the neighboring complex molecule, as shown in Fig. 2 and Table 1. Othervize, coordinated carboxyl oxygen atom O1 is hydrogen bonded to the hydrogen atoms of lattice watter molecule of the neighboring complex molecule and within complex respectively. The atom O22 and O24 hydrogen bonnded to amino group of DABT of neighboring complex and lattice water within complex respectively.
The DABT chelates to the NiII atom with a near coplanar configuration, the angle of two thiazole rings being 9.96 (11) °. The bond distance 1.462 (3) Å of C13—C14 correspond to C—C single bonds between sp2-hybridized C atoms (C—C = 1.483 Å). The C—N(amino) bond (C11—N12 = 1.323 (2) Å) distance is shorter than 1.354 (2) Å in free DABT and the other one (C16—N14 =1.353 (3) Å) distance is similar to 1.354 (2) Å in free DABT (Liu et al., 2002). The C—N bond within thiazole ring one distance (C11—N11 = 1.323 (2) Å) is longer than 1.309 (2) Å and the other one (C16—N13 = 1.313 (2) Å) is similar to 1.309 (2) Å in free DABT within thiazole rings (Liu et al., 2002), this suggests the existence of electron delocalization within one thiazole ring of DABT.