metal-organic compounds
Aquabis(3,5-dimethyl-1H-pyrazole-κN2)(oxydiacetato-κ3O,O′,O′′)copper(II) dihydrate
aDepartment of Chemistry, Shanghai University, People's Republic of China
*Correspondence e-mail: r5744011@yahoo.com.cn
In the title compound, [Cu(C4H4O5)(C5H8N2)2(H2O)]·2H2O, the CuII cation assumes a distorted octahedral coordination geometry formed by two 3,5-dimethyl-1H-pyrazole ligands, one oxydiacetate (ODA) dianion and one coordinated water molecule. The tridentate ODA ligand chelates to the Cu cation in a facial configuration with a longer Cu—O bond [2.597 (3) Å], and both chelating rings display envelope conformations. In the molecule, the two pyrazole rings are twisted with respect to each other at a dihedral angle of 57.5 (3)°. Extensive intermolecular O—H⋯O and N—H⋯O hydrogen bonding is present in the crystal structure.
Related literature
For background to pyrazole compounds, see: Haanstra et al. (1990); Mukherjee (2000). For the structure of a related ODA complex, see: Wu et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811015169/xu5195sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811015169/xu5195Isup2.hkl
An ethanol-water solution (1:1, 20 ml) containing 3,5-dimethyl-pyrazole-1-carboxamide (0.07 g, 0.5 mmol) and CuCl2.2H2O (0.85g, 0.5 mmol) was mixed with an aqueous solution (10 ml) of oxydiacetic acid (0.07g, 0.5 mmol) and NaOH (0.04g, 1 mmol). The mixture was refluxed for 6 h. After cooling to room temperature the solution was filtered. Blue single crystals of (I) were obtained from the filtrate after 30 d.
Pyrazole H atoms and water H atoms were located in a difference Fourier map and included in the
calculations with fixed positional parameters, and Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). H atoms on carbon atoms and on oxygen (coordinated and lattice water) were placed in calculated positions, with C—H distances = 0.93 Å (aromatic, pyrazole ring), 0.97 Å (methylene group), 0.96 Å (methyl group), with O—H distances = 0.85 Å, and were included in the final cycles of in riding mode with Uiso(H) = 1.2Ueq(C(aromatic and methylene)) and Uiso(H) = 1.5Ueq(C(methyl) and O(water)) respectively.Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids, dashed lines showing hydrogen bonding [symmetry code: (i) -x, 1-y, 1-z, (ii) 1+x, y, z]. | |
Fig. 2. A molecular packing diagram, dashed lines showing the hydrogen bonding between Cu(II) complex molecules. |
[Cu(C4H4O5)(C5H8N2)2(H2O)]·2H2O | Z = 2 |
Mr = 441.93 | F(000) = 462 |
Triclinic, P1 | Dx = 1.498 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5502 (12) Å | Cell parameters from 2650 reflections |
b = 10.6264 (17) Å | θ = 2.0–25.0° |
c = 12.687 (2) Å | µ = 1.16 mm−1 |
α = 92.219 (2)° | T = 295 K |
β = 104.880 (2)° | Prism, blue |
γ = 93.769 (2)° | 0.25 × 0.19 × 0.15 mm |
V = 980.0 (3) Å3 |
Bruker SMART 1000 diffractometer | 3389 independent reflections |
Radiation source: fine-focus sealed tube | 2663 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω scans | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −8→8 |
Tmin = 0.767, Tmax = 0.840 | k = −10→12 |
5085 measured reflections | l = −15→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0597P)2 + 1.5674P] where P = (Fo2 + 2Fc2)/3 |
3389 reflections | (Δ/σ)max < 0.001 |
244 parameters | Δρmax = 0.97 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
[Cu(C4H4O5)(C5H8N2)2(H2O)]·2H2O | γ = 93.769 (2)° |
Mr = 441.93 | V = 980.0 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.5502 (12) Å | Mo Kα radiation |
b = 10.6264 (17) Å | µ = 1.16 mm−1 |
c = 12.687 (2) Å | T = 295 K |
α = 92.219 (2)° | 0.25 × 0.19 × 0.15 mm |
β = 104.880 (2)° |
Bruker SMART 1000 diffractometer | 3389 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2663 reflections with I > 2σ(I) |
Tmin = 0.767, Tmax = 0.840 | Rint = 0.023 |
5085 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.97 e Å−3 |
3389 reflections | Δρmin = −0.64 e Å−3 |
244 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.03356 (7) | 0.40147 (5) | 0.29056 (4) | 0.02518 (19) | |
O1 | 0.2664 (4) | 0.5043 (3) | 0.4150 (2) | 0.0366 (8) | |
H1A | 0.3378 | 0.5675 | 0.4096 | 0.055* | |
H1B | 0.2773 | 0.4952 | 0.4826 | 0.055* | |
O31 | −0.1202 (4) | 0.5234 (3) | 0.3466 (2) | 0.0273 (7) | |
O32 | −0.3929 (4) | 0.5595 (3) | 0.3709 (2) | 0.0426 (9) | |
O33 | 0.0910 (4) | 0.5157 (3) | 0.1841 (2) | 0.0346 (7) | |
O34 | 0.0182 (5) | 0.6530 (3) | 0.0567 (3) | 0.0453 (9) | |
O35 | −0.2706 (4) | 0.4198 (3) | 0.1414 (2) | 0.0373 (8) | |
N11 | 0.1915 (5) | 0.2768 (3) | 0.2429 (3) | 0.0283 (8) | |
N12 | 0.1713 (5) | 0.2466 (4) | 0.1347 (3) | 0.0334 (9) | |
H12A | 0.1038 | 0.2781 | 0.0888 | 0.040* | |
N21 | −0.0679 (5) | 0.2709 (3) | 0.3726 (3) | 0.0291 (8) | |
N22 | −0.0561 (5) | 0.2859 (3) | 0.4817 (3) | 0.0305 (9) | |
H22A | −0.0139 | 0.3484 | 0.5105 | 0.037* | |
C11 | 0.2563 (7) | 0.1441 (4) | 0.1202 (4) | 0.0381 (12) | |
C12 | 0.3380 (7) | 0.1053 (5) | 0.2215 (4) | 0.0395 (12) | |
H12 | 0.4079 | 0.0362 | 0.2375 | 0.047* | |
C13 | 0.2950 (6) | 0.1905 (4) | 0.2959 (4) | 0.0324 (10) | |
C14 | 0.2536 (9) | 0.0916 (6) | 0.0080 (4) | 0.0608 (17) | |
H14A | 0.1822 | 0.1420 | −0.0459 | 0.091* | |
H14B | 0.1998 | 0.0062 | −0.0022 | 0.091* | |
H14C | 0.3770 | 0.0932 | 0.0005 | 0.091* | |
C15 | 0.3537 (8) | 0.1923 (5) | 0.4175 (4) | 0.0482 (14) | |
H15A | 0.3035 | 0.2616 | 0.4476 | 0.072* | |
H15B | 0.4854 | 0.2020 | 0.4417 | 0.072* | |
H15C | 0.3099 | 0.1144 | 0.4414 | 0.072* | |
C21 | −0.1237 (7) | 0.1816 (4) | 0.5189 (4) | 0.0326 (10) | |
C22 | −0.1789 (7) | 0.0966 (4) | 0.4317 (4) | 0.0379 (12) | |
H22 | −0.2307 | 0.0148 | 0.4321 | 0.046* | |
C23 | −0.1438 (6) | 0.1538 (4) | 0.3425 (4) | 0.0299 (10) | |
C24 | −0.1240 (9) | 0.1774 (6) | 0.6367 (4) | 0.0567 (16) | |
H24A | −0.0728 | 0.2569 | 0.6743 | 0.085* | |
H24B | −0.0514 | 0.1112 | 0.6692 | 0.085* | |
H24C | −0.2478 | 0.1614 | 0.6422 | 0.085* | |
C25 | −0.1799 (7) | 0.1017 (5) | 0.2272 (4) | 0.0418 (12) | |
H25A | −0.1402 | 0.1643 | 0.1838 | 0.063* | |
H25B | −0.3091 | 0.0794 | 0.1984 | 0.063* | |
H25C | −0.1135 | 0.0280 | 0.2253 | 0.063* | |
C31 | −0.2937 (6) | 0.5131 (4) | 0.3171 (3) | 0.0293 (10) | |
C32 | −0.3894 (6) | 0.4403 (5) | 0.2100 (4) | 0.0374 (11) | |
H32A | −0.4406 | 0.3592 | 0.2257 | 0.045* | |
H32B | −0.4904 | 0.4865 | 0.1712 | 0.045* | |
C33 | −0.2287 (7) | 0.5301 (5) | 0.0895 (4) | 0.0425 (13) | |
H33A | −0.2890 | 0.5996 | 0.1134 | 0.051* | |
H33B | −0.2789 | 0.5156 | 0.0112 | 0.051* | |
C34 | −0.0253 (7) | 0.5683 (4) | 0.1126 (3) | 0.0328 (11) | |
O1W | 0.3682 (9) | 0.7458 (7) | 0.0748 (6) | 0.147 (3) | |
H1WA | 0.2788 | 0.6940 | 0.0771 | 0.221* | |
H1WB | 0.3837 | 0.7389 | 0.0109 | 0.221* | |
O2W | 0.4093 (11) | 0.1824 (6) | 0.7222 (6) | 0.155 (3) | |
H2WA | 0.3974 | 0.2410 | 0.6778 | 0.232* | |
H2WB | 0.4868 | 0.2111 | 0.7836 | 0.232* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0271 (3) | 0.0284 (3) | 0.0217 (3) | 0.0038 (2) | 0.0086 (2) | 0.0027 (2) |
O1 | 0.0293 (18) | 0.049 (2) | 0.0288 (16) | −0.0038 (15) | 0.0052 (14) | −0.0014 (15) |
O31 | 0.0236 (17) | 0.0296 (16) | 0.0273 (15) | 0.0019 (13) | 0.0050 (13) | −0.0020 (13) |
O32 | 0.0310 (19) | 0.067 (2) | 0.0319 (17) | 0.0094 (17) | 0.0119 (15) | −0.0013 (16) |
O33 | 0.0377 (19) | 0.0389 (19) | 0.0288 (16) | 0.0048 (15) | 0.0104 (14) | 0.0091 (14) |
O34 | 0.058 (2) | 0.045 (2) | 0.0338 (18) | 0.0047 (18) | 0.0123 (17) | 0.0152 (16) |
O35 | 0.039 (2) | 0.044 (2) | 0.0291 (16) | −0.0013 (16) | 0.0119 (14) | −0.0023 (14) |
N11 | 0.031 (2) | 0.033 (2) | 0.0234 (18) | 0.0047 (17) | 0.0108 (16) | 0.0030 (15) |
N12 | 0.039 (2) | 0.038 (2) | 0.0264 (19) | 0.0089 (18) | 0.0127 (17) | 0.0060 (17) |
N21 | 0.033 (2) | 0.034 (2) | 0.0227 (18) | 0.0052 (17) | 0.0113 (16) | 0.0016 (16) |
N22 | 0.038 (2) | 0.028 (2) | 0.0274 (19) | 0.0005 (17) | 0.0130 (17) | −0.0018 (15) |
C11 | 0.043 (3) | 0.034 (3) | 0.041 (3) | 0.008 (2) | 0.019 (2) | −0.002 (2) |
C12 | 0.039 (3) | 0.037 (3) | 0.049 (3) | 0.012 (2) | 0.019 (2) | 0.006 (2) |
C13 | 0.030 (3) | 0.036 (3) | 0.035 (2) | 0.007 (2) | 0.013 (2) | 0.007 (2) |
C14 | 0.083 (5) | 0.059 (4) | 0.047 (3) | 0.018 (3) | 0.026 (3) | −0.009 (3) |
C15 | 0.051 (3) | 0.057 (3) | 0.038 (3) | 0.023 (3) | 0.008 (2) | 0.012 (2) |
C21 | 0.037 (3) | 0.033 (3) | 0.033 (2) | 0.006 (2) | 0.015 (2) | 0.009 (2) |
C22 | 0.048 (3) | 0.028 (3) | 0.040 (3) | −0.004 (2) | 0.018 (2) | 0.003 (2) |
C23 | 0.027 (2) | 0.029 (2) | 0.035 (2) | 0.0009 (19) | 0.0103 (19) | −0.0027 (19) |
C24 | 0.081 (5) | 0.057 (4) | 0.038 (3) | −0.002 (3) | 0.026 (3) | 0.011 (3) |
C25 | 0.043 (3) | 0.042 (3) | 0.038 (3) | −0.005 (2) | 0.012 (2) | −0.009 (2) |
C31 | 0.028 (3) | 0.037 (3) | 0.023 (2) | 0.005 (2) | 0.0072 (19) | 0.0093 (19) |
C32 | 0.028 (3) | 0.055 (3) | 0.029 (2) | −0.003 (2) | 0.009 (2) | −0.003 (2) |
C33 | 0.041 (3) | 0.058 (3) | 0.031 (2) | 0.014 (3) | 0.009 (2) | 0.012 (2) |
C34 | 0.044 (3) | 0.036 (3) | 0.020 (2) | 0.006 (2) | 0.011 (2) | −0.002 (2) |
O1W | 0.111 (5) | 0.152 (6) | 0.182 (7) | −0.049 (5) | 0.062 (5) | −0.026 (5) |
O2W | 0.176 (8) | 0.094 (5) | 0.180 (7) | −0.003 (5) | 0.022 (6) | 0.031 (5) |
Cu—O33 | 1.960 (3) | C14—H14B | 0.9600 |
Cu—N21 | 1.995 (4) | C14—H14C | 0.9600 |
Cu—N11 | 2.015 (3) | C15—H15A | 0.9600 |
Cu—O31 | 2.020 (3) | C15—H15B | 0.9600 |
Cu—O1 | 2.228 (3) | C15—H15C | 0.9600 |
O1—H1A | 0.8500 | C21—C22 | 1.360 (6) |
O1—H1B | 0.8500 | C21—C24 | 1.498 (6) |
O31—C31 | 1.263 (5) | C22—C23 | 1.381 (6) |
O32—C31 | 1.246 (5) | C22—H22 | 0.9300 |
O33—C34 | 1.266 (5) | C23—C25 | 1.495 (6) |
O34—C34 | 1.245 (5) | C24—H24A | 0.9600 |
O35—C32 | 1.421 (5) | C24—H24B | 0.9600 |
O35—C33 | 1.424 (6) | C24—H24C | 0.9600 |
N11—C13 | 1.332 (5) | C25—H25A | 0.9600 |
N11—N12 | 1.364 (5) | C25—H25B | 0.9600 |
N12—C11 | 1.329 (6) | C25—H25C | 0.9600 |
N12—H12A | 0.7732 | C31—C32 | 1.519 (6) |
N21—C23 | 1.334 (6) | C32—H32A | 0.9700 |
N21—N22 | 1.366 (5) | C32—H32B | 0.9700 |
N22—C21 | 1.342 (6) | C33—C34 | 1.512 (7) |
N22—H22A | 0.7550 | C33—H33A | 0.9700 |
C11—C12 | 1.367 (7) | C33—H33B | 0.9700 |
C11—C14 | 1.503 (6) | O1W—H1WA | 0.8499 |
C12—C13 | 1.395 (6) | O1W—H1WB | 0.8500 |
C12—H12 | 0.9300 | O2W—H2WA | 0.8499 |
C13—C15 | 1.491 (6) | O2W—H2WB | 0.8748 |
C14—H14A | 0.9600 | ||
O33—Cu—N21 | 168.02 (14) | H15A—C15—H15B | 109.5 |
O33—Cu—N11 | 88.43 (13) | C13—C15—H15C | 109.5 |
N21—Cu—N11 | 91.13 (14) | H15A—C15—H15C | 109.5 |
O33—Cu—O31 | 94.10 (12) | H15B—C15—H15C | 109.5 |
N21—Cu—O31 | 86.76 (13) | N22—C21—C22 | 106.1 (4) |
N11—Cu—O31 | 176.92 (12) | N22—C21—C24 | 120.3 (4) |
O33—Cu—O1 | 87.35 (12) | C22—C21—C24 | 133.6 (5) |
N21—Cu—O1 | 104.62 (13) | C21—C22—C23 | 107.5 (4) |
N11—Cu—O1 | 94.36 (13) | C21—C22—H22 | 126.2 |
O31—Cu—O1 | 84.00 (12) | C23—C22—H22 | 126.2 |
Cu—O1—H1A | 130.6 | N21—C23—C22 | 109.6 (4) |
Cu—O1—H1B | 120.0 | N21—C23—C25 | 121.4 (4) |
H1A—O1—H1B | 107.7 | C22—C23—C25 | 129.0 (4) |
C31—O31—Cu | 122.4 (3) | C21—C24—H24A | 109.5 |
C34—O33—Cu | 125.6 (3) | C21—C24—H24B | 109.5 |
C32—O35—C33 | 113.1 (4) | H24A—C24—H24B | 109.5 |
C13—N11—N12 | 105.3 (3) | C21—C24—H24C | 109.5 |
C13—N11—Cu | 132.4 (3) | H24A—C24—H24C | 109.5 |
N12—N11—Cu | 120.7 (3) | H24B—C24—H24C | 109.5 |
C11—N12—N11 | 111.5 (4) | C23—C25—H25A | 109.5 |
C11—N12—H12A | 124.7 | C23—C25—H25B | 109.5 |
N11—N12—H12A | 122.8 | H25A—C25—H25B | 109.5 |
C23—N21—N22 | 105.4 (3) | C23—C25—H25C | 109.5 |
C23—N21—Cu | 131.4 (3) | H25A—C25—H25C | 109.5 |
N22—N21—Cu | 123.0 (3) | H25B—C25—H25C | 109.5 |
C21—N22—N21 | 111.4 (4) | O32—C31—O31 | 123.9 (4) |
C21—N22—H22A | 131.2 | O32—C31—C32 | 117.4 (4) |
N21—N22—H22A | 117.3 | O31—C31—C32 | 118.8 (4) |
N12—C11—C12 | 107.3 (4) | O35—C32—C31 | 113.2 (4) |
N12—C11—C14 | 121.6 (4) | O35—C32—H32A | 108.9 |
C12—C11—C14 | 131.1 (5) | C31—C32—H32A | 108.9 |
C11—C12—C13 | 105.8 (4) | O35—C32—H32B | 108.9 |
C11—C12—H12 | 127.1 | C31—C32—H32B | 108.9 |
C13—C12—H12 | 127.1 | H32A—C32—H32B | 107.7 |
N11—C13—C12 | 110.1 (4) | O35—C33—C34 | 114.0 (4) |
N11—C13—C15 | 122.3 (4) | O35—C33—H33A | 108.8 |
C12—C13—C15 | 127.6 (4) | C34—C33—H33A | 108.8 |
C11—C14—H14A | 109.5 | O35—C33—H33B | 108.8 |
C11—C14—H14B | 109.5 | C34—C33—H33B | 108.8 |
H14A—C14—H14B | 109.5 | H33A—C33—H33B | 107.7 |
C11—C14—H14C | 109.5 | O34—C34—O33 | 123.1 (5) |
H14A—C14—H14C | 109.5 | O34—C34—C33 | 115.8 (4) |
H14B—C14—H14C | 109.5 | O33—C34—C33 | 121.1 (4) |
C13—C15—H15A | 109.5 | H1WA—O1W—H1WB | 107.7 |
C13—C15—H15B | 109.5 | H2WA—O2W—H2WB | 108.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O32i | 0.85 | 2.21 | 2.798 (5) | 126 |
O1—H1B···O32ii | 0.85 | 1.97 | 2.764 (5) | 156 |
O1W—H1WA···O34 | 0.85 | 1.93 | 2.707 (8) | 151 |
O1W—H1WB···O35iii | 0.85 | 2.45 | 3.097 (8) | 133 |
O2W—H2WA···O32ii | 0.85 | 2.23 | 3.024 (8) | 156 |
O2W—H2WB···O1Wiv | 0.88 | 1.87 | 2.741 (10) | 171 |
N12—H12A···O34iii | 0.77 | 2.03 | 2.773 (5) | 163 |
N22—H22A···O31ii | 0.75 | 2.20 | 2.904 (5) | 155 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C4H4O5)(C5H8N2)2(H2O)]·2H2O |
Mr | 441.93 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 7.5502 (12), 10.6264 (17), 12.687 (2) |
α, β, γ (°) | 92.219 (2), 104.880 (2), 93.769 (2) |
V (Å3) | 980.0 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.25 × 0.19 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART 1000 diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.767, 0.840 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5085, 3389, 2663 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.133, 1.05 |
No. of reflections | 3389 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.97, −0.64 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O32i | 0.85 | 2.21 | 2.798 (5) | 126 |
O1—H1B···O32ii | 0.85 | 1.97 | 2.764 (5) | 156 |
O1W—H1WA···O34 | 0.85 | 1.93 | 2.707 (8) | 151 |
O1W—H1WB···O35iii | 0.85 | 2.45 | 3.097 (8) | 133 |
O2W—H2WA···O32ii | 0.85 | 2.23 | 3.024 (8) | 156 |
O2W—H2WB···O1Wiv | 0.88 | 1.87 | 2.741 (10) | 171 |
N12—H12A···O34iii | 0.77 | 2.03 | 2.773 (5) | 163 |
N22—H22A···O31ii | 0.75 | 2.20 | 2.904 (5) | 155 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The project was supported by the Foundation of Shanghai University, China.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Haanstra, W. G., Van der Donk, W. A. J. W., Driessen, W. L., Reedijk, J., Wood, J. S. & Drew, M. G. B. (1990). J. Chem. Soc. Dalton Trans. pp. 3123–3128. CSD CrossRef Web of Science Google Scholar
Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, Z.-Y., Xu, D.-J., Luo, Y., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, m307–m309. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Complexes with pyrazole-based ligands are a frequent subject of chemical investigations giving an opportunity for a better understanding the relationship between the structure and the activity of the active site of metalloproteins (Haanstra et al. 1990). Nowadays, attention is paid to the design of various pyrazole ligands with special structural properties to fulfill the specific stereochemical requirements of a particular metal-binding site (Mukherjee, 2000). In our systematic studies on transition metal complexes with the pyrazole derivatives, the title compound was prepared and its X-ray structure is presented here
The molecular structure of the title compound is shown in Fig. 1. The complex has a distorted octahedral coordination geometry formed by two 3,5-dimethyl-1H-pyrazole ligands, an oxydiacetate (ODA) dianion and a coordinated water molecule.
Monodentate ligand 3,5-dimethyl-1-H-pyrazole coordinated to the Cu(II) atom by N atoms of pyrazole rings with the 2.015 (4) Å and 1.996 (4) Å of Cu—N bound distance. The adjacent molecules are linked together via O—H···O and N—H···O hydrogen bonding (Table 1) occours between carboxy groups of oxydiacetate dianion and uncoordinated N atom of 3,5-dimethyl-1-H-pyrazole and coordinated water to form the supra-molecular structure as shown in Fig. 2 and Table 1.
The tridentate ODA chelates to Cu(II) atom in a facial configuration, similar to that found in an ODA complex of Cu(II) (Wu et al., 2003). Two carboxyl groups of ODA monodentately coordinate to the Cu(II) atom with the 2.020 (3) Å and 1.959 (3) Å of Cu—O31 and Cu—O33 respectively. Uncoordinated carboxyl oxygen atoms O32 and O34 are hydrogen bonded to the hydrogen atoms of coordinated water of the neighboring complex molecule, as shown in Fig. 2 and Table 1. The uncoordinated carboxyl oxygen atom O32 is hydrogen bonded to the hydrogen atoms of lattice watter molecule and coordinated water of the neighboring complex molecule respectively.