metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­­(3,5-di­methyl-1H-pyrazole-κN2)(oxydi­acetato-κ3O,O′,O′′)copper(II) dihydrate

aDepartment of Chemistry, Shanghai University, People's Republic of China
*Correspondence e-mail: r5744011@yahoo.com.cn

(Received 16 April 2011; accepted 21 April 2011; online 7 May 2011)

In the title compound, [Cu(C4H4O5)(C5H8N2)2(H2O)]·2H2O, the CuII cation assumes a distorted octa­hedral coordination geometry formed by two 3,5-dimethyl-1H-pyrazole ligands, one oxydiacetate (ODA) dianion and one coordinated water mol­ecule. The tridentate ODA ligand chelates to the Cu cation in a facial configuration with a longer Cu—O bond [2.597 (3) Å], and both chelating rings display envelope conformations. In the mol­ecule, the two pyrazole rings are twisted with respect to each other at a dihedral angle of 57.5 (3)°. Extensive inter­molecular O—H⋯O and N—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For background to pyrazole compounds, see: Haanstra et al. (1990[Haanstra, W. G., Van der Donk, W. A. J. W., Driessen, W. L., Reedijk, J., Wood, J. S. & Drew, M. G. B. (1990). J. Chem. Soc. Dalton Trans. pp. 3123-3128.]); Mukherjee (2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]). For the structure of a related ODA complex, see: Wu et al. (2003[Wu, Z.-Y., Xu, D.-J., Luo, Y., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, m307-m309.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H4O5)(C5H8N2)2(H2O)]·2H2O

  • Mr = 441.93

  • Triclinic, [P \overline 1]

  • a = 7.5502 (12) Å

  • b = 10.6264 (17) Å

  • c = 12.687 (2) Å

  • α = 92.219 (2)°

  • β = 104.880 (2)°

  • γ = 93.769 (2)°

  • V = 980.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 295 K

  • 0.25 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.767, Tmax = 0.840

  • 5085 measured reflections

  • 3389 independent reflections

  • 2663 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.133

  • S = 1.05

  • 3389 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O32i 0.85 2.21 2.798 (5) 126
O1—H1B⋯O32ii 0.85 1.97 2.764 (5) 156
O1W—H1WA⋯O34 0.85 1.93 2.707 (8) 151
O1W—H1WB⋯O35iii 0.85 2.45 3.097 (8) 133
O2W—H2WA⋯O32ii 0.85 2.23 3.024 (8) 156
O2W—H2WB⋯O1Wiv 0.88 1.87 2.741 (10) 171
N12—H12A⋯O34iii 0.77 2.03 2.773 (5) 163
N22—H22A⋯O31ii 0.75 2.20 2.904 (5) 155
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Complexes with pyrazole-based ligands are a frequent subject of chemical investigations giving an opportunity for a better understanding the relationship between the structure and the activity of the active site of metalloproteins (Haanstra et al. 1990). Nowadays, attention is paid to the design of various pyrazole ligands with special structural properties to fulfill the specific stereochemical requirements of a particular metal-binding site (Mukherjee, 2000). In our systematic studies on transition metal complexes with the pyrazole derivatives, the title compound was prepared and its X-ray structure is presented here

The molecular structure of the title compound is shown in Fig. 1. The complex has a distorted octahedral coordination geometry formed by two 3,5-dimethyl-1H-pyrazole ligands, an oxydiacetate (ODA) dianion and a coordinated water molecule.

Monodentate ligand 3,5-dimethyl-1-H-pyrazole coordinated to the Cu(II) atom by N atoms of pyrazole rings with the 2.015 (4) Å and 1.996 (4) Å of Cu—N bound distance. The adjacent molecules are linked together via O—H···O and N—H···O hydrogen bonding (Table 1) occours between carboxy groups of oxydiacetate dianion and uncoordinated N atom of 3,5-dimethyl-1-H-pyrazole and coordinated water to form the supra-molecular structure as shown in Fig. 2 and Table 1.

The tridentate ODA chelates to Cu(II) atom in a facial configuration, similar to that found in an ODA complex of Cu(II) (Wu et al., 2003). Two carboxyl groups of ODA monodentately coordinate to the Cu(II) atom with the 2.020 (3) Å and 1.959 (3) Å of Cu—O31 and Cu—O33 respectively. Uncoordinated carboxyl oxygen atoms O32 and O34 are hydrogen bonded to the hydrogen atoms of coordinated water of the neighboring complex molecule, as shown in Fig. 2 and Table 1. The uncoordinated carboxyl oxygen atom O32 is hydrogen bonded to the hydrogen atoms of lattice watter molecule and coordinated water of the neighboring complex molecule respectively.

Related literature top

For background to pyrazole compounds, see: Haanstra et al. (1990); Mukherjee (2000). For the structure of a related ODA complex, see: Wu et al. (2003).

Experimental top

An ethanol-water solution (1:1, 20 ml) containing 3,5-dimethyl-pyrazole-1-carboxamide (0.07 g, 0.5 mmol) and CuCl2.2H2O (0.85g, 0.5 mmol) was mixed with an aqueous solution (10 ml) of oxydiacetic acid (0.07g, 0.5 mmol) and NaOH (0.04g, 1 mmol). The mixture was refluxed for 6 h. After cooling to room temperature the solution was filtered. Blue single crystals of (I) were obtained from the filtrate after 30 d.

Refinement top

Pyrazole H atoms and water H atoms were located in a difference Fourier map and included in the structure factor calculations with fixed positional parameters, and Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). H atoms on carbon atoms and on oxygen (coordinated and lattice water) were placed in calculated positions, with C—H distances = 0.93 Å (aromatic, pyrazole ring), 0.97 Å (methylene group), 0.96 Å (methyl group), with O—H distances = 0.85 Å, and were included in the final cycles of refinement in riding mode with Uiso(H) = 1.2Ueq(C(aromatic and methylene)) and Uiso(H) = 1.5Ueq(C(methyl) and O(water)) respectively.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids, dashed lines showing hydrogen bonding [symmetry code: (i) -x, 1-y, 1-z, (ii) 1+x, y, z].
[Figure 2] Fig. 2. A molecular packing diagram, dashed lines showing the hydrogen bonding between Cu(II) complex molecules.
Aquabis(3,5-dimethyl-1H-pyrazole-κN2)(oxydiacetato- κ3O,O',O'')copper(II) dihydrate top
Crystal data top
[Cu(C4H4O5)(C5H8N2)2(H2O)]·2H2OZ = 2
Mr = 441.93F(000) = 462
Triclinic, P1Dx = 1.498 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5502 (12) ÅCell parameters from 2650 reflections
b = 10.6264 (17) Åθ = 2.0–25.0°
c = 12.687 (2) ŵ = 1.16 mm1
α = 92.219 (2)°T = 295 K
β = 104.880 (2)°Prism, blue
γ = 93.769 (2)°0.25 × 0.19 × 0.15 mm
V = 980.0 (3) Å3
Data collection top
Bruker SMART 1000
diffractometer
3389 independent reflections
Radiation source: fine-focus sealed tube2663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.767, Tmax = 0.840k = 1012
5085 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0597P)2 + 1.5674P]
where P = (Fo2 + 2Fc2)/3
3389 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Cu(C4H4O5)(C5H8N2)2(H2O)]·2H2Oγ = 93.769 (2)°
Mr = 441.93V = 980.0 (3) Å3
Triclinic, P1Z = 2
a = 7.5502 (12) ÅMo Kα radiation
b = 10.6264 (17) ŵ = 1.16 mm1
c = 12.687 (2) ÅT = 295 K
α = 92.219 (2)°0.25 × 0.19 × 0.15 mm
β = 104.880 (2)°
Data collection top
Bruker SMART 1000
diffractometer
3389 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2663 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.840Rint = 0.023
5085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.05Δρmax = 0.97 e Å3
3389 reflectionsΔρmin = 0.64 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.03356 (7)0.40147 (5)0.29056 (4)0.02518 (19)
O10.2664 (4)0.5043 (3)0.4150 (2)0.0366 (8)
H1A0.33780.56750.40960.055*
H1B0.27730.49520.48260.055*
O310.1202 (4)0.5234 (3)0.3466 (2)0.0273 (7)
O320.3929 (4)0.5595 (3)0.3709 (2)0.0426 (9)
O330.0910 (4)0.5157 (3)0.1841 (2)0.0346 (7)
O340.0182 (5)0.6530 (3)0.0567 (3)0.0453 (9)
O350.2706 (4)0.4198 (3)0.1414 (2)0.0373 (8)
N110.1915 (5)0.2768 (3)0.2429 (3)0.0283 (8)
N120.1713 (5)0.2466 (4)0.1347 (3)0.0334 (9)
H12A0.10380.27810.08880.040*
N210.0679 (5)0.2709 (3)0.3726 (3)0.0291 (8)
N220.0561 (5)0.2859 (3)0.4817 (3)0.0305 (9)
H22A0.01390.34840.51050.037*
C110.2563 (7)0.1441 (4)0.1202 (4)0.0381 (12)
C120.3380 (7)0.1053 (5)0.2215 (4)0.0395 (12)
H120.40790.03620.23750.047*
C130.2950 (6)0.1905 (4)0.2959 (4)0.0324 (10)
C140.2536 (9)0.0916 (6)0.0080 (4)0.0608 (17)
H14A0.18220.14200.04590.091*
H14B0.19980.00620.00220.091*
H14C0.37700.09320.00050.091*
C150.3537 (8)0.1923 (5)0.4175 (4)0.0482 (14)
H15A0.30350.26160.44760.072*
H15B0.48540.20200.44170.072*
H15C0.30990.11440.44140.072*
C210.1237 (7)0.1816 (4)0.5189 (4)0.0326 (10)
C220.1789 (7)0.0966 (4)0.4317 (4)0.0379 (12)
H220.23070.01480.43210.046*
C230.1438 (6)0.1538 (4)0.3425 (4)0.0299 (10)
C240.1240 (9)0.1774 (6)0.6367 (4)0.0567 (16)
H24A0.07280.25690.67430.085*
H24B0.05140.11120.66920.085*
H24C0.24780.16140.64220.085*
C250.1799 (7)0.1017 (5)0.2272 (4)0.0418 (12)
H25A0.14020.16430.18380.063*
H25B0.30910.07940.19840.063*
H25C0.11350.02800.22530.063*
C310.2937 (6)0.5131 (4)0.3171 (3)0.0293 (10)
C320.3894 (6)0.4403 (5)0.2100 (4)0.0374 (11)
H32A0.44060.35920.22570.045*
H32B0.49040.48650.17120.045*
C330.2287 (7)0.5301 (5)0.0895 (4)0.0425 (13)
H33A0.28900.59960.11340.051*
H33B0.27890.51560.01120.051*
C340.0253 (7)0.5683 (4)0.1126 (3)0.0328 (11)
O1W0.3682 (9)0.7458 (7)0.0748 (6)0.147 (3)
H1WA0.27880.69400.07710.221*
H1WB0.38370.73890.01090.221*
O2W0.4093 (11)0.1824 (6)0.7222 (6)0.155 (3)
H2WA0.39740.24100.67780.232*
H2WB0.48680.21110.78360.232*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0271 (3)0.0284 (3)0.0217 (3)0.0038 (2)0.0086 (2)0.0027 (2)
O10.0293 (18)0.049 (2)0.0288 (16)0.0038 (15)0.0052 (14)0.0014 (15)
O310.0236 (17)0.0296 (16)0.0273 (15)0.0019 (13)0.0050 (13)0.0020 (13)
O320.0310 (19)0.067 (2)0.0319 (17)0.0094 (17)0.0119 (15)0.0013 (16)
O330.0377 (19)0.0389 (19)0.0288 (16)0.0048 (15)0.0104 (14)0.0091 (14)
O340.058 (2)0.045 (2)0.0338 (18)0.0047 (18)0.0123 (17)0.0152 (16)
O350.039 (2)0.044 (2)0.0291 (16)0.0013 (16)0.0119 (14)0.0023 (14)
N110.031 (2)0.033 (2)0.0234 (18)0.0047 (17)0.0108 (16)0.0030 (15)
N120.039 (2)0.038 (2)0.0264 (19)0.0089 (18)0.0127 (17)0.0060 (17)
N210.033 (2)0.034 (2)0.0227 (18)0.0052 (17)0.0113 (16)0.0016 (16)
N220.038 (2)0.028 (2)0.0274 (19)0.0005 (17)0.0130 (17)0.0018 (15)
C110.043 (3)0.034 (3)0.041 (3)0.008 (2)0.019 (2)0.002 (2)
C120.039 (3)0.037 (3)0.049 (3)0.012 (2)0.019 (2)0.006 (2)
C130.030 (3)0.036 (3)0.035 (2)0.007 (2)0.013 (2)0.007 (2)
C140.083 (5)0.059 (4)0.047 (3)0.018 (3)0.026 (3)0.009 (3)
C150.051 (3)0.057 (3)0.038 (3)0.023 (3)0.008 (2)0.012 (2)
C210.037 (3)0.033 (3)0.033 (2)0.006 (2)0.015 (2)0.009 (2)
C220.048 (3)0.028 (3)0.040 (3)0.004 (2)0.018 (2)0.003 (2)
C230.027 (2)0.029 (2)0.035 (2)0.0009 (19)0.0103 (19)0.0027 (19)
C240.081 (5)0.057 (4)0.038 (3)0.002 (3)0.026 (3)0.011 (3)
C250.043 (3)0.042 (3)0.038 (3)0.005 (2)0.012 (2)0.009 (2)
C310.028 (3)0.037 (3)0.023 (2)0.005 (2)0.0072 (19)0.0093 (19)
C320.028 (3)0.055 (3)0.029 (2)0.003 (2)0.009 (2)0.003 (2)
C330.041 (3)0.058 (3)0.031 (2)0.014 (3)0.009 (2)0.012 (2)
C340.044 (3)0.036 (3)0.020 (2)0.006 (2)0.011 (2)0.002 (2)
O1W0.111 (5)0.152 (6)0.182 (7)0.049 (5)0.062 (5)0.026 (5)
O2W0.176 (8)0.094 (5)0.180 (7)0.003 (5)0.022 (6)0.031 (5)
Geometric parameters (Å, º) top
Cu—O331.960 (3)C14—H14B0.9600
Cu—N211.995 (4)C14—H14C0.9600
Cu—N112.015 (3)C15—H15A0.9600
Cu—O312.020 (3)C15—H15B0.9600
Cu—O12.228 (3)C15—H15C0.9600
O1—H1A0.8500C21—C221.360 (6)
O1—H1B0.8500C21—C241.498 (6)
O31—C311.263 (5)C22—C231.381 (6)
O32—C311.246 (5)C22—H220.9300
O33—C341.266 (5)C23—C251.495 (6)
O34—C341.245 (5)C24—H24A0.9600
O35—C321.421 (5)C24—H24B0.9600
O35—C331.424 (6)C24—H24C0.9600
N11—C131.332 (5)C25—H25A0.9600
N11—N121.364 (5)C25—H25B0.9600
N12—C111.329 (6)C25—H25C0.9600
N12—H12A0.7732C31—C321.519 (6)
N21—C231.334 (6)C32—H32A0.9700
N21—N221.366 (5)C32—H32B0.9700
N22—C211.342 (6)C33—C341.512 (7)
N22—H22A0.7550C33—H33A0.9700
C11—C121.367 (7)C33—H33B0.9700
C11—C141.503 (6)O1W—H1WA0.8499
C12—C131.395 (6)O1W—H1WB0.8500
C12—H120.9300O2W—H2WA0.8499
C13—C151.491 (6)O2W—H2WB0.8748
C14—H14A0.9600
O33—Cu—N21168.02 (14)H15A—C15—H15B109.5
O33—Cu—N1188.43 (13)C13—C15—H15C109.5
N21—Cu—N1191.13 (14)H15A—C15—H15C109.5
O33—Cu—O3194.10 (12)H15B—C15—H15C109.5
N21—Cu—O3186.76 (13)N22—C21—C22106.1 (4)
N11—Cu—O31176.92 (12)N22—C21—C24120.3 (4)
O33—Cu—O187.35 (12)C22—C21—C24133.6 (5)
N21—Cu—O1104.62 (13)C21—C22—C23107.5 (4)
N11—Cu—O194.36 (13)C21—C22—H22126.2
O31—Cu—O184.00 (12)C23—C22—H22126.2
Cu—O1—H1A130.6N21—C23—C22109.6 (4)
Cu—O1—H1B120.0N21—C23—C25121.4 (4)
H1A—O1—H1B107.7C22—C23—C25129.0 (4)
C31—O31—Cu122.4 (3)C21—C24—H24A109.5
C34—O33—Cu125.6 (3)C21—C24—H24B109.5
C32—O35—C33113.1 (4)H24A—C24—H24B109.5
C13—N11—N12105.3 (3)C21—C24—H24C109.5
C13—N11—Cu132.4 (3)H24A—C24—H24C109.5
N12—N11—Cu120.7 (3)H24B—C24—H24C109.5
C11—N12—N11111.5 (4)C23—C25—H25A109.5
C11—N12—H12A124.7C23—C25—H25B109.5
N11—N12—H12A122.8H25A—C25—H25B109.5
C23—N21—N22105.4 (3)C23—C25—H25C109.5
C23—N21—Cu131.4 (3)H25A—C25—H25C109.5
N22—N21—Cu123.0 (3)H25B—C25—H25C109.5
C21—N22—N21111.4 (4)O32—C31—O31123.9 (4)
C21—N22—H22A131.2O32—C31—C32117.4 (4)
N21—N22—H22A117.3O31—C31—C32118.8 (4)
N12—C11—C12107.3 (4)O35—C32—C31113.2 (4)
N12—C11—C14121.6 (4)O35—C32—H32A108.9
C12—C11—C14131.1 (5)C31—C32—H32A108.9
C11—C12—C13105.8 (4)O35—C32—H32B108.9
C11—C12—H12127.1C31—C32—H32B108.9
C13—C12—H12127.1H32A—C32—H32B107.7
N11—C13—C12110.1 (4)O35—C33—C34114.0 (4)
N11—C13—C15122.3 (4)O35—C33—H33A108.8
C12—C13—C15127.6 (4)C34—C33—H33A108.8
C11—C14—H14A109.5O35—C33—H33B108.8
C11—C14—H14B109.5C34—C33—H33B108.8
H14A—C14—H14B109.5H33A—C33—H33B107.7
C11—C14—H14C109.5O34—C34—O33123.1 (5)
H14A—C14—H14C109.5O34—C34—C33115.8 (4)
H14B—C14—H14C109.5O33—C34—C33121.1 (4)
C13—C15—H15A109.5H1WA—O1W—H1WB107.7
C13—C15—H15B109.5H2WA—O2W—H2WB108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O32i0.852.212.798 (5)126
O1—H1B···O32ii0.851.972.764 (5)156
O1W—H1WA···O340.851.932.707 (8)151
O1W—H1WB···O35iii0.852.453.097 (8)133
O2W—H2WA···O32ii0.852.233.024 (8)156
O2W—H2WB···O1Wiv0.881.872.741 (10)171
N12—H12A···O34iii0.772.032.773 (5)163
N22—H22A···O31ii0.752.202.904 (5)155
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C4H4O5)(C5H8N2)2(H2O)]·2H2O
Mr441.93
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.5502 (12), 10.6264 (17), 12.687 (2)
α, β, γ (°)92.219 (2), 104.880 (2), 93.769 (2)
V3)980.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.25 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.767, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
5085, 3389, 2663
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.133, 1.05
No. of reflections3389
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.64

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O32i0.852.212.798 (5)126
O1—H1B···O32ii0.851.972.764 (5)156
O1W—H1WA···O340.851.932.707 (8)151
O1W—H1WB···O35iii0.852.453.097 (8)133
O2W—H2WA···O32ii0.852.233.024 (8)156
O2W—H2WB···O1Wiv0.881.872.741 (10)171
N12—H12A···O34iii0.772.032.773 (5)163
N22—H22A···O31ii0.752.202.904 (5)155
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The project was supported by the Foundation of Shanghai University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaanstra, W. G., Van der Donk, W. A. J. W., Driessen, W. L., Reedijk, J., Wood, J. S. & Drew, M. G. B. (1990). J. Chem. Soc. Dalton Trans. pp. 3123–3128.  CSD CrossRef Web of Science Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Z.-Y., Xu, D.-J., Luo, Y., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, m307–m309.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds