organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1321-o1322

2-(Naphthalen-1-yl)-4-(thio­phen-2-yl­methyl­­idene)-1,3-oxazol-5(4H)-one

aDepartment of Chemistry, Faculty of Arts and Sciences, Dokuz Eylül University, Tınaztepe, 35160 Buca, Izmir, Turkey, bDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 27 April 2011; accepted 28 April 2011; online 7 May 2011)

The asymmetric unit of the title compound, C18H11NO2S, contains two crystallographically independent mol­ecules. In one mol­ecule, the oxazole and thio­phene rings are oriented at dihedral angles of 17.40 (9) and 18.18 (7)° with respect to the naphthalene ring system, while the oxazole and thio­phene rings are oriented to each other at a dihedral angle of 0.86 (9)°. In the other mol­ecule, the corresponding angles are 3.05 (8), 9.62 (6) and 7.02 (8)°, respectively. In each mol­ecule, a weak intra­molecular C—H⋯N hydrogen bond links the oxazole N atom to the naphthalene group. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure. ππ stacking between the oxazole and thio­phene rings, between the thio­phene and naphthalene rings, and between the oxaozole and naphthalene rings, [centroid–centroid distances = 3.811 (2), 3.889 (2), 3.697 (2) and 3.525 (2) Å] may further stabilize the crystal structure.

Related literature

For potential applications of the title compound, such as organic light-emitting diodes (OLEDs), organic thin-film transistors (OTFTs), and organic photovoltaics (OPVs) of various aromatic ring-based conjugated polymers, see: Liu et al. (2007[Liu, J., Guo, X., Bu, L., Xie, Z., Cheng, Y., Geng, Y., Wang, L., Jing, X. & Wang, F. (2007). Adv. Funct. Mater. 17, 1917-1925.]); Allard et al. (2008[Allard, S., Forster, M., Souharce, B., Thiem, H. & Scherf, U. (2008). Angew. Chem. Int. Ed. 47, 4070-4098.]); Woudenbergh et al. (2004[Woudenbergh, T. V., Wildeman, J., Blom, P. M., Bastiaansen, J. A. M. & Langeveld-Voss, B. W. (2004). Adv. Funct. Mater. 14, 677-683.]); Zhang et al. (2007[Zhang, M., Tsao, H. N., Pisula, W., Yang, C., Mishra, A. K. & Müllen, K. (2007). J. Am. Chem. Soc. 129, 3472-3473.]); Güneş et al. (2007[Güneş, S., Neugebauer, H. & Sarıçiftçi, N. S. (2007). Chem. Rev. 107, 1324-1338.]); Soci et al. (2007[Soci, C., Hwang, I. W., Moses, D., Zhu, Z., Waller, D., Gaudiana, R., Brabec, C. J. & Heeger, A. J. (2007). Adv. Funct. Mater. 17, 632-636.]). For the roles of thio­phene-based mol­ecules widely used in the syntheses of the charge-transporting mol­ecules used in organic field effect transistors, organic solar cells and organic light emitting diodes, see: Mas-Torrent & Rovira (2008[Mas-Torrent, M. & Rovira, C. (2008). Chem. Soc. Rev. 37, 827-838.]); Shirota & Kageyama (2007[Shirota, Y. & Kageyama, H. (2007). Chem. Rev. 107, 953-1010.]); Varis et al. (2006[Varis, S., Ak, M., Tanyeli, C., Akhmedov, I. M. & Toppare, L. (2006). Solid State Sci. 8, 1477-1483.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H11NO2S

  • Mr = 305.35

  • Monoclinic, P 21 /c

  • a = 11.1509 (3) Å

  • b = 7.0871 (2) Å

  • c = 35.2592 (5) Å

  • β = 97.914 (4)°

  • V = 2759.91 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 294 K

  • 0.35 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.921, Tmax = 0.953

  • 25128 measured reflections

  • 6899 independent reflections

  • 3925 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.133

  • S = 1.01

  • 6899 reflections

  • 405 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1 0.93 2.27 2.924 (3) 127
C3′—H3′⋯N1′ 0.93 2.29 2.946 (3) 127
C6—H6⋯O2i 0.93 2.59 3.483 (3) 160
C9′—H9′⋯O2ii 0.93 2.46 3.310 (3) 152
C16′—H16′⋯O2′iii 0.93 2.50 3.329 (3) 149
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and syntheses of new conjugated polymers are a significant part of the conducting polymers research and have attracted great attention. Various aromatic ring-based conjugated polymers have been developed for use in potential applications, such as organic light-emitting diodes (OLEDs) (Liu et al., 2007; Allard et al., 2008), organic thin-film transistors (OTFTs) (Woudenbergh et al., 2004; Zhang et al., 2007), and organic photovoltaics (OPVs) (Güneş et al., 2007; Soci et al., 2007). Among conducting polymers, polythiophene and its derivatives have become a subject of considerable interest as electrochromic materials, due to their chemical stabilities. Thiophene based molecules are widely used in the sytheses of the charge transporting molecules used in organic field effect transistors, organic solar cells and organic light emitting diodes (Mas-Torrent & Rovira, 2008; Shirota & Kageyama, 2007; Varis et al., 2006). The present study was undertaken to ascertain the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules. Each molecule consists of an oxazol ring, a thiophene ring and a naphthalene group (Fig. 1), where the bond lengths are close to standard values (Allen et al., 1987). In each molecule, the intramolecular C-H···N hydrogen bonds link the oxazol nitrogen atoms to the naphthalene groups (Table 1 and Fig. 1).

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C2—C7), B (C1/C2/C7—C10), C (O1/N1/C11—C13), D (S1/C15—C18) and A' (C2'—C7'), B' (C1'/C2'/C7'—C10'), C' (O1'/N1'/C11'—C13'), D' (S1'/C15'—C18') are planar. The naphthalene groups, containing the rings A, B and A', B' are also nearly planar [with maximum deviations of -0.032 (3) Å for atom C3 and 0.028 (3) Å for atom C4'] with dihedral angles of A/B = 2.28 (8) and A'/B' = 1.65 (8) °. In each molecule, rings C, D and C', D' are oriented with respect to the planar naphthalene groups at dihedral angles of 17.40 (9), 18.18 (7) ° and 3.05 (8), 9.62 (6) °, while the oxazole and thiophene rings are oriented at dihedral angles of 0.86 (9) and 7.02 (8) °,respectively.

In the crystal, intermolecular C'—H'···O' hydrogen bonds link the molecules into centrosymmetric dimers, in which they are also linked through C'-H'···O and C-H···O hydrogen bonds to form a three dimensional network (Table 1 and Fig. 2). The ππ contacts between the oxazol and thiophene rings, between the thiophene and naphthalene rings and between the oxaozole and naphthalene rings Cg3—Cg4i, Cg6—Cg8ii, Cg6—Cg7iii and Cg5—Cg7iii [symmetry codes: (i) -x, 1/2 + y, 1/2 - z, (ii) -x, 2 - y, -z, (iii) -x, 1 - y, -z, where Cg3, Cg4, Cg5, Cg6, Cg7 and Cg8 are centroids of the rings C (O1/N1/C11—C13), D (S1/C15—C18), A' (C2'—C7'), B' (C1'/C2'/C7'—C10'), C' (O1'/N1'/C11'—C13') and D' (S1'/C15'—C18'), respectively] may further stabilize the structure, with centroid-centroid distances of 3.811 (2), 3.889 (2), 3.697 (2) and 3.525 (2) Å, respectively.

Related literature top

For potential applications of the title compound, such as organic light-emitting diodes (OLEDs), organic thin-film transistors (OTFTs), and organic photovoltaics (OPVs) of various aromatic ring-based conjugated polymers, see: Liu et al. (2007); Allard et al. (2008); Woudenbergh et al. (2004); Zhang et al. (2007); Güneş et al. (2007); Soci et al. (2007). For the roles of thiophene-based molecules widely used in the syntheses of the charge-transporting molecules used in organic field effect transistors, organic solar cells and organic light emitting diodes, see: Mas-Torrent & Rovira (2008); Shirota & Kageyama (2007); Varis et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, (I), thiophene-2-carbaldehyde (0.46 g, 5 mmol), naphthalen-1-yl glycine (1.14 g, 5 mmol), acetic anhydride (2.49 ml, 12 mmol) and sodium acetate (0.41 g, 5 mmol) were heated until the mixture just liquefied, and then heating was continued for a further 2 h at 353 K. After completion of the reaction, ethanol (25 ml) was added and the mixture was kept at room temperature for 18 h. The solid product obtained was purified by washing with cold ethanol, hot water and a small amount of hexane, respectively. It was crystallized from hot ethanol (yield; 0.23 g, 49%, m.p. 460 K).

Refinement top

H14 and H14' atoms are located in a difference Fourier synthesis and refined isotropically. The remaining C-bound H-atoms were positioned geometrically with C—H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular C-H···N and C'-H'···N' hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. The C-H···O, C'-H'···O and C'-H'···O' hydrogen bonds are shown as dashed lines.
2-(Naphthalen-1-yl)-4-(thiophen-2-ylmethylidene)-1,3-oxazol-5(4H)-one top
Crystal data top
C18H11NO2SF(000) = 1264
Mr = 305.35Dx = 1.470 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3188 reflections
a = 11.1509 (3) Åθ = 2.3–22.5°
b = 7.0871 (2) ŵ = 0.24 mm1
c = 35.2592 (5) ÅT = 294 K
β = 97.914 (4)°Block, orange
V = 2759.91 (12) Å30.35 × 0.22 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6899 independent reflections
Radiation source: fine-focus sealed tube3925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 28.4°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1412
Tmin = 0.921, Tmax = 0.953k = 99
25128 measured reflectionsl = 4646
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.9624P]
where P = (Fo2 + 2Fc2)/3
6899 reflections(Δ/σ)max = 0.001
405 parametersΔρmax = 0.44 e Å3
2 restraintsΔρmin = 0.44 e Å3
Crystal data top
C18H11NO2SV = 2759.91 (12) Å3
Mr = 305.35Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.1509 (3) ŵ = 0.24 mm1
b = 7.0871 (2) ÅT = 294 K
c = 35.2592 (5) Å0.35 × 0.22 × 0.20 mm
β = 97.914 (4)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6899 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3925 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.953Rint = 0.061
25128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.44 e Å3
6899 reflectionsΔρmin = 0.44 e Å3
405 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.99971 (6)0.92533 (10)0.81233 (2)0.02622 (19)
O10.95294 (14)0.9314 (3)0.66466 (5)0.0240 (4)
O21.15707 (16)0.9326 (3)0.66746 (5)0.0376 (5)
N10.93214 (17)0.9251 (3)0.72760 (6)0.0190 (5)
C10.7483 (2)0.9271 (3)0.67941 (7)0.0196 (6)
C20.6604 (2)0.8757 (3)0.70390 (7)0.0189 (6)
C30.6894 (2)0.8215 (3)0.74272 (7)0.0203 (6)
H30.76970.82410.75410.024*
C40.6018 (2)0.7657 (4)0.76358 (8)0.0238 (6)
H40.62320.73000.78900.029*
C50.4792 (2)0.7611 (4)0.74733 (8)0.0250 (6)
H50.42030.72090.76180.030*
C60.4478 (2)0.8160 (4)0.71037 (8)0.0252 (6)
H60.36660.81480.69980.030*
C70.5358 (2)0.8747 (4)0.68781 (8)0.0222 (6)
C80.5026 (2)0.9324 (4)0.64940 (8)0.0259 (6)
H80.42110.93410.63910.031*
C90.5870 (2)0.9852 (4)0.62716 (8)0.0260 (7)
H90.56321.02560.60220.031*
C100.7102 (2)0.9788 (4)0.64199 (8)0.0234 (6)
H100.76751.01020.62620.028*
C110.8774 (2)0.9272 (3)0.69294 (7)0.0200 (6)
C121.0706 (2)0.9308 (4)0.68424 (8)0.0255 (6)
C131.0557 (2)0.9265 (4)0.72456 (7)0.0205 (6)
C141.1464 (2)0.9264 (4)0.75406 (8)0.0217 (6)
H141.2267 (16)0.931 (4)0.7486 (7)0.031 (8)*
C151.1363 (2)0.9271 (4)0.79395 (7)0.0202 (6)
C161.2332 (2)0.9287 (4)0.82323 (7)0.0249 (6)
H161.31390.93080.81930.030*
C171.1949 (2)0.9268 (4)0.85972 (8)0.0285 (7)
H171.24780.92700.88250.034*
C181.0734 (2)0.9248 (4)0.85800 (8)0.0272 (7)
H181.03370.92330.87960.033*
S1'0.77988 (6)0.09732 (10)0.902561 (19)0.02376 (18)
O1'0.83801 (14)0.2656 (2)1.04723 (5)0.0204 (4)
O2'0.63925 (15)0.2045 (3)1.04855 (5)0.0264 (5)
N1'0.85670 (17)0.2013 (3)0.98541 (6)0.0169 (5)
C1'1.0382 (2)0.3041 (3)1.02992 (7)0.0175 (6)
C2'1.1273 (2)0.2914 (3)1.00435 (7)0.0155 (5)
C3'1.1032 (2)0.2400 (4)0.96522 (7)0.0195 (6)
H3'1.02460.20820.95470.023*
C4'1.1931 (2)0.2364 (4)0.94265 (8)0.0220 (6)
H4'1.17440.20480.91690.026*
C5'1.3133 (2)0.2796 (4)0.95750 (8)0.0224 (6)
H5'1.37390.27400.94190.027*
C6'1.3403 (2)0.3296 (4)0.99488 (8)0.0226 (6)
H6'1.42000.35751.00470.027*
C7'1.2499 (2)0.3402 (3)1.01921 (7)0.0175 (6)
C8'1.2781 (2)0.3959 (3)1.05784 (7)0.0216 (6)
H8'1.35800.42431.06750.026*
C9'1.1912 (2)0.4091 (3)1.08129 (7)0.0218 (6)
H9'1.21140.44851.10650.026*
C10'1.0716 (2)0.3634 (3)1.06731 (7)0.0208 (6)
H10'1.01280.37301.08350.025*
C11'0.9113 (2)0.2551 (3)1.01834 (7)0.0177 (6)
C12'0.7230 (2)0.2106 (3)1.03059 (7)0.0197 (6)
C13'0.7361 (2)0.1687 (3)0.99081 (7)0.0175 (6)
C14'0.6466 (2)0.1050 (3)0.96414 (8)0.0182 (6)
H14'0.5738 (16)0.084 (3)0.9725 (6)0.019 (7)*
C15'0.6534 (2)0.0608 (3)0.92518 (7)0.0181 (6)
C16'0.5598 (2)0.0199 (4)0.89970 (7)0.0200 (6)
H16'0.48400.04950.90620.024*
C17'0.5937 (2)0.0509 (4)0.86334 (8)0.0256 (6)
H17'0.54300.10500.84310.031*
C18'0.7089 (2)0.0068 (4)0.86086 (8)0.0256 (6)
H18'0.74480.00240.83860.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0254 (4)0.0327 (4)0.0211 (4)0.0023 (3)0.0051 (3)0.0003 (3)
O10.0216 (9)0.0343 (11)0.0166 (10)0.0025 (8)0.0043 (8)0.0011 (9)
O20.0263 (10)0.0643 (15)0.0240 (12)0.0058 (10)0.0098 (9)0.0037 (11)
N10.0182 (11)0.0220 (12)0.0169 (12)0.0003 (10)0.0023 (9)0.0003 (10)
C10.0244 (13)0.0154 (13)0.0189 (14)0.0006 (11)0.0026 (11)0.0023 (12)
C20.0212 (13)0.0147 (13)0.0200 (15)0.0007 (11)0.0003 (11)0.0037 (11)
C30.0203 (13)0.0204 (14)0.0201 (15)0.0013 (12)0.0020 (11)0.0012 (12)
C40.0264 (15)0.0210 (15)0.0239 (16)0.0002 (12)0.0028 (12)0.0013 (12)
C50.0236 (14)0.0215 (15)0.0312 (18)0.0002 (12)0.0083 (12)0.0008 (13)
C60.0188 (13)0.0233 (15)0.0329 (17)0.0008 (12)0.0013 (12)0.0044 (13)
C70.0253 (14)0.0173 (14)0.0228 (15)0.0019 (12)0.0018 (12)0.0036 (12)
C80.0221 (14)0.0262 (16)0.0270 (16)0.0045 (12)0.0050 (12)0.0037 (13)
C90.0318 (16)0.0273 (16)0.0166 (15)0.0045 (13)0.0046 (12)0.0015 (12)
C100.0273 (15)0.0232 (15)0.0198 (15)0.0016 (12)0.0034 (12)0.0027 (12)
C110.0232 (13)0.0160 (14)0.0214 (15)0.0019 (12)0.0056 (11)0.0013 (12)
C120.0232 (14)0.0280 (16)0.0251 (16)0.0020 (13)0.0026 (12)0.0011 (13)
C130.0199 (13)0.0211 (14)0.0213 (15)0.0011 (12)0.0053 (11)0.0016 (12)
C140.0203 (14)0.0205 (15)0.0249 (16)0.0007 (12)0.0051 (12)0.0010 (12)
C150.0200 (13)0.0196 (14)0.0215 (15)0.0013 (12)0.0044 (11)0.0009 (12)
C160.0332 (15)0.0194 (14)0.0216 (16)0.0021 (13)0.0019 (12)0.0039 (13)
C170.0339 (16)0.0276 (16)0.0214 (16)0.0029 (13)0.0055 (12)0.0013 (13)
C180.0335 (16)0.0315 (17)0.0169 (15)0.0015 (14)0.0044 (12)0.0012 (13)
S1'0.0223 (3)0.0278 (4)0.0218 (4)0.0035 (3)0.0053 (3)0.0007 (3)
O1'0.0207 (9)0.0254 (10)0.0156 (10)0.0007 (8)0.0042 (7)0.0004 (8)
O2'0.0241 (10)0.0336 (12)0.0228 (11)0.0001 (9)0.0085 (8)0.0013 (9)
N1'0.0168 (10)0.0155 (11)0.0184 (12)0.0010 (9)0.0028 (9)0.0007 (9)
C1'0.0202 (13)0.0121 (13)0.0204 (14)0.0011 (11)0.0035 (11)0.0004 (11)
C2'0.0180 (12)0.0099 (12)0.0185 (14)0.0037 (10)0.0022 (10)0.0016 (11)
C3'0.0206 (13)0.0193 (14)0.0184 (15)0.0004 (11)0.0018 (11)0.0013 (11)
C4'0.0275 (15)0.0215 (15)0.0173 (14)0.0012 (12)0.0039 (11)0.0008 (12)
C5'0.0213 (14)0.0225 (15)0.0254 (16)0.0013 (12)0.0101 (12)0.0023 (12)
C6'0.0193 (13)0.0189 (14)0.0300 (17)0.0012 (12)0.0052 (12)0.0029 (13)
C7'0.0189 (13)0.0108 (13)0.0221 (15)0.0009 (11)0.0005 (11)0.0037 (11)
C8'0.0220 (13)0.0180 (14)0.0231 (15)0.0022 (11)0.0031 (11)0.0021 (12)
C9'0.0288 (14)0.0189 (14)0.0162 (14)0.0007 (12)0.0018 (11)0.0020 (12)
C10'0.0255 (14)0.0177 (14)0.0201 (15)0.0011 (12)0.0066 (11)0.0010 (12)
C11'0.0249 (14)0.0144 (13)0.0149 (14)0.0036 (11)0.0069 (11)0.0017 (11)
C12'0.0186 (13)0.0172 (14)0.0232 (15)0.0024 (12)0.0030 (11)0.0037 (12)
C13'0.0183 (13)0.0166 (13)0.0181 (14)0.0048 (11)0.0040 (10)0.0023 (11)
C14'0.0133 (12)0.0191 (14)0.0231 (15)0.0015 (11)0.0054 (11)0.0034 (12)
C15'0.0174 (12)0.0173 (13)0.0200 (15)0.0018 (11)0.0036 (11)0.0053 (12)
C16'0.0192 (13)0.0203 (14)0.0207 (15)0.0021 (11)0.0040 (11)0.0021 (12)
C17'0.0204 (14)0.0294 (16)0.0251 (16)0.0003 (12)0.0038 (11)0.0015 (13)
C18'0.0292 (15)0.0331 (16)0.0149 (15)0.0064 (13)0.0048 (12)0.0021 (12)
Geometric parameters (Å, º) top
S1—C151.735 (3)S1'—C15'1.732 (2)
S1—C181.704 (3)S1'—C18'1.697 (3)
O1—C111.391 (3)O1'—C11'1.393 (3)
O1—C121.396 (3)O1'—C12'1.391 (3)
O2—C121.199 (3)O2'—C12'1.199 (3)
N1—C111.289 (3)N1'—C11'1.292 (3)
N1—C131.397 (3)N1'—C13'1.403 (3)
C1—C101.379 (3)C1'—C10'1.385 (3)
C1—C111.453 (3)C2'—C1'1.434 (3)
C2—C11.440 (3)C3'—C2'1.417 (3)
C2—C31.415 (3)C3'—C4'1.363 (3)
C2—C71.427 (3)C3'—H3'0.9300
C3—H30.9300C4'—H4'0.9300
C4—C31.361 (3)C5'—C4'1.404 (3)
C4—H40.9300C5'—C6'1.358 (3)
C5—C41.407 (3)C5'—H5'0.9300
C5—C61.359 (4)C6'—H6'0.9300
C5—H50.9300C7'—C2'1.437 (3)
C6—C71.408 (4)C7'—C6'1.412 (3)
C6—H60.9300C8'—C7'1.412 (3)
C8—C71.414 (4)C8'—C9'1.361 (3)
C8—C91.358 (4)C8'—H8'0.9300
C8—H80.9300C9'—C10'1.394 (3)
C9—C101.401 (3)C9'—H9'0.9300
C9—H90.9300C10'—H10'0.9300
C10—H100.9300C11'—C1'1.459 (3)
C13—C121.454 (4)C13'—C14'1.351 (3)
C14—C131.347 (3)C13'—C12'1.460 (3)
C14—H140.942 (16)C14'—H14'0.913 (16)
C15—C141.426 (4)C15'—C14'1.421 (3)
C15—C161.388 (3)C15'—C16'1.402 (3)
C16—H160.9300C16'—C17'1.403 (4)
C17—C161.410 (4)C16'—H16'0.9300
C17—H170.9300C17'—H17'0.9300
C18—C171.348 (3)C18'—C17'1.362 (3)
C18—H180.9300C18'—H18'0.9300
C18—S1—C1591.12 (13)C18'—S1'—C15'91.74 (13)
C11—O1—C12105.42 (19)C12'—O1'—C11'106.03 (19)
C11—N1—C13105.7 (2)C11'—N1'—C13'105.6 (2)
C2—C1—C11122.0 (2)C2'—C1'—C11'122.6 (2)
C10—C1—C2119.7 (2)C10'—C1'—C2'119.9 (2)
C10—C1—C11118.4 (2)C10'—C1'—C11'117.5 (2)
C3—C2—C1124.4 (2)C1'—C2'—C7'117.6 (2)
C3—C2—C7117.6 (2)C3'—C2'—C1'125.0 (2)
C7—C2—C1118.0 (2)C3'—C2'—C7'117.4 (2)
C2—C3—H3119.5C2'—C3'—H3'119.4
C4—C3—C2121.1 (2)C4'—C3'—C2'121.1 (2)
C4—C3—H3119.5C4'—C3'—H3'119.4
C3—C4—C5121.1 (3)C3'—C4'—C5'121.3 (2)
C3—C4—H4119.5C3'—C4'—H4'119.4
C5—C4—H4119.5C5'—C4'—H4'119.4
C4—C5—H5120.3C4'—C5'—H5'120.3
C6—C5—C4119.5 (3)C6'—C5'—C4'119.4 (2)
C6—C5—H5120.3C6'—C5'—H5'120.3
C5—C6—C7121.2 (2)C5'—C6'—C7'121.5 (2)
C5—C6—H6119.4C5'—C6'—H6'119.3
C7—C6—H6119.4C7'—C6'—H6'119.3
C6—C7—C2119.5 (2)C6'—C7'—C2'119.2 (2)
C6—C7—C8121.0 (2)C8'—C7'—C2'119.6 (2)
C8—C7—C2119.4 (2)C8'—C7'—C6'121.2 (2)
C7—C8—H8119.3C7'—C8'—H8'119.3
C9—C8—C7121.5 (2)C9'—C8'—C7'121.5 (2)
C9—C8—H8119.3C9'—C8'—H8'119.3
C8—C9—C10119.8 (3)C8'—C9'—C10'119.7 (2)
C8—C9—H9120.1C8'—C9'—H9'120.1
C10—C9—H9120.1C10'—C9'—H9'120.1
C1—C10—C9121.5 (3)C1'—C10'—C9'121.7 (2)
C1—C10—H10119.2C1'—C10'—H10'119.1
C9—C10—H10119.2C9'—C10'—H10'119.1
O1—C11—C1115.8 (2)O1'—C11'—C1'115.2 (2)
N1—C11—O1115.2 (2)N1'—C11'—O1'114.9 (2)
N1—C11—C1129.0 (2)N1'—C11'—C1'129.8 (2)
O1—C12—C13104.9 (2)O1'—C12'—C13'104.7 (2)
O2—C12—O1121.4 (2)O2'—C12'—O1'121.8 (2)
O2—C12—C13133.7 (2)O2'—C12'—C13'133.5 (2)
N1—C13—C12108.8 (2)N1'—C13'—C12'108.8 (2)
C14—C13—N1125.8 (2)C14'—C13'—N1'126.2 (2)
C14—C13—C12125.5 (2)C14'—C13'—C12'125.0 (2)
C13—C14—C15127.5 (2)C13'—C14'—C15'127.8 (2)
C13—C14—H14118.3 (16)C13'—C14'—H14'115.7 (15)
C15—C14—H14114.2 (16)C15'—C14'—H14'116.5 (15)
C14—C15—S1124.13 (19)C14'—C15'—S1'124.58 (19)
C16—C15—S1110.8 (2)C16'—C15'—S1'110.32 (19)
C16—C15—C14125.0 (2)C16'—C15'—C14'125.1 (2)
C15—C16—C17112.1 (2)C15'—C16'—C17'112.3 (2)
C15—C16—H16124.0C15'—C16'—H16'123.9
C17—C16—H16124.0C17'—C16'—H16'123.9
C16—C17—H17123.6C16'—C17'—H17'123.6
C18—C17—C16112.8 (2)C18'—C17'—C16'112.8 (2)
C18—C17—H17123.6C18'—C17'—H17'123.6
S1—C18—H18123.4S1'—C18'—H18'123.5
C17—C18—S1113.1 (2)C17'—C18'—S1'112.9 (2)
C17—C18—H18123.4C17'—C18'—H18'123.5
C15—S1—C18—C170.3 (2)C18'—S1'—C15'—C14'179.3 (2)
C18—S1—C15—C14179.3 (2)C18'—S1'—C15'—C16'0.2 (2)
C18—S1—C15—C160.5 (2)C15'—S1'—C18'—C17'0.3 (2)
C12—O1—C11—N10.3 (3)C12'—O1'—C11'—N1'0.4 (3)
C12—O1—C11—C1180.0 (2)C12'—O1'—C11'—C1'178.9 (2)
C11—O1—C12—O2179.5 (3)C11'—O1'—C12'—O2'179.7 (2)
C11—O1—C12—C130.1 (3)C11'—O1'—C12'—C13'0.0 (2)
C13—N1—C11—O10.4 (3)C13'—N1'—C11'—O1'0.6 (3)
C13—N1—C11—C1180.0 (2)C13'—N1'—C11'—C1'178.5 (2)
C11—N1—C13—C120.3 (3)C11'—N1'—C13'—C12'0.6 (3)
C11—N1—C13—C14179.5 (3)C11'—N1'—C13'—C14'178.0 (2)
C2—C1—C10—C90.8 (4)C2'—C1'—C10'—C9'1.0 (4)
C11—C1—C10—C9178.8 (2)C11'—C1'—C10'—C9'178.5 (2)
C2—C1—C11—O1164.0 (2)C3'—C2'—C1'—C10'177.3 (2)
C2—C1—C11—N116.4 (4)C3'—C2'—C1'—C11'3.2 (4)
C10—C1—C11—O116.3 (3)C7'—C2'—C1'—C10'0.6 (3)
C10—C1—C11—N1163.3 (3)C7'—C2'—C1'—C11'178.9 (2)
C3—C2—C1—C10179.6 (2)C4'—C3'—C2'—C1'178.2 (2)
C3—C2—C1—C110.1 (4)C4'—C3'—C2'—C7'0.2 (4)
C7—C2—C1—C102.0 (4)C2'—C3'—C4'—C5'1.4 (4)
C7—C2—C1—C11178.3 (2)C6'—C5'—C4'—C3'1.3 (4)
C1—C2—C3—C4176.7 (2)C4'—C5'—C6'—C7'0.3 (4)
C7—C2—C3—C41.7 (4)C6'—C7'—C2'—C1'179.9 (2)
C1—C2—C7—C6176.8 (2)C6'—C7'—C2'—C3'1.8 (3)
C1—C2—C7—C83.1 (4)C8'—C7'—C2'—C1'0.6 (3)
C3—C2—C7—C61.7 (4)C8'—C7'—C2'—C3'178.8 (2)
C3—C2—C7—C8178.4 (2)C2'—C7'—C6'—C5'1.9 (4)
C5—C4—C3—C20.4 (4)C8'—C7'—C6'—C5'178.7 (2)
C6—C5—C4—C31.0 (4)C9'—C8'—C7'—C2'1.6 (4)
C4—C5—C6—C71.0 (4)C9'—C8'—C7'—C6'179.0 (2)
C5—C6—C7—C20.3 (4)C7'—C8'—C9'—C10'1.2 (4)
C5—C6—C7—C8179.8 (3)C8'—C9'—C10'—C1'0.1 (4)
C9—C8—C7—C21.4 (4)O1'—C11'—C1'—C2'176.7 (2)
C9—C8—C7—C6178.5 (3)O1'—C11'—C1'—C10'2.8 (3)
C7—C8—C9—C101.5 (4)N1'—C11'—C1'—C2'2.4 (4)
C8—C9—C10—C12.7 (4)N1'—C11'—C1'—C10'178.0 (2)
N1—C13—C12—O10.1 (3)N1'—C13'—C12'—O1'0.4 (3)
N1—C13—C12—O2179.6 (3)N1'—C13'—C12'—O2'180.0 (3)
C14—C13—C12—O1179.3 (3)C14'—C13'—C12'—O1'178.3 (2)
C14—C13—C12—O21.1 (5)C14'—C13'—C12'—O2'1.4 (5)
C15—C14—C13—N10.9 (5)N1'—C13'—C14'—C15'1.2 (4)
C15—C14—C13—C12178.3 (3)C12'—C13'—C14'—C15'179.7 (2)
S1—C15—C14—C130.9 (4)S1'—C15'—C14'—C13'5.1 (4)
C16—C15—C14—C13179.4 (3)C16'—C15'—C14'—C13'174.3 (3)
S1—C15—C16—C170.5 (3)S1'—C15'—C16'—C17'0.7 (3)
C14—C15—C16—C17179.3 (3)C14'—C15'—C16'—C17'178.8 (2)
C18—C17—C16—C150.3 (3)C15'—C16'—C17'—C18'0.9 (3)
S1—C18—C17—C160.1 (3)S1'—C18'—C17'—C16'0.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N10.932.272.924 (3)127
C3—H3···N10.932.292.946 (3)127
C6—H6···O2i0.932.593.483 (3)160
C9—H9···O2ii0.932.463.310 (3)152
C16—H16···O2iii0.932.503.329 (3)149
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC18H11NO2S
Mr305.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)11.1509 (3), 7.0871 (2), 35.2592 (5)
β (°) 97.914 (4)
V3)2759.91 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.35 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.921, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
25128, 6899, 3925
Rint0.061
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.133, 1.01
No. of reflections6899
No. of parameters405
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.44

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N10.932.272.924 (3)127
C3'—H3'···N1'0.932.292.946 (3)127
C6—H6···O2i0.932.593.483 (3)160
C9'—H9'···O2ii0.932.463.310 (3)152
C16'—H16'···O2'iii0.932.503.329 (3)149
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y, z+2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This study was supported by TUBITAK (grant No. 107T817).

References

First citationAllard, S., Forster, M., Souharce, B., Thiem, H. & Scherf, U. (2008). Angew. Chem. Int. Ed. 47, 4070–4098.  CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGüneş, S., Neugebauer, H. & Sarıçiftçi, N. S. (2007). Chem. Rev. 107, 1324–1338.  Web of Science PubMed Google Scholar
First citationLiu, J., Guo, X., Bu, L., Xie, Z., Cheng, Y., Geng, Y., Wang, L., Jing, X. & Wang, F. (2007). Adv. Funct. Mater. 17, 1917–1925.  CrossRef CAS Google Scholar
First citationMas-Torrent, M. & Rovira, C. (2008). Chem. Soc. Rev. 37, 827–838.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirota, Y. & Kageyama, H. (2007). Chem. Rev. 107, 953–1010.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSoci, C., Hwang, I. W., Moses, D., Zhu, Z., Waller, D., Gaudiana, R., Brabec, C. J. & Heeger, A. J. (2007). Adv. Funct. Mater. 17, 632–636.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaris, S., Ak, M., Tanyeli, C., Akhmedov, I. M. & Toppare, L. (2006). Solid State Sci. 8, 1477–1483.  CrossRef CAS Google Scholar
First citationWoudenbergh, T. V., Wildeman, J., Blom, P. M., Bastiaansen, J. A. M. & Langeveld-Voss, B. W. (2004). Adv. Funct. Mater. 14, 677–683.  Google Scholar
First citationZhang, M., Tsao, H. N., Pisula, W., Yang, C., Mishra, A. K. & Müllen, K. (2007). J. Am. Chem. Soc. 129, 3472–3473.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1321-o1322
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds