organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Rauniticine-allo-oxindole B methanol monosolvate

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 3 May 2011; accepted 3 May 2011; online 7 May 2011)

The title penta­cyclic oxindole alkadoid, isolated from Uncaria longiflora, crystallizes as a methanol solvate, C20H22N2O4·CH4O. The five-membered ring comprising the indole fused ring is nearly planar [maximum atomic deviation = 0.031 (2) Å], whereas the five-membered ring having alphatic C atoms adopts an envelope shape (with the tertiary N atom representing the flap). The six-membered ring that shares an N atom with the envelope-shaped ring adopts a chair shape; the six-membered ring having an O atom is sofa-shaped. The carb­oxy­lic acid group acts as a hydrogen-bond donor to a methanol mol­ecule; this, in turn, acts as a hydrogen-bond donor to the double-bond carboxyl O atom of an adjacent mol­ecule, generating a chain. Adjacent chains are linked by N—H⋯O hydrogen bonds, forming a layer motif.

Related literature

For the spectroscopic identification of rauniticine-allo-oxindole B, see: Seki et al. (1993[Seki, H., Takayama, H., Aimi, N., Sakai, S. & Ponglux, D. (1993). Chem. Pharm. Bull. 41, 2077-2086.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O4·CH4O

  • Mr = 386.44

  • Monoclinic, P 21

  • a = 9.2330 (3) Å

  • b = 7.2110 (2) Å

  • c = 14.7678 (4) Å

  • β = 99.313 (3)°

  • V = 970.27 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.981, Tmax = 0.995

  • 9109 measured reflections

  • 2381 independent reflections

  • 2181 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.05

  • 2381 reflections

  • 266 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5 0.84 (3) 1.83 (3) 2.662 (3) 173 (4)
O5—H5⋯O2i 0.84 (3) 1.91 (3) 2.728 (2) 165 (4)
N2—H2⋯O4ii 0.88 (3) 1.97 (3) 2.805 (3) 158 (3)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+2]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The genus Uncaria is a source of diverse bioactive compounds, and parts of the plant are use for medicinal purposes. The structure of rauniticine-allo-oxindole B was previously elucidated by NMR spectroscopy in on study on heteroyohimbine-type oxindole alkaloids (Seki et al., 1993). The assignment is confirmed in the present study on the methanol-solvated compound (Scheme I) isolated from Uncaria longiflora. The pentacyclic oxindole alkadoid, C20H22N2O4, features a five-membered ring that adopts the shape of an envelope (with the tertiary N atom representing the flap). The six-membered ring that shares an N atom with the envelope-shaped ring adopts the shape of a chair; the six-membered ring having an O atom is sofa-shaped (Fig. 1). The carboxylic acid portion of the molecule is hydrogen-bond donor to a methanol molecule; this, in turn, is hydrogen-bond donor to the double-bond carboxyl O atom of an adjacent molecule to generate a chain. Adjacent chains are linked by an N–H···O hydrogen bond to form a layer motif (Table 1, Fig. 2).

Related literature top

For the spectroscopic identification of rauniticine-allo-oxindole B, see: Seki et al. (1993).

Experimental top

Uncaria longiflora plant material was collected from Hutan Simpan Bangi, Selangor, Malaysia, and specimens were deposited at Taman Botani Putrajaya, Malaysia. Dried and ground stems were extracted with methanol for 72 h to give 25 g of crude extract. This was acidified with 5% hydrochloric acid, and non-alkaloidal material was removed followed with basification with 37% ammonium hydroxide to release the alkaloid. The alkaloid was extracted into chloroform to give 2.25 g of a crude alkaloid fraction. The fraction was dissolved in methanol and subjected to radial chromatography (4 mm thickness silica-gel plate) with dichloromethane:ethyl acetate followed by ethyl acetate:methanol with a gradual increase of solvent polarity. Rauniticine-allo-oxindole B was separated and purified by repeated preparative thin layer chromatography using chloroform:methanol (120:5). The polar fraction afforded colorless crystals when the solvent was allowed to evaporate (53 mg).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 1.00 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The oxygen-bound H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å; their temperature factors were refined.

The absolute configuration was assumed to be that from a spectropic study (Seki et al., 1993); in the absence of heavy atoms, 1853 Friedel pairs were merged.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C20H22N2O4.CH3OH at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded layer structure.
2-oxo-1,2,2',3',5',5'a,6',9'a,10',10'a-decahydrospiro[indole-3,1'- pyrano[3,4-f]indolizine]-9'-carboxylic acid methanol monosolvate top
Crystal data top
C20H22N2O4·CH4OF(000) = 412
Mr = 386.44Dx = 1.323 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4552 reflections
a = 9.2330 (3) Åθ = 2.4–29.2°
b = 7.2110 (2) ŵ = 0.10 mm1
c = 14.7678 (4) ÅT = 100 K
β = 99.313 (3)°Prism, colorless
V = 970.27 (5) Å30.20 × 0.10 × 0.05 mm
Z = 2
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2381 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2181 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 99
Tmin = 0.981, Tmax = 0.995l = 1919
9109 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2288P]
where P = (Fo2 + 2Fc2)/3
2381 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.21 e Å3
4 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H22N2O4·CH4OV = 970.27 (5) Å3
Mr = 386.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.2330 (3) ŵ = 0.10 mm1
b = 7.2110 (2) ÅT = 100 K
c = 14.7678 (4) Å0.20 × 0.10 × 0.05 mm
β = 99.313 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2381 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2181 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.995Rint = 0.039
9109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0374 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.21 e Å3
2381 reflectionsΔρmin = 0.19 e Å3
266 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.30437 (18)1.0011 (3)0.98971 (12)0.0253 (4)
O21.06782 (16)0.9207 (3)0.96906 (11)0.0226 (4)
O31.42440 (17)0.5574 (3)0.85208 (12)0.0257 (4)
O41.04085 (17)0.6078 (3)0.54863 (11)0.0214 (4)
O51.20768 (17)1.2803 (3)1.08162 (11)0.0233 (4)
N10.9975 (2)0.3485 (3)0.71523 (12)0.0181 (4)
N20.8390 (2)0.7963 (3)0.52546 (13)0.0204 (4)
C11.1933 (2)0.8909 (3)0.95551 (14)0.0180 (5)
C21.2329 (2)0.7332 (4)0.90209 (15)0.0180 (5)
C31.3739 (2)0.6984 (4)0.89692 (15)0.0224 (5)
H31.44470.78180.92800.027*
C41.3173 (3)0.4343 (4)0.79913 (16)0.0218 (5)
H41.28370.49020.73730.026*
C51.3986 (3)0.2554 (4)0.7878 (2)0.0339 (6)
H5A1.48100.28070.75530.051*
H5B1.33160.16670.75250.051*
H5C1.43590.20320.84840.051*
C61.1853 (2)0.4113 (4)0.84882 (15)0.0188 (5)
H61.22290.36270.91170.023*
C91.0709 (2)0.2749 (4)0.80272 (15)0.0200 (5)
H9A1.11880.15570.79240.024*
H9B0.99750.25120.84330.024*
C100.9215 (2)0.5222 (3)0.72771 (15)0.0163 (5)
H100.85120.49900.77130.020*
C111.0279 (2)0.6712 (3)0.76820 (14)0.0168 (5)
H11A0.97350.78550.77860.020*
H11B1.09630.70060.72510.020*
C121.1150 (2)0.6013 (3)0.86019 (15)0.0164 (5)
H121.04430.58620.90430.020*
C130.8837 (3)0.2265 (4)0.66791 (16)0.0229 (5)
H13A0.82370.17350.71140.028*
H13B0.92720.12390.63680.028*
C140.7913 (3)0.3531 (4)0.59816 (15)0.0201 (5)
H14A0.68530.32930.59680.024*
H14B0.81510.33240.53590.024*
C150.8317 (2)0.5561 (3)0.63129 (15)0.0167 (5)
C160.9193 (2)0.6518 (3)0.56509 (15)0.0179 (5)
C170.7091 (2)0.8212 (4)0.56293 (15)0.0189 (5)
C180.6022 (2)0.9545 (4)0.54169 (16)0.0223 (5)
H180.60811.04520.49580.027*
C190.4849 (3)0.9504 (4)0.59050 (16)0.0242 (5)
H190.40951.04080.57800.029*
C200.4765 (2)0.8163 (4)0.65720 (16)0.0239 (5)
H200.39630.81720.69020.029*
C210.5849 (2)0.6802 (4)0.67598 (15)0.0205 (5)
H210.57860.58750.72090.025*
C220.7016 (2)0.6830 (3)0.62794 (14)0.0165 (5)
C231.2794 (3)1.4465 (4)1.11555 (17)0.0266 (6)
H23A1.20641.53661.12900.040*
H23B1.33321.49791.06930.040*
H23C1.34831.41951.17180.040*
H11.273 (3)1.083 (4)1.0219 (19)0.041 (9)*
H51.1180 (14)1.304 (5)1.065 (2)0.043 (9)*
H20.870 (3)0.878 (3)0.4885 (16)0.034 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (8)0.0253 (10)0.0282 (9)0.0040 (8)0.0009 (7)0.0078 (8)
O20.0186 (8)0.0237 (10)0.0254 (8)0.0002 (7)0.0033 (6)0.0060 (8)
O30.0181 (8)0.0299 (11)0.0298 (9)0.0030 (8)0.0052 (7)0.0029 (8)
O40.0241 (8)0.0194 (9)0.0225 (8)0.0002 (7)0.0096 (6)0.0014 (7)
O50.0190 (8)0.0246 (10)0.0255 (9)0.0013 (8)0.0017 (6)0.0026 (8)
N10.0226 (9)0.0140 (10)0.0174 (9)0.0007 (8)0.0022 (7)0.0008 (8)
N20.0237 (10)0.0199 (11)0.0180 (9)0.0018 (9)0.0045 (8)0.0034 (8)
C10.0185 (10)0.0188 (13)0.0155 (10)0.0008 (10)0.0004 (8)0.0021 (9)
C20.0176 (10)0.0196 (12)0.0169 (10)0.0003 (9)0.0033 (8)0.0034 (9)
C30.0199 (10)0.0266 (14)0.0205 (11)0.0017 (11)0.0026 (9)0.0017 (11)
C40.0219 (11)0.0238 (13)0.0206 (10)0.0037 (10)0.0063 (9)0.0016 (11)
C50.0315 (13)0.0286 (15)0.0446 (16)0.0093 (12)0.0153 (12)0.0015 (13)
C60.0209 (11)0.0187 (12)0.0169 (10)0.0030 (10)0.0027 (8)0.0011 (10)
C90.0232 (11)0.0160 (12)0.0212 (11)0.0008 (10)0.0046 (9)0.0035 (10)
C100.0182 (10)0.0154 (11)0.0159 (10)0.0010 (9)0.0051 (8)0.0014 (9)
C110.0176 (10)0.0153 (11)0.0172 (10)0.0013 (9)0.0019 (8)0.0001 (9)
C120.0173 (10)0.0165 (11)0.0156 (10)0.0015 (9)0.0035 (8)0.0001 (9)
C130.0284 (12)0.0188 (13)0.0216 (11)0.0028 (10)0.0040 (9)0.0010 (10)
C140.0241 (11)0.0173 (12)0.0191 (11)0.0031 (10)0.0040 (9)0.0011 (10)
C150.0187 (10)0.0157 (12)0.0161 (10)0.0002 (9)0.0042 (8)0.0015 (9)
C160.0214 (10)0.0173 (12)0.0146 (10)0.0041 (9)0.0015 (8)0.0036 (9)
C170.0198 (10)0.0190 (13)0.0168 (10)0.0048 (10)0.0001 (8)0.0024 (9)
C180.0258 (11)0.0188 (12)0.0198 (11)0.0026 (10)0.0039 (9)0.0001 (10)
C190.0239 (11)0.0209 (13)0.0248 (12)0.0033 (11)0.0052 (9)0.0036 (11)
C200.0209 (11)0.0275 (15)0.0234 (12)0.0021 (11)0.0033 (9)0.0040 (11)
C210.0226 (11)0.0197 (12)0.0186 (10)0.0016 (10)0.0019 (9)0.0005 (10)
C220.0191 (10)0.0140 (11)0.0150 (10)0.0028 (9)0.0010 (8)0.0032 (9)
C230.0237 (11)0.0261 (14)0.0296 (13)0.0006 (11)0.0030 (10)0.0057 (12)
Geometric parameters (Å, º) top
O1—C11.331 (3)C10—C111.512 (3)
O1—H10.84 (3)C10—C151.547 (3)
O2—C11.227 (3)C10—H101.0000
O3—C31.338 (3)C11—C121.547 (3)
O3—C41.458 (3)C11—H11A0.9900
O4—C161.228 (3)C11—H11B0.9900
O5—C231.421 (3)C12—H121.0000
O5—H50.84 (3)C13—C141.529 (3)
N1—C91.458 (3)C13—H13A0.9900
N1—C131.459 (3)C13—H13B0.9900
N1—C101.462 (3)C14—C151.569 (3)
N2—C161.356 (3)C14—H14A0.9900
N2—C171.411 (3)C14—H14B0.9900
N2—H20.88 (3)C15—C221.505 (3)
C1—C21.464 (3)C15—C161.530 (3)
C2—C31.340 (3)C17—C181.377 (3)
C2—C121.502 (3)C17—C221.393 (3)
C3—H30.9500C18—C191.395 (3)
C4—C51.515 (4)C18—H180.9500
C4—C61.530 (3)C19—C201.392 (4)
C4—H41.0000C19—H190.9500
C5—H5A0.9800C20—C211.397 (3)
C5—H5B0.9800C20—H200.9500
C5—H5C0.9800C21—C221.383 (3)
C6—C91.522 (3)C21—H210.9500
C6—C121.537 (3)C23—H23A0.9800
C6—H61.0000C23—H23B0.9800
C9—H9A0.9900C23—H23C0.9800
C9—H9B0.9900
C1—O1—H1109 (2)H11A—C11—H11B108.3
C3—O3—C4117.88 (17)C2—C12—C6108.58 (17)
C23—O5—H5108 (3)C2—C12—C11113.2 (2)
C9—N1—C13113.6 (2)C6—C12—C11111.30 (19)
C9—N1—C10111.33 (18)C2—C12—H12107.8
C13—N1—C10104.68 (17)C6—C12—H12107.8
C16—N2—C17111.6 (2)C11—C12—H12107.8
C16—N2—H2125 (2)N1—C13—C14104.1 (2)
C17—N2—H2122 (2)N1—C13—H13A110.9
O2—C1—O1121.6 (2)C14—C13—H13A110.9
O2—C1—C2123.3 (2)N1—C13—H13B110.9
O1—C1—C2115.10 (19)C14—C13—H13B110.9
C3—C2—C1120.4 (2)H13A—C13—H13B109.0
C3—C2—C12120.3 (2)C13—C14—C15105.55 (18)
C1—C2—C12119.10 (19)C13—C14—H14A110.6
O3—C3—C2126.2 (2)C15—C14—H14A110.6
O3—C3—H3116.9C13—C14—H14B110.6
C2—C3—H3116.9C15—C14—H14B110.6
O3—C4—C5105.80 (19)H14A—C14—H14B108.8
O3—C4—C6109.42 (18)C22—C15—C16101.90 (19)
C5—C4—C6114.1 (2)C22—C15—C10115.61 (18)
O3—C4—H4109.1C16—C15—C10113.55 (18)
C5—C4—H4109.1C22—C15—C14114.13 (18)
C6—C4—H4109.1C16—C15—C14110.19 (18)
C4—C5—H5A109.5C10—C15—C14101.82 (18)
C4—C5—H5B109.5O4—C16—N2124.5 (2)
H5A—C5—H5B109.5O4—C16—C15127.2 (2)
C4—C5—H5C109.5N2—C16—C15108.30 (19)
H5A—C5—H5C109.5C18—C17—C22122.9 (2)
H5B—C5—H5C109.5C18—C17—N2128.5 (2)
C9—C6—C4113.91 (19)C22—C17—N2108.6 (2)
C9—C6—C12110.48 (18)C17—C18—C19117.1 (2)
C4—C6—C12109.8 (2)C17—C18—H18121.5
C9—C6—H6107.5C19—C18—H18121.5
C4—C6—H6107.5C20—C19—C18121.2 (2)
C12—C6—H6107.5C20—C19—H19119.4
N1—C9—C6110.5 (2)C18—C19—H19119.4
N1—C9—H9A109.5C19—C20—C21120.5 (2)
C6—C9—H9A109.5C19—C20—H20119.7
N1—C9—H9B109.5C21—C20—H20119.7
C6—C9—H9B109.5C22—C21—C20118.7 (2)
H9A—C9—H9B108.1C22—C21—H21120.6
N1—C10—C11111.33 (17)C20—C21—H21120.6
N1—C10—C15102.46 (18)C21—C22—C17119.6 (2)
C11—C10—C15117.98 (19)C21—C22—C15131.2 (2)
N1—C10—H10108.2C17—C22—C15109.2 (2)
C11—C10—H10108.2O5—C23—H23A109.5
C15—C10—H10108.2O5—C23—H23B109.5
C10—C11—C12109.15 (19)H23A—C23—H23B109.5
C10—C11—H11A109.8O5—C23—H23C109.5
C12—C11—H11A109.8H23A—C23—H23C109.5
C10—C11—H11B109.8H23B—C23—H23C109.5
C12—C11—H11B109.8
O2—C1—C2—C3173.7 (2)N1—C10—C15—C22158.78 (18)
O1—C1—C2—C35.8 (3)C11—C10—C15—C2278.6 (3)
O2—C1—C2—C120.8 (3)N1—C10—C15—C1683.9 (2)
O1—C1—C2—C12179.7 (2)C11—C10—C15—C1638.7 (3)
C4—O3—C3—C23.7 (4)N1—C10—C15—C1434.5 (2)
C1—C2—C3—O3178.6 (2)C11—C10—C15—C14157.11 (19)
C12—C2—C3—O34.1 (4)C13—C14—C15—C22135.9 (2)
C3—O3—C4—C5158.8 (2)C13—C14—C15—C16110.2 (2)
C3—O3—C4—C635.5 (3)C13—C14—C15—C1010.6 (2)
O3—C4—C6—C9176.11 (19)C17—N2—C16—O4175.5 (2)
C5—C4—C6—C957.8 (3)C17—N2—C16—C155.0 (2)
O3—C4—C6—C1259.4 (2)C22—C15—C16—O4174.9 (2)
C5—C4—C6—C12177.6 (2)C10—C15—C16—O449.9 (3)
C13—N1—C9—C6178.73 (19)C14—C15—C16—O463.6 (3)
C10—N1—C9—C660.9 (2)C22—C15—C16—N25.7 (2)
C4—C6—C9—N168.4 (3)C10—C15—C16—N2130.7 (2)
C12—C6—C9—N155.7 (2)C14—C15—C16—N2115.8 (2)
C9—N1—C10—C1162.3 (2)C16—N2—C17—C18178.7 (2)
C13—N1—C10—C11174.57 (18)C16—N2—C17—C222.0 (3)
C9—N1—C10—C15170.65 (18)C22—C17—C18—C191.9 (3)
C13—N1—C10—C1547.5 (2)N2—C17—C18—C19178.8 (2)
N1—C10—C11—C1257.0 (2)C17—C18—C19—C200.4 (3)
C15—C10—C11—C12174.97 (18)C18—C19—C20—C210.9 (4)
C3—C2—C12—C620.8 (3)C19—C20—C21—C220.9 (3)
C1—C2—C12—C6153.8 (2)C20—C21—C22—C170.5 (3)
C3—C2—C12—C11103.4 (3)C20—C21—C22—C15178.8 (2)
C1—C2—C12—C1182.0 (2)C18—C17—C22—C212.0 (3)
C9—C6—C12—C2177.57 (17)N2—C17—C22—C21178.6 (2)
C4—C6—C12—C251.1 (2)C18—C17—C22—C15177.5 (2)
C9—C6—C12—C1152.3 (2)N2—C17—C22—C151.9 (2)
C4—C6—C12—C1174.2 (2)C16—C15—C22—C21176.1 (2)
C10—C11—C12—C2175.10 (18)C10—C15—C22—C2152.5 (3)
C10—C11—C12—C652.4 (2)C14—C15—C22—C2165.2 (3)
C9—N1—C13—C14162.01 (19)C16—C15—C22—C174.5 (2)
C10—N1—C13—C1440.4 (2)C10—C15—C22—C17128.1 (2)
N1—C13—C14—C1517.1 (2)C14—C15—C22—C17114.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.84 (3)1.83 (3)2.662 (3)173 (4)
O5—H5···O2i0.84 (3)1.91 (3)2.728 (2)165 (4)
N2—H2···O4ii0.88 (3)1.97 (3)2.805 (3)158 (3)
Symmetry codes: (i) x+2, y+1/2, z+2; (ii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H22N2O4·CH4O
Mr386.44
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)9.2330 (3), 7.2110 (2), 14.7678 (4)
β (°) 99.313 (3)
V3)970.27 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.981, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
9109, 2381, 2181
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.05
No. of reflections2381
No. of parameters266
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O50.84 (3)1.83 (3)2.662 (3)173 (4)
O5—H5···O2i0.84 (3)1.91 (3)2.728 (2)165 (4)
N2—H2···O4ii0.88 (3)1.97 (3)2.805 (3)158 (3)
Symmetry codes: (i) x+2, y+1/2, z+2; (ii) x+2, y+1/2, z+1.
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationSeki, H., Takayama, H., Aimi, N., Sakai, S. & Ponglux, D. (1993). Chem. Pharm. Bull. 41, 2077–2086.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds