organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[2-(4-Chloro­phen­yl)hydrazinyl­­idene]meth­yl}phenol

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 May 2011; accepted 12 May 2011; online 20 May 2011)

In the title Schiff base mol­ecule, C13H11ClN2O, the non-H atoms are approximately coplanar (r.m.s. deviation = 0.115 Å) and the two benzene rings are twisted by 9.36 (3)° with respect to each other. The hy­droxy group is hydrogen bonded to the azomethine N atom. In the crystal, an N—H⋯π inter­action is observed between the imino group and the hy­droxy­benzene ring of an adjacent mol­ecule.

Related literature

For the synthesis of the compound, see: Auwers (1909[Auwers, K. (1909). Justus Liebigs Ann. Chem. 365, 314-342.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11ClN2O

  • Mr = 246.69

  • Orthorhombic, P b c a

  • a = 10.7590 (1) Å

  • b = 7.3189 (1) Å

  • c = 28.9222 (3) Å

  • V = 2277.45 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.925, Tmax = 0.954

  • 20107 measured reflections

  • 2614 independent reflections

  • 2326 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.089

  • S = 1.04

  • 2614 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 (2) 1.88 (2) 2.6382 (13) 149.8 (19)
N2—H2⋯Cg1i 0.859 (18) 2.73 (2) 3.3675 (12) 132.3 (17)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There in a enormous amount of literature on Schiff bases, which are synthesized by reaction of a primary amine with a carbonyl function. The synthesis of the title hydrazone (Scheme I) was reported a century ago (Auwers, 1909). The C13H11ClN2O molecule (Scheme I) is twisted along the –CHN–NH– portion that connects the two aromatic rings. The non-hydrogen atoms approximately lie on plane (r.m.s. deviation 0.115 Å), the rings being twisted by 9.36 (3)°. The hydroxy group is hydrogen-bond donor the the azomethine N atom (Fig. 1). The amino H atom is involved in the N—H···π interaction in the crystal structure (Table 1).

Related literature top

For the synthesis of the compound, see: Auwers (1909).

Experimental top

Salicylaldehyde (1 ml, 10 mmol) and 4-chlorophenylhydrazine hydrochloride (1.8 g, 10 mmol) were dissolved in ethanol (100 ml). No HCl-abstracting reagent was added. The solution was heated for an hour. Slow evaporation of the solvent gave colorless crystals of the Schiff base.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 times Ueq(C). The amino and hydroxy H atoms were located in a difference Fourier map, and were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C13H11ClN2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-{[2-(4-Chlorophenyl)hydrazinylidene]methyl}phenol top
Crystal data top
C13H11ClN2OF(000) = 1024
Mr = 246.69Dx = 1.439 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7363 reflections
a = 10.7590 (1) Åθ = 2.4–28.3°
b = 7.3189 (1) ŵ = 0.32 mm1
c = 28.9222 (3) ÅT = 100 K
V = 2277.45 (4) Å3Block, colorless
Z = 80.25 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEX
diffractometer
2614 independent reflections
Radiation source: fine-focus sealed tube2326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.925, Tmax = 0.954k = 99
20107 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.9769P]
where P = (Fo2 + 2Fc2)/3
2614 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H11ClN2OV = 2277.45 (4) Å3
Mr = 246.69Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.7590 (1) ŵ = 0.32 mm1
b = 7.3189 (1) ÅT = 100 K
c = 28.9222 (3) Å0.25 × 0.25 × 0.15 mm
Data collection top
Bruker SMART APEX
diffractometer
2614 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2326 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.954Rint = 0.033
20107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.37 e Å3
2614 reflectionsΔρmin = 0.19 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.72028 (3)0.56809 (4)0.484943 (10)0.02413 (12)
O10.75260 (9)0.62244 (14)0.75810 (3)0.0202 (2)
N10.57723 (9)0.76810 (14)0.70608 (3)0.0160 (2)
N20.52407 (10)0.81449 (15)0.66514 (4)0.0192 (2)
C10.68256 (11)0.67666 (16)0.79476 (4)0.0158 (2)
C20.72583 (11)0.63711 (18)0.83900 (4)0.0183 (3)
H2A0.80220.57390.84290.022*
C30.65750 (12)0.68996 (16)0.87755 (4)0.0197 (3)
H30.68830.66460.90770.024*
C40.54397 (12)0.77994 (17)0.87237 (4)0.0198 (3)
H40.49710.81520.89870.024*
C50.50049 (12)0.81715 (16)0.82826 (4)0.0174 (2)
H50.42300.87780.82470.021*
C60.56790 (11)0.76755 (16)0.78874 (4)0.0150 (2)
C70.51856 (11)0.81180 (16)0.74331 (4)0.0157 (2)
H70.44140.87430.74100.019*
C80.57272 (11)0.75285 (16)0.62353 (4)0.0157 (2)
C90.50203 (11)0.77689 (17)0.58344 (4)0.0183 (3)
H90.42230.83220.58540.022*
C100.54686 (12)0.72102 (17)0.54082 (4)0.0193 (3)
H100.49860.73820.51370.023*
C110.66308 (12)0.63963 (17)0.53830 (4)0.0180 (2)
C120.73438 (12)0.61342 (17)0.57764 (4)0.0182 (3)
H120.81370.55690.57540.022*
C130.68960 (11)0.66998 (16)0.62040 (4)0.0171 (2)
H130.73830.65240.64740.020*
H10.7170 (18)0.662 (3)0.7343 (7)0.047 (6)*
H20.4532 (17)0.868 (3)0.6662 (6)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0330 (2)0.02229 (18)0.01713 (17)0.00084 (13)0.00504 (12)0.00208 (11)
O10.0173 (4)0.0242 (5)0.0191 (5)0.0049 (4)0.0013 (4)0.0008 (4)
N10.0172 (5)0.0153 (5)0.0154 (5)0.0010 (4)0.0023 (4)0.0006 (4)
N20.0184 (5)0.0240 (6)0.0152 (5)0.0063 (4)0.0014 (4)0.0001 (4)
C10.0158 (6)0.0126 (5)0.0189 (6)0.0020 (4)0.0007 (4)0.0014 (4)
C20.0186 (6)0.0145 (6)0.0218 (6)0.0009 (5)0.0036 (5)0.0005 (5)
C30.0260 (6)0.0158 (6)0.0171 (6)0.0041 (5)0.0036 (5)0.0014 (4)
C40.0250 (6)0.0177 (6)0.0166 (6)0.0040 (5)0.0034 (5)0.0009 (5)
C50.0172 (6)0.0143 (5)0.0208 (6)0.0004 (5)0.0026 (5)0.0005 (4)
C60.0155 (5)0.0121 (5)0.0174 (6)0.0022 (4)0.0004 (4)0.0000 (4)
C70.0141 (6)0.0133 (5)0.0195 (6)0.0001 (4)0.0002 (4)0.0005 (4)
C80.0170 (6)0.0139 (5)0.0162 (6)0.0025 (4)0.0007 (4)0.0012 (4)
C90.0166 (6)0.0185 (6)0.0199 (6)0.0001 (5)0.0021 (5)0.0012 (5)
C100.0217 (6)0.0194 (6)0.0169 (6)0.0022 (5)0.0033 (5)0.0010 (5)
C110.0241 (6)0.0152 (5)0.0147 (5)0.0024 (5)0.0038 (5)0.0010 (4)
C120.0185 (6)0.0153 (6)0.0210 (6)0.0008 (5)0.0024 (5)0.0024 (5)
C130.0175 (6)0.0167 (6)0.0171 (6)0.0006 (5)0.0016 (4)0.0022 (4)
Geometric parameters (Å, º) top
Cl1—C111.7418 (12)C5—C61.4014 (16)
O1—C11.3600 (15)C5—H50.9500
O1—H10.84 (2)C6—C71.4539 (16)
N1—C71.2883 (15)C7—H70.9500
N1—N21.3580 (14)C8—C91.3978 (16)
N2—C81.3878 (15)C8—C131.3991 (17)
N2—H20.859 (18)C9—C101.3855 (17)
C1—C21.3919 (17)C9—H90.9500
C1—C61.4123 (17)C10—C111.3870 (18)
C2—C31.3905 (18)C10—H100.9500
C2—H2A0.9500C11—C121.3857 (18)
C3—C41.3958 (19)C12—C131.3901 (17)
C3—H30.9500C12—H120.9500
C4—C51.3859 (17)C13—H130.9500
C4—H40.9500
C1—O1—H1106.7 (14)C1—C6—C7122.36 (11)
C7—N1—N2117.40 (10)N1—C7—C6121.41 (11)
N1—N2—C8121.06 (10)N1—C7—H7119.3
N1—N2—H2117.2 (11)C6—C7—H7119.3
C8—N2—H2121.0 (11)N2—C8—C9118.24 (11)
O1—C1—C2118.08 (11)N2—C8—C13122.42 (11)
O1—C1—C6121.69 (11)C9—C8—C13119.33 (11)
C2—C1—C6120.22 (11)C10—C9—C8120.76 (11)
C1—C2—C3120.17 (11)C10—C9—H9119.6
C1—C2—H2A119.9C8—C9—H9119.6
C3—C2—H2A119.9C9—C10—C11119.17 (11)
C2—C3—C4120.51 (11)C9—C10—H10120.4
C2—C3—H3119.7C11—C10—H10120.4
C4—C3—H3119.7C10—C11—C12121.02 (11)
C5—C4—C3119.15 (11)C10—C11—Cl1119.62 (9)
C5—C4—H4120.4C12—C11—Cl1119.36 (10)
C3—C4—H4120.4C11—C12—C13119.83 (12)
C4—C5—C6121.68 (11)C11—C12—H12120.1
C4—C5—H5119.2C13—C12—H12120.1
C6—C5—H5119.2C12—C13—C8119.88 (11)
C5—C6—C1118.27 (11)C12—C13—H13120.1
C5—C6—C7119.37 (11)C8—C13—H13120.1
C7—N1—N2—C8171.80 (11)C1—C6—C7—N10.68 (18)
O1—C1—C2—C3179.94 (11)N1—N2—C8—C9168.57 (11)
C6—C1—C2—C31.21 (19)N1—N2—C8—C1312.10 (18)
C1—C2—C3—C41.21 (19)N2—C8—C9—C10178.83 (12)
C2—C3—C4—C50.44 (18)C13—C8—C9—C100.52 (18)
C3—C4—C5—C60.32 (18)C8—C9—C10—C110.32 (19)
C4—C5—C6—C10.31 (18)C9—C10—C11—C120.10 (19)
C4—C5—C6—C7179.31 (11)C9—C10—C11—Cl1179.78 (10)
O1—C1—C6—C5179.26 (11)C10—C11—C12—C130.30 (19)
C2—C1—C6—C50.46 (18)Cl1—C11—C12—C13179.99 (10)
O1—C1—C6—C71.13 (18)C11—C12—C13—C80.10 (18)
C2—C1—C6—C7179.93 (11)N2—C8—C13—C12179.01 (11)
N2—N1—C7—C6179.85 (10)C9—C8—C13—C120.31 (18)
C5—C6—C7—N1179.72 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (2)1.88 (2)2.6382 (13)149.8 (19)
N2—H2···Cg1i0.859 (18)2.73 (2)3.3675 (12)132.3 (17)
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H11ClN2O
Mr246.69
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)10.7590 (1), 7.3189 (1), 28.9222 (3)
V3)2277.45 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.25 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.925, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
20107, 2614, 2326
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.04
No. of reflections2614
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (2)1.88 (2)2.6382 (13)149.8 (19)
N2—H2···Cg1i0.859 (18)2.73 (2)3.3675 (12)132.3 (17)
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

We thank the University of Malaya (grant No. RG020/09AFR) for supporting this study.

References

First citationAuwers, K. (1909). Justus Liebigs Ann. Chem. 365, 314–342.  CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds