organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-hy­dr­oxy­benzaldehyde 4-ethyl­thio­semicarbazone

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 May 2011; accepted 12 May 2011; online 20 May 2011)

In the title compound, C10H12ClN3OS, the –C=N–N–C– chain bridging the ethyl­imino group and the benzene ring adopts an extended conformation with a C—N—N—C torsion angle of −171.98 (11)°. The imino H atom of the chain is a hydrogen-bond donor to the S atom of an inversion-related mol­ecule, forming a supra­molecular dimer. The hy­droxy H atom is intra­molecularly hydrogen bonded to the azomethine N atom.

Related literature

For the salicyl­aldehyde 4-methyl­thio­semicarbazone homolog, see: Vrdoljak et al. (2005[Vrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. & Kamenar, B. (2005). Polyhedron, 24, 1717-1726.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12ClN3OS

  • Mr = 257.74

  • Monoclinic, C 2/c

  • a = 21.7956 (3) Å

  • b = 11.8536 (2) Å

  • c = 9.4155 (1) Å

  • β = 101.6870 (9)°

  • V = 2382.12 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.832, Tmax = 0.832

  • 11204 measured reflections

  • 2985 independent reflections

  • 2582 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.085

  • S = 1.02

  • 2985 reflections

  • 157 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.84 (1) 1.92 (1) 2.670 (2) 149 (2)
N2—H2n⋯S1i 0.87 (1) 2.48 (1) 3.308 (1) 159 (1)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Salicylaldehyde condenses with a large number of 4-alkyl/aryl-3-thiosemicarbazide to yield the corresponding thiosemicarbazone Schiff-bases. These compounds are used as chelating ligands to a range of metal ions. The semicarbazones, as exemplified by the salicylaldehyde 4-methyl-3-thiosemicarbazone homolog (Vrdoljak et al., 2005), feature an N–H···S hydrogen bond that connects two molecules into a hydrogen-bonded dimer. In C10H12ClN3OS, the –CN–N–C– chain separating the double-bond S atom and the benzene ring adopts an extended zigzag conformation (Fig.1). The amino H atom of the chain is hydrogen-bond donor to the S atom of an inversion-related molecule to form a dimer. The H atom of the hydroxy unit is hydrogen bond donor to the azomethine N atom. The other amino H atom is only weakly involved in hydrogen bonding (Table 1).

Related literature top

For the salicylaldehyde 4-methylthiosemicarbazone homolog, see: Vrdoljak et al. (2005).

Experimental top

5-Chloro-2-hydroxybenzaldehyde (3.1 g, 20 mol) and of 4-ethyl-3-thiosemicarbazide (2.4 g, 20 mmol) were heated in ethanol (100 ml) for an hour. The solution was filtered and colorless crystals were obtained upon slow evaporation of the solvent.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. The hydroxy and amino H atoms were located in a difference Fourier map, and were refined with distance restraints of O—H 0.84±0.01 and N—H 0.88±0.01 Å; their temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C10H12ClN3OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
5-Chloro-2-hydroxybenzaldehyde 4-ethylthiosemicarbazone top
Crystal data top
C10H12ClN3OSF(000) = 1072
Mr = 257.74Dx = 1.437 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6011 reflections
a = 21.7956 (3) Åθ = 2.8–28.3°
b = 11.8536 (2) ŵ = 0.48 mm1
c = 9.4155 (1) ÅT = 100 K
β = 101.6870 (9)°Block, colorless
V = 2382.12 (6) Å30.40 × 0.40 × 0.40 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
2985 independent reflections
Radiation source: fine-focus sealed tube2582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2929
Tmin = 0.832, Tmax = 0.832k = 1515
11204 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0483P)2 + 1.7745P]
where P = (Fo2 + 2Fc2)/3
2985 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.33 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H12ClN3OSV = 2382.12 (6) Å3
Mr = 257.74Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.7956 (3) ŵ = 0.48 mm1
b = 11.8536 (2) ÅT = 100 K
c = 9.4155 (1) Å0.40 × 0.40 × 0.40 mm
β = 101.6870 (9)°
Data collection top
Bruker SMART APEX
diffractometer
2985 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2582 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.832Rint = 0.022
11204 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0293 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.33 e Å3
2985 reflectionsΔρmin = 0.28 e Å3
157 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.485785 (16)0.65980 (4)0.51634 (4)0.03990 (13)
S10.835591 (14)0.65767 (3)0.01381 (3)0.01821 (10)
O10.75861 (4)0.62629 (8)0.57947 (10)0.01950 (19)
N10.73919 (5)0.61554 (8)0.29057 (11)0.0159 (2)
N20.75536 (5)0.63100 (9)0.15711 (11)0.0167 (2)
N30.85219 (5)0.55435 (9)0.24435 (11)0.0169 (2)
C10.69537 (6)0.62896 (10)0.56025 (13)0.0160 (2)
C20.66935 (6)0.63906 (10)0.68348 (14)0.0189 (2)
H20.69590.64060.77690.023*
C30.60511 (6)0.64685 (11)0.67054 (14)0.0215 (3)
H30.58750.65490.75440.026*
C40.56661 (6)0.64280 (12)0.53368 (15)0.0230 (3)
C50.59099 (6)0.63056 (11)0.41045 (14)0.0203 (3)
H50.56380.62620.31800.024*
C60.65605 (5)0.62453 (10)0.42189 (13)0.0160 (2)
C70.68017 (5)0.62429 (10)0.28864 (13)0.0166 (2)
H70.65170.63070.19820.020*
C80.81461 (5)0.61070 (10)0.14031 (12)0.0152 (2)
C90.91574 (5)0.51980 (11)0.23606 (13)0.0199 (2)
H9A0.94140.51320.33530.024*
H9B0.93500.57830.18400.024*
C100.91595 (6)0.40780 (12)0.15821 (14)0.0235 (3)
H10A0.95910.38720.15420.035*
H10B0.89110.41440.05940.035*
H10C0.89770.34940.21070.035*
H1O0.7673 (10)0.6201 (18)0.4975 (14)0.057 (6)*
H2N0.7319 (6)0.6770 (11)0.0975 (14)0.017 (4)*
H3N0.8351 (7)0.5207 (13)0.3075 (15)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01591 (17)0.0783 (3)0.0285 (2)0.00085 (16)0.01169 (14)0.00069 (17)
S10.01839 (16)0.02150 (16)0.01680 (15)0.00297 (10)0.00847 (12)0.00232 (11)
O10.0152 (4)0.0239 (5)0.0195 (4)0.0018 (3)0.0039 (3)0.0007 (4)
N10.0165 (5)0.0162 (5)0.0165 (5)0.0003 (4)0.0072 (4)0.0002 (4)
N20.0151 (5)0.0210 (5)0.0152 (5)0.0030 (4)0.0061 (4)0.0030 (4)
N30.0144 (4)0.0207 (5)0.0166 (5)0.0012 (4)0.0055 (4)0.0015 (4)
C10.0163 (5)0.0135 (5)0.0189 (5)0.0006 (4)0.0054 (4)0.0010 (4)
C20.0218 (6)0.0191 (6)0.0163 (5)0.0002 (4)0.0047 (5)0.0004 (4)
C30.0241 (6)0.0238 (6)0.0193 (6)0.0001 (5)0.0106 (5)0.0001 (5)
C40.0152 (6)0.0318 (7)0.0241 (6)0.0007 (5)0.0092 (5)0.0011 (5)
C50.0172 (6)0.0263 (6)0.0183 (6)0.0019 (5)0.0053 (5)0.0013 (5)
C60.0163 (5)0.0162 (5)0.0170 (5)0.0007 (4)0.0070 (4)0.0003 (4)
C70.0164 (5)0.0175 (5)0.0167 (5)0.0009 (4)0.0053 (4)0.0006 (4)
C80.0148 (5)0.0157 (5)0.0159 (5)0.0010 (4)0.0047 (4)0.0031 (4)
C90.0127 (5)0.0251 (6)0.0217 (6)0.0022 (4)0.0031 (4)0.0000 (5)
C100.0185 (6)0.0273 (7)0.0248 (6)0.0043 (5)0.0046 (5)0.0015 (5)
Geometric parameters (Å, º) top
Cl1—C41.7476 (13)C2—H20.9500
S1—C81.7011 (12)C3—C41.3889 (19)
O1—C11.3539 (14)C3—H30.9500
O1—H1O0.835 (9)C4—C51.3782 (18)
N1—C71.2870 (15)C5—C61.4020 (16)
N1—N21.3842 (13)C5—H50.9500
N2—C81.3541 (14)C6—C71.4552 (16)
N2—H2N0.870 (9)C7—H70.9500
N3—C81.3234 (15)C9—C101.5169 (18)
N3—C91.4615 (14)C9—H9A0.9900
N3—H3N0.860 (9)C9—H9B0.9900
C1—C21.3959 (17)C10—H10A0.9800
C1—C61.4078 (17)C10—H10B0.9800
C2—C31.3837 (17)C10—H10C0.9800
C1—O1—H1O107.2 (15)C6—C5—H5120.1
C7—N1—N2114.46 (10)C5—C6—C1119.07 (11)
C8—N2—N1120.45 (10)C5—C6—C7118.05 (11)
C8—N2—H2N119.1 (10)C1—C6—C7122.65 (11)
N1—N2—H2N116.3 (10)N1—C7—C6121.50 (11)
C8—N3—C9123.58 (10)N1—C7—H7119.2
C8—N3—H3N117.1 (11)C6—C7—H7119.2
C9—N3—H3N117.0 (11)N3—C8—N2117.72 (10)
O1—C1—C2117.70 (11)N3—C8—S1124.30 (9)
O1—C1—C6122.36 (11)N2—C8—S1117.97 (9)
C2—C1—C6119.92 (11)N3—C9—C10111.51 (10)
C3—C2—C1120.44 (12)N3—C9—H9A109.3
C3—C2—H2119.8C10—C9—H9A109.3
C1—C2—H2119.8N3—C9—H9B109.3
C2—C3—C4119.33 (12)C10—C9—H9B109.3
C2—C3—H3120.3H9A—C9—H9B108.0
C4—C3—H3120.3C9—C10—H10A109.5
C5—C4—C3121.41 (12)C9—C10—H10B109.5
C5—C4—Cl1119.13 (10)H10A—C10—H10B109.5
C3—C4—Cl1119.40 (10)C9—C10—H10C109.5
C4—C5—C6119.81 (12)H10A—C10—H10C109.5
C4—C5—H5120.1H10B—C10—H10C109.5
C7—N1—N2—C8171.98 (11)C2—C1—C6—C50.09 (17)
O1—C1—C2—C3177.38 (11)O1—C1—C6—C74.18 (17)
C6—C1—C2—C31.19 (18)C2—C1—C6—C7174.32 (12)
C1—C2—C3—C40.97 (19)N2—N1—C7—C6172.18 (10)
C2—C3—C4—C50.4 (2)C5—C6—C7—N1177.90 (11)
C2—C3—C4—Cl1176.77 (10)C1—C6—C7—N17.82 (18)
C3—C4—C5—C61.5 (2)C9—N3—C8—N2175.63 (11)
Cl1—C4—C5—C6175.68 (10)C9—N3—C8—S13.54 (17)
C4—C5—C6—C11.21 (18)N1—N2—C8—N313.77 (17)
C4—C5—C6—C7173.28 (12)N1—N2—C8—S1167.01 (8)
O1—C1—C6—C5178.40 (11)C8—N3—C9—C1085.80 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.84 (1)1.92 (1)2.670 (2)149 (2)
N2—H2n···S1i0.87 (1)2.48 (1)3.308 (1)159 (1)
Symmetry code: (i) x+3/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC10H12ClN3OS
Mr257.74
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)21.7956 (3), 11.8536 (2), 9.4155 (1)
β (°) 101.6870 (9)
V3)2382.12 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.832, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
11204, 2985, 2582
Rint0.022
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.085, 1.02
No. of reflections2985
No. of parameters157
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.84 (1)1.92 (1)2.670 (2)149 (2)
N2—H2n···S1i0.87 (1)2.48 (1)3.308 (1)159 (1)
Symmetry code: (i) x+3/2, y+3/2, z.
 

Acknowledgements

We thank the University of Malaya (gant No. RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. & Kamenar, B. (2005). Polyhedron, 24, 1717–1726.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds