metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(nitrato-κO)(3-oxa­pentane-1,5-di­amine-κ3N,O,N′)zinc(II)

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: wuhuilu@163.com

(Received 9 May 2011; accepted 12 May 2011; online 20 May 2011)

In the title compound, [Zn(NO3)2(C4H12N2O)], the ZnII atom is N,O,N′-chelated by a 3-oxapentane-1,5-diamine ligand and is further coordinated by two nitrate anions in a distorted trigonal–bipyramidal geometry. Inter­molecular N—H⋯O hydrogen bonding is present in the crystal structure. A short O⋯O contact of 2.816 (8) Å is observed between the nitrate anions of adjacent mol­ecules.

Related literature

For polydentate amine ligands in metal complexes, see: Fanshawe et al. (2000[Fanshawe, R. L., Mobinikhaledi, A., Clark, C. R. & Blackman, A. G. (2000). Inorg. Chim. Acta, 307, 26-31.]). For applications of metal complexes with a tridentate amine ligand, see: Junk & Steed (2007[Junk, P. C. & Steed, J. W. (2007). Inorg. Chim. Acta, 360, 1661-1668.]). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NO3)2(C4H12N2O)]

  • Mr = 293.55

  • Triclinic, [P \overline 1]

  • a = 8.031 (19) Å

  • b = 8.034 (19) Å

  • c = 9.55 (2) Å

  • α = 103.97 (2)°

  • β = 101.90 (2)°

  • γ = 115.879 (18)°

  • V = 503 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.524, Tmax = 0.565

  • 2969 measured reflections

  • 1712 independent reflections

  • 1543 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.08

  • 1712 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H3A⋯O2i 0.90 2.39 3.217 (7) 152
N1—H3B⋯O6ii 0.90 2.51 3.168 (9) 130
N2—H2A⋯O4iii 0.90 2.42 3.058 (8) 128
N2—H2B⋯O5iv 0.90 2.41 3.201 (9) 145
N2—H2B⋯O3iv 0.90 2.49 3.106 (6) 126
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x, y+1, z; (iv) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polydentate amine ligands generally coordinate to transition metal ions using all of the available nitrogen atoms as donors (Fanshawe et al., 2000). Transition metal coordination complexes involving tridentate amines as ligands have attracted solid attention for their role as model compounds for bioinorganic systems, as building blocks in supramolecular assemblies and as catalysts (Junk & Steed, 2007). 3-oxapentane-1,5-diamine as the one of the classics of polyamines behaves as a tridentate ligand that can form three coordinative bonds with a metal atom through the long pair electrons on two N atoms and one oxygen.

The ZnII in the complex is N,O,N'-chelated by a 3-oxapentane-1,5-diamine ligand and is further coordinated by two nitrate anions. The coordination geometry of the ZnII ion may be best described as distorted trigonal bipyramidal (tau = 2/3). The parameter tau is defined as (beta-alpha)/60) [where beta= O(5)–Zn(1)–O(1), alpha = N(2)–Zn(1)–N(1)] and its value varies from 0 (in regular square-base pyramidal) to 1 (in regular trigonal bipyramidal) (Addison et al., 1984). The equatorial plane is occupied by two N atoms of the ligand, and one O atom of nitrate anions, whereas the ZnII ion protrudes towards O5 by 0.337 Å from the plane of atoms N1/N2/O2. The axial positions are occupied by O1 and O5 atoms. The crystal structure is mainly stabilized by the intermolecular H–bond.

Related literature top

For polydentate amine ligands in metal complexes, see: Fanshawe et al. (2000). For applications of metal complexes with a tridentate amine ligand, see: Junk & Steed (2007). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984).

Experimental top

To a stirred solution of 3-oxapentane-1,5-diamine(0.104 g, 0.10 mmol) in EtOH (10 ml) was added Zn(NO3)2(H2O)6(0.297 g 0.1 mmol) in EtOH (5 ml).A White crystalline product formed rapidly.The precipitate was filtered off, wash with EtOH and in vacuo.The dried precipitate was dissolved in DMF resulting in a colourless solutoin.The crystals suitable for X-ray diffraction studies were obtained by ether diffusion into DMF after several days at room temperature.Yield,0.115 g(28%).(found:C,16.45;H,3.99;N,19.43.Calcd.: C, 16.37; H, 4.12; N, 19.09).

Refinement top

H atoms were placed in calculated positiosn with C—H = 0.97 and N—H = 0.90 Å, and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Bis(nitrato-κO)(3-oxapentane-1,5-diamine- κ3N,O,N')zinc(II) top
Crystal data top
[Zn(NO3)2(C4H12N2O)]Z = 2
Mr = 293.55F(000) = 300
Triclinic, P1Dx = 1.940 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.031 (19) ÅCell parameters from 1744 reflections
b = 8.034 (19) Åθ = 2.4–26.2°
c = 9.55 (2) ŵ = 2.48 mm1
α = 103.97 (2)°T = 296 K
β = 101.90 (2)°Block, colourless
γ = 115.879 (18)°0.30 × 0.28 × 0.26 mm
V = 503 (2) Å3
Data collection top
Bruker SMART 1000
diffractometer
1712 independent reflections
Radiation source: fine-focus sealed tube1543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 99
Tmin = 0.524, Tmax = 0.565k = 99
2969 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.3287P]
where P = (Fo2 + 2Fc2)/3
1712 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Zn(NO3)2(C4H12N2O)]γ = 115.879 (18)°
Mr = 293.55V = 503 (2) Å3
Triclinic, P1Z = 2
a = 8.031 (19) ÅMo Kα radiation
b = 8.034 (19) ŵ = 2.48 mm1
c = 9.55 (2) ÅT = 296 K
α = 103.97 (2)°0.30 × 0.28 × 0.26 mm
β = 101.90 (2)°
Data collection top
Bruker SMART 1000
diffractometer
1712 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1543 reflections with I > 2σ(I)
Tmin = 0.524, Tmax = 0.565Rint = 0.016
2969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.08Δρmax = 0.39 e Å3
1712 reflectionsΔρmin = 0.30 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1984 (4)0.4429 (4)0.1842 (4)0.0421 (7)
H4A0.05850.38400.16830.050*
H4B0.22760.33620.16310.050*
C20.2448 (4)0.5479 (4)0.0773 (3)0.0408 (7)
H3C0.17560.45360.02890.049*
H3D0.20440.64640.09070.049*
C30.5347 (5)0.8083 (5)0.0668 (4)0.0447 (8)
H1A0.46610.88160.07970.054*
H1B0.52090.76230.04090.054*
C40.7451 (5)0.9362 (5)0.1657 (4)0.0443 (8)
H2C0.81530.86700.14280.053*
H2D0.80311.05750.14490.053*
N10.3161 (3)0.5833 (4)0.3447 (3)0.0354 (5)
H3A0.30250.51490.40770.043*
H3B0.27020.66600.36990.043*
N20.7660 (3)0.9873 (3)0.3291 (3)0.0350 (5)
H2A0.72621.07540.35510.042*
H2B0.89471.04660.38740.042*
N30.8109 (4)0.5303 (3)0.3367 (3)0.0344 (5)
N40.7273 (4)0.9449 (3)0.6934 (3)0.0351 (6)
O10.4541 (3)0.6427 (3)0.1137 (2)0.0370 (5)
O20.6435 (3)0.5019 (3)0.3413 (2)0.0425 (5)
O30.9375 (3)0.6943 (3)0.3458 (3)0.0538 (6)
O40.8395 (4)0.3919 (4)0.3230 (4)0.0700 (8)
O50.7711 (3)0.8330 (3)0.6081 (2)0.0367 (5)
O60.6094 (3)0.9873 (3)0.6285 (3)0.0489 (6)
O70.8036 (4)1.0070 (4)0.8329 (2)0.0556 (6)
Zn10.60715 (5)0.74633 (5)0.37628 (4)0.03129 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0341 (16)0.0388 (16)0.0448 (18)0.0122 (13)0.0134 (14)0.0155 (14)
C20.0346 (16)0.0391 (16)0.0352 (16)0.0135 (13)0.0052 (13)0.0097 (13)
C30.0485 (19)0.0457 (17)0.0352 (17)0.0162 (15)0.0176 (15)0.0209 (14)
C40.0460 (18)0.0410 (17)0.0428 (18)0.0156 (14)0.0213 (15)0.0196 (14)
N10.0376 (13)0.0451 (14)0.0364 (13)0.0247 (12)0.0195 (11)0.0232 (11)
N20.0336 (13)0.0318 (12)0.0356 (13)0.0148 (10)0.0092 (11)0.0129 (10)
N30.0433 (14)0.0363 (13)0.0311 (13)0.0245 (12)0.0157 (11)0.0145 (10)
N40.0397 (14)0.0386 (13)0.0337 (14)0.0239 (12)0.0139 (11)0.0162 (11)
O10.0351 (11)0.0374 (10)0.0339 (11)0.0131 (9)0.0137 (9)0.0159 (9)
O20.0388 (12)0.0442 (12)0.0500 (13)0.0251 (10)0.0185 (10)0.0165 (10)
O30.0541 (14)0.0401 (12)0.0583 (15)0.0136 (11)0.0231 (12)0.0227 (11)
O40.0750 (18)0.0592 (15)0.114 (2)0.0528 (15)0.0505 (17)0.0426 (16)
O50.0444 (12)0.0435 (11)0.0305 (10)0.0298 (10)0.0135 (9)0.0123 (9)
O60.0525 (13)0.0560 (13)0.0527 (14)0.0402 (12)0.0129 (11)0.0237 (11)
O70.0754 (17)0.0698 (15)0.0279 (12)0.0482 (14)0.0122 (11)0.0121 (11)
Zn10.03247 (19)0.03232 (19)0.03040 (19)0.01648 (14)0.01121 (14)0.01408 (14)
Geometric parameters (Å, º) top
C1—N11.467 (4)N1—H3A0.9000
C1—C21.480 (5)N1—H3B0.9000
C1—H4A0.9700N2—Zn12.020 (4)
C1—H4B0.9700N2—H2A0.9000
C2—O11.429 (5)N2—H2B0.9000
C2—H3C0.9700N3—O41.214 (4)
C2—H3D0.9700N3—O31.231 (4)
C3—O11.429 (4)N3—O21.273 (4)
C3—C41.470 (5)N4—O71.215 (4)
C3—H1A0.9700N4—O61.240 (3)
C3—H1B0.9700N4—O51.279 (3)
C4—N21.468 (5)O1—Zn12.307 (5)
C4—H2C0.9700O2—Zn12.068 (5)
C4—H2D0.9700O5—Zn12.091 (4)
N1—Zn12.029 (5)
N1—C1—C2110.1 (3)H3A—N1—H3B108.0
N1—C1—H4A109.6C4—N2—Zn1112.71 (19)
C2—C1—H4A109.6C4—N2—H2A109.1
N1—C1—H4B109.6Zn1—N2—H2A109.1
C2—C1—H4B109.6C4—N2—H2B109.1
H4A—C1—H4B108.2Zn1—N2—H2B109.1
O1—C2—C1106.9 (2)H2A—N2—H2B107.8
O1—C2—H3C110.3O4—N3—O3122.0 (3)
C1—C2—H3C110.3O4—N3—O2117.9 (3)
O1—C2—H3D110.3O3—N3—O2120.0 (3)
C1—C2—H3D110.3O7—N4—O6122.9 (3)
H3C—C2—H3D108.6O7—N4—O5119.3 (2)
O1—C3—C4106.7 (3)O6—N4—O5117.8 (3)
O1—C3—H1A110.4C2—O1—C3114.1 (2)
C4—C3—H1A110.4C2—O1—Zn1108.81 (17)
O1—C3—H1B110.4C3—O1—Zn1109.59 (19)
C4—C3—H1B110.4N3—O2—Zn1116.47 (18)
H1A—C3—H1B108.6N4—O5—Zn1109.2 (2)
N2—C4—C3110.2 (3)N2—Zn1—N1133.42 (10)
N2—C4—H2C109.6N2—Zn1—O2124.63 (18)
C3—C4—H2C109.6N1—Zn1—O293.24 (17)
N2—C4—H2D109.6N2—Zn1—O5102.15 (13)
C3—C4—H2D109.6N1—Zn1—O5107.77 (13)
H2C—C4—H2D108.1O2—Zn1—O584.95 (10)
C1—N1—Zn1111.6 (2)N2—Zn1—O176.61 (12)
C1—N1—H3A109.3N1—Zn1—O177.29 (11)
Zn1—N1—H3A109.3O2—Zn1—O190.28 (10)
C1—N1—H3B109.3O5—Zn1—O1173.20 (8)
Zn1—N1—H3B109.3
N1—C1—C2—O155.3 (3)C1—N1—Zn1—O5153.7 (2)
O1—C3—C4—N253.8 (3)C1—N1—Zn1—O121.62 (19)
C2—C1—N1—Zn149.5 (3)N3—O2—Zn1—N222.7 (2)
C3—C4—N2—Zn148.8 (3)N3—O2—Zn1—N1173.84 (19)
C1—C2—O1—C3157.2 (2)N3—O2—Zn1—O578.6 (2)
C1—C2—O1—Zn134.5 (3)N3—O2—Zn1—O196.6 (2)
C4—C3—O1—C2156.3 (3)N4—O5—Zn1—N281.0 (3)
C4—C3—O1—Zn134.0 (3)N4—O5—Zn1—N162.8 (2)
O4—N3—O2—Zn1176.9 (2)N4—O5—Zn1—O2154.59 (18)
O3—N3—O2—Zn13.2 (3)N4—O5—Zn1—O1159.8 (5)
O7—N4—O5—Zn1178.1 (2)C2—O1—Zn1—N2133.23 (19)
O6—N4—O5—Zn12.8 (3)C3—O1—Zn1—N27.84 (19)
C4—N2—Zn1—N178.7 (2)C2—O1—Zn1—N17.84 (17)
C4—N2—Zn1—O259.7 (2)C3—O1—Zn1—N1133.2 (2)
C4—N2—Zn1—O5152.0 (2)C2—O1—Zn1—O2101.1 (2)
C4—N2—Zn1—O121.2 (2)C3—O1—Zn1—O2133.5 (2)
C1—N1—Zn1—N278.9 (3)C2—O1—Zn1—O5146.5 (6)
C1—N1—Zn1—O267.9 (2)C3—O1—Zn1—O588.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3A···O2i0.902.393.217 (7)152
N1—H3B···O6ii0.902.513.168 (9)130
N2—H2A···O4iii0.902.423.058 (8)128
N2—H2B···O5iv0.902.413.201 (9)145
N2—H2B···O3iv0.902.493.106 (6)126
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(NO3)2(C4H12N2O)]
Mr293.55
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.031 (19), 8.034 (19), 9.55 (2)
α, β, γ (°)103.97 (2), 101.90 (2), 115.879 (18)
V3)503 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.48
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.524, 0.565
No. of measured, independent and
observed [I > 2σ(I)] reflections
2969, 1712, 1543
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.08
No. of reflections1712
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H3A···O2i0.902.393.217 (7)152
N1—H3B···O6ii0.902.513.168 (9)130
N2—H2A···O4iii0.902.423.058 (8)128
N2—H2B···O5iv0.902.413.201 (9)145
N2—H2B···O3iv0.902.493.106 (6)126
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x+2, y+2, z+1.
 

Acknowledgements

The authors acknowledge financial support from the `Qing Lan' Talent Engineering Funds and the Students' Innovation Experiment Funds (grant No. 201031) of Lanzhou Jiaotong University, China.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFanshawe, R. L., Mobinikhaledi, A., Clark, C. R. & Blackman, A. G. (2000). Inorg. Chim. Acta, 307, 26–31.  CrossRef CAS Google Scholar
First citationJunk, P. C. & Steed, J. W. (2007). Inorg. Chim. Acta, 360, 1661–1668.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds