metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,2-Bis(4-pyrid­yl)ethene-κ2N:N′]bis­­[aqua­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)copper(II)] dihydrate

aGeneral Education Center, Yuanpei University, No. 306 Yuanpei St, HsinChu 30015, Taiwan
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 10 May 2011; accepted 15 May 2011; online 20 May 2011)

In the title dinuclear CuII complex, [Cu2(C7H3NO4)2(C12H10N2)(H2O)2]·2H2O, the water-coordinated CuII cation is O,N,O′-chelated by a pyridine-2,6-dicarboxyl­ate (pdc) dianion, and one pyridine N atom from a 1,2-bis­(4-pyrid­yl)ethene ligand coordinates to the CuII cation, completing the CuN2O3 distorted square-pyriamidial geometry. The Cu—Owater bond [2.388 (4) Å] in the axial direction is much longer than the other Cu—O bonds. The 1,2-bis­(4-pyrid­yl)ethene ligand is located across an inversion center with the mid-point of the C=C bond at the inversion center, and bridges two CuII cations, generating a centrosymmetric dinuclear complex. The crystal structure is stabilized by classical O—H⋯O and weak C—H⋯O hydrogen bonds.

Related literature

For related CuII complexes with pyridine-2,6-dicarboxyl­ate ligands, see: Chaigneau et al. (2004[Chaigneau, J., Marrot, J. & Riou, D. (2004). Acta Cryst. C60, m101-m103.]); Dong et al. (2010[Dong, G.-Y., Fan, L.-H., Yang, L.-X. & Khan, I. U. (2010). Acta Cryst. E66, m532.]); Ghosh et al. (2004[Ghosh, S. K., Ribas, J. & Bharadwaj, P. K. (2004). CrystEngComm, 6, 250-256.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H3NO4)2(C12H10N2)(H2O)2]·2H2O

  • Mr = 711.59

  • Triclinic, [P \overline 1]

  • a = 5.2616 (5) Å

  • b = 7.9316 (7) Å

  • c = 16.8063 (14) Å

  • α = 89.183 (2)°

  • β = 84.541 (2)°

  • γ = 72.557 (2)°

  • V = 666.01 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 295 K

  • 0.25 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.921, Tmax = 0.976

  • 5755 measured reflections

  • 2373 independent reflections

  • 2174 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.126

  • S = 1.23

  • 2373 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 2.388 (4)
Cu1—O2 2.053 (3)
Cu1—O4 2.003 (4)
Cu1—N1 1.902 (3)
Cu1—N2 1.951 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O6 0.82 2.10 2.669 (8) 126
O1—H1B⋯O2i 0.82 1.99 2.809 (5) 175
O6—H6A⋯O3i 0.82 2.31 2.919 (9) 132
O6—H6B⋯O3ii 0.82 2.06 2.851 (8) 163
C2—H2A⋯O1iii 0.93 2.54 3.348 (6) 146
C4—H4A⋯O3iv 0.93 2.52 3.411 (6) 160
C8—H8A⋯O1v 0.93 2.49 3.381 (6) 161
C9—H9A⋯O5vi 0.93 2.47 3.382 (6) 167
C13—H13A⋯O5vii 0.93 2.35 3.265 (6) 166
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+2; (iii) x, y+1, z; (iv) -x, -y+2, -z+2; (v) x-1, y, z; (vi) x-1, y-1, z; (vii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The pyridine-2,6-dicarboxylic acid (pdcH2) has important coordination functions to transition metals by either carboxylate bridges between metal centers, to form dimeric complexes or tridentate (O, N, O') chelation to one metal ion. Some CuII pdc complexes have been reported (Chaigneau et al., 2004; Ghosh et al., 2004; Dong et al., 2010).

In the title compound, [Cu2(C12H10N2)(C7H3NO4)2(H2O)2].2(H2O)], the CuII atom is coordinated by two oxygen atoms and one nitrogen atom of one pyridine-2,6-dicarboxylate (pdc) ligand, one pyrinyl N atom of the 1,2-bis(4-pyridyl)ethene ligand. The distorted square-pyriamidial geometry is completed by a longer axial bond to the O atom of a water molecule [Cu—O 2.390 (43) Å in the axial direction]. The Cu1—N2—N2i—Cu1i torsion angle is 180.0 (13)°, assemblies exhibiting M—anti-1,2-bis(4-pyridyl)ethene—M bridges. Two CuII atoms are bridged by one trans-1,2-bis(4-pyridyl)ethene ligand, generating a dinuclear molecule.The dinuclear molecule is located on a centre of inversion, which is in the middle of the ethylyne fragment of the bpe ligand.

The molecular structure and packing are stabilized by strong O—H···O and weak C—H···O hydrogen bonds, also including a crystal water molecule.

Related literature top

For related CuII complexes with pyridine-2,6-dicarboxylate ligands, see: Chaigneau et al. (2004); Dong et al. (2010); Ghosh et al. (2004).

Experimental top

A solution of Cu(NO3)2.6H2O (0.296 g, 1 mmol) in 5 ml H2O was added to pyridine-2,6-dicarboxylic acid (0.167, 1 mmol) and 1,2-bis(4-pyridyl)ethane (0.184 g, 1 mmol) in a Teflon-lined stainless steel autoclave which was heated under autogenous pressure to 453 K for 72 h and then allowed to cool to room temperature. Blue columnar crystals of the title compound were collected in 42.35% yield (based on Cu).

Refinement top

Water H atoms were placed in calculated positions and refined with the distance constrains of O—H = 0.82, and Uiso(H)= 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.93 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.[symmetry code: (i) 1 - x, -y, 1 - z].
[Figure 2] Fig. 2. The molecular packing for the title compound. Hydrogen bonds are shown as dashed lines.
[µ-1,2-Bis(4-pyridyl)ethene-κ2N:N']bis[aqua(pyridine- 2,6-dicarboxylato-κ3O2,N,O6)copper(II)] dihydrate top
Crystal data top
[Cu2(C7H3NO4)2(C12H10N2)(H2O)2]·2H2OZ = 1
Mr = 711.59F(000) = 362
Triclinic, P1Dx = 1.774 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2616 (5) ÅCell parameters from 3226 reflections
b = 7.9316 (7) Åθ = 2.5–25.0°
c = 16.8063 (14) ŵ = 1.67 mm1
α = 89.183 (2)°T = 295 K
β = 84.541 (2)°Columnar, blue
γ = 72.557 (2)°0.25 × 0.10 × 0.10 mm
V = 666.01 (10) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2373 independent reflections
Radiation source: fine-focus sealed tube2174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9 pixels mm-1θmax = 25.1°, θmin = 1.2°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 89
Tmin = 0.921, Tmax = 0.976l = 1919
5755 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.7371P]
where P = (Fo2 + 2Fc2)/3
2373 reflections(Δ/σ)max = 0.002
200 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu2(C7H3NO4)2(C12H10N2)(H2O)2]·2H2Oγ = 72.557 (2)°
Mr = 711.59V = 666.01 (10) Å3
Triclinic, P1Z = 1
a = 5.2616 (5) ÅMo Kα radiation
b = 7.9316 (7) ŵ = 1.67 mm1
c = 16.8063 (14) ÅT = 295 K
α = 89.183 (2)°0.25 × 0.10 × 0.10 mm
β = 84.541 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2373 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2174 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.976Rint = 0.036
5755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.23Δρmax = 0.57 e Å3
2373 reflectionsΔρmin = 0.60 e Å3
200 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.57285 (11)0.65304 (7)0.73016 (3)0.0351 (2)
O10.8836 (7)0.4653 (5)0.8122 (2)0.0583 (14)
O20.2784 (6)0.6365 (4)0.81661 (17)0.0396 (10)
O30.0696 (7)0.7621 (5)0.9326 (2)0.0557 (12)
O40.8504 (7)0.7395 (4)0.66711 (17)0.0435 (11)
O51.0829 (8)0.9308 (5)0.6771 (2)0.0616 (16)
N10.5505 (7)0.8520 (4)0.7953 (2)0.0316 (11)
N20.5692 (7)0.4684 (5)0.6552 (2)0.0343 (11)
C10.7125 (9)0.9487 (6)0.7732 (2)0.0355 (14)
C20.7019 (10)1.0950 (6)0.8175 (3)0.0458 (17)
C30.5179 (11)1.1389 (7)0.8849 (3)0.0520 (17)
C40.3530 (10)1.0343 (7)0.9072 (3)0.0478 (17)
C50.3772 (9)0.8890 (6)0.8601 (3)0.0363 (12)
C60.2256 (9)0.7535 (6)0.8725 (3)0.0394 (14)
C70.8995 (10)0.8702 (6)0.6991 (3)0.0406 (16)
C80.4106 (10)0.3645 (6)0.6710 (3)0.0431 (16)
C90.4046 (10)0.2307 (6)0.6218 (3)0.0409 (16)
C100.5697 (9)0.1958 (6)0.5501 (2)0.0354 (14)
C110.7338 (10)0.3030 (7)0.5338 (3)0.0453 (16)
C120.7297 (10)0.4350 (6)0.5863 (3)0.0434 (16)
C130.5754 (10)0.0543 (6)0.4941 (3)0.0486 (17)
O60.7321 (17)0.5326 (10)0.9675 (4)0.149 (4)
H1A0.893900.415500.855400.0880*
H1B0.999800.515100.810400.0880*
H2A0.814601.163200.802900.0550*
H3A0.505101.238900.915200.0620*
H4A0.230901.061800.952400.0570*
H8A0.298400.385100.718400.0520*
H9A0.290800.163000.636000.0490*
H11A0.847500.285200.486700.0540*
H12A0.842500.504100.573900.0520*
H13A0.691000.039300.447500.066 (17)*
H6A0.782300.610900.986000.2230*
H6B0.816800.443300.989500.2230*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0427 (3)0.0384 (3)0.0323 (3)0.0274 (2)0.0089 (2)0.0139 (2)
O10.052 (2)0.048 (2)0.082 (3)0.0273 (17)0.0001 (18)0.0071 (18)
O20.0426 (18)0.0427 (17)0.0397 (16)0.0255 (14)0.0094 (13)0.0145 (13)
O30.058 (2)0.063 (2)0.050 (2)0.0321 (18)0.0239 (17)0.0156 (17)
O40.056 (2)0.0483 (19)0.0359 (16)0.0341 (16)0.0111 (14)0.0150 (14)
O50.075 (3)0.075 (3)0.054 (2)0.059 (2)0.0196 (18)0.0117 (18)
N10.0359 (19)0.0311 (18)0.0327 (18)0.0186 (16)0.0019 (15)0.0067 (14)
N20.042 (2)0.0353 (19)0.0320 (18)0.0232 (17)0.0040 (15)0.0094 (15)
C10.044 (3)0.033 (2)0.036 (2)0.022 (2)0.0013 (19)0.0021 (18)
C20.057 (3)0.039 (3)0.051 (3)0.028 (2)0.008 (2)0.003 (2)
C30.065 (3)0.040 (3)0.056 (3)0.025 (2)0.002 (2)0.019 (2)
C40.054 (3)0.049 (3)0.041 (3)0.018 (2)0.004 (2)0.018 (2)
C50.039 (2)0.037 (2)0.037 (2)0.0180 (19)0.0002 (18)0.0092 (18)
C60.038 (2)0.044 (3)0.041 (2)0.022 (2)0.0053 (19)0.008 (2)
C70.052 (3)0.045 (3)0.034 (2)0.031 (2)0.004 (2)0.0013 (19)
C80.050 (3)0.047 (3)0.037 (2)0.026 (2)0.012 (2)0.015 (2)
C90.050 (3)0.041 (3)0.041 (2)0.031 (2)0.008 (2)0.0117 (19)
C100.043 (3)0.036 (2)0.031 (2)0.018 (2)0.0008 (18)0.0051 (18)
C110.053 (3)0.051 (3)0.038 (2)0.030 (2)0.015 (2)0.015 (2)
C120.052 (3)0.047 (3)0.040 (2)0.031 (2)0.007 (2)0.011 (2)
C130.063 (3)0.049 (3)0.041 (3)0.033 (2)0.015 (2)0.020 (2)
O60.195 (7)0.159 (7)0.095 (4)0.063 (6)0.008 (5)0.015 (4)
Geometric parameters (Å, º) top
Cu1—O12.388 (4)C2—C31.394 (7)
Cu1—O22.053 (3)C3—C41.394 (8)
Cu1—O42.003 (4)C4—C51.375 (7)
Cu1—N11.902 (3)C5—C61.520 (7)
Cu1—N21.951 (4)C8—C91.364 (7)
O2—C61.281 (6)C9—C101.396 (6)
O3—C61.229 (6)C10—C111.390 (7)
O4—C71.278 (6)C10—C131.467 (6)
O5—C71.226 (7)C11—C121.373 (7)
O1—H1A0.8200C13—C13i1.336 (7)
O1—H1B0.8200C2—H2A0.9300
O6—H6A0.8200C3—H3A0.9300
O6—H6B0.8200C4—H4A0.9300
N1—C11.333 (6)C8—H8A0.9300
N1—C51.328 (6)C9—H9A0.9300
N2—C121.346 (6)C11—H11A0.9300
N2—C81.345 (6)C12—H12A0.9300
C1—C21.372 (6)C13—H13A0.9300
C1—C71.526 (6)
O1—Cu1—O286.70 (12)O3—C6—C5119.9 (4)
O1—Cu1—O494.17 (13)O2—C6—O3125.8 (4)
O1—Cu1—N190.56 (14)O2—C6—C5114.3 (4)
O1—Cu1—N296.13 (14)O4—C7—C1114.4 (4)
O2—Cu1—O4161.23 (12)O5—C7—C1119.4 (4)
O2—Cu1—N179.81 (14)O4—C7—O5126.1 (5)
O2—Cu1—N2101.12 (14)N2—C8—C9124.0 (5)
O4—Cu1—N181.43 (14)C8—C9—C10119.8 (5)
O4—Cu1—N297.44 (14)C11—C10—C13120.6 (4)
N1—Cu1—N2173.29 (15)C9—C10—C11116.3 (4)
Cu1—O2—C6114.6 (3)C9—C10—C13123.1 (4)
Cu1—O4—C7114.6 (3)C10—C11—C12120.7 (5)
H1A—O1—H1B104.00N2—C12—C11122.7 (5)
Cu1—O1—H1B101.00C10—C13—C13i124.0 (5)
Cu1—O1—H1A143.00C1—C2—H2A121.00
H6A—O6—H6B104.00C3—C2—H2A121.00
C1—N1—C5122.9 (4)C4—C3—H3A120.00
Cu1—N1—C5119.5 (3)C2—C3—H3A120.00
Cu1—N1—C1117.7 (3)C3—C4—H4A121.00
Cu1—N2—C12122.0 (3)C5—C4—H4A121.00
C8—N2—C12116.6 (4)C9—C8—H8A118.00
Cu1—N2—C8121.4 (3)N2—C8—H8A118.00
N1—C1—C2120.0 (4)C8—C9—H9A120.00
N1—C1—C7111.5 (4)C10—C9—H9A120.00
C2—C1—C7128.5 (4)C12—C11—H11A120.00
C1—C2—C3118.3 (5)C10—C11—H11A120.00
C2—C3—C4120.5 (5)N2—C12—H12A119.00
C3—C4—C5117.7 (5)C11—C12—H12A119.00
N1—C5—C4120.6 (4)C10—C13—H13A118.00
N1—C5—C6111.7 (4)C13i—C13—H13A118.00
C4—C5—C6127.7 (5)
O1—Cu1—O2—C688.5 (3)C1—N1—C5—C6178.0 (4)
N1—Cu1—O2—C62.7 (3)Cu1—N2—C8—C9178.3 (4)
N2—Cu1—O2—C6175.9 (3)C12—N2—C8—C90.1 (7)
O1—Cu1—O4—C785.2 (3)Cu1—N2—C12—C11178.5 (4)
N1—Cu1—O4—C74.7 (3)C8—N2—C12—C110.3 (7)
N2—Cu1—O4—C7178.1 (3)N1—C1—C2—C30.4 (7)
O1—Cu1—N1—C193.5 (3)C7—C1—C2—C3178.0 (5)
O1—Cu1—N1—C586.4 (3)N1—C1—C7—O46.8 (6)
O2—Cu1—N1—C1179.9 (3)N1—C1—C7—O5171.0 (4)
O2—Cu1—N1—C50.1 (3)C2—C1—C7—O4175.4 (5)
O4—Cu1—N1—C10.6 (3)C2—C1—C7—O56.8 (8)
O4—Cu1—N1—C5179.5 (4)C1—C2—C3—C41.2 (8)
O1—Cu1—N2—C884.0 (4)C2—C3—C4—C50.7 (8)
O1—Cu1—N2—C1294.2 (4)C3—C4—C5—N10.7 (7)
O2—Cu1—N2—C83.9 (4)C3—C4—C5—C6178.7 (5)
O2—Cu1—N2—C12178.0 (4)N1—C5—C6—O24.2 (6)
O4—Cu1—N2—C8179.0 (4)N1—C5—C6—O3175.4 (4)
O4—Cu1—N2—C120.9 (4)C4—C5—C6—O2176.4 (5)
Cu1—O2—C6—O3175.2 (4)C4—C5—C6—O34.0 (8)
Cu1—O2—C6—C54.3 (5)N2—C8—C9—C100.2 (8)
Cu1—O4—C7—O5170.2 (4)C8—C9—C10—C110.2 (7)
Cu1—O4—C7—C17.4 (5)C8—C9—C10—C13179.9 (5)
Cu1—N1—C1—C2179.1 (3)C9—C10—C11—C120.0 (7)
Cu1—N1—C1—C72.9 (5)C13—C10—C11—C12179.7 (5)
C5—N1—C1—C20.9 (7)C9—C10—C13—C13i0.0 (8)
C5—N1—C1—C7177.1 (4)C11—C10—C13—C13i179.7 (5)
Cu1—N1—C5—C4178.6 (4)C10—C11—C12—N20.2 (8)
Cu1—N1—C5—C62.0 (5)C10—C13—C13i—C10i180.0 (4)
C1—N1—C5—C41.5 (7)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O60.822.102.669 (8)126
O1—H1B···O2ii0.821.992.809 (5)175
O6—H6A···O3ii0.822.312.919 (9)132
O6—H6B···O3iii0.822.062.851 (8)163
C2—H2A···O1iv0.932.543.348 (6)146
C4—H4A···O3v0.932.523.411 (6)160
C8—H8A···O1vi0.932.493.381 (6)161
C9—H9A···O5vii0.932.473.382 (6)167
C13—H13A···O5viii0.932.353.265 (6)166
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x, y+1, z; (v) x, y+2, z+2; (vi) x1, y, z; (vii) x1, y1, z; (viii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C7H3NO4)2(C12H10N2)(H2O)2]·2H2O
Mr711.59
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.2616 (5), 7.9316 (7), 16.8063 (14)
α, β, γ (°)89.183 (2), 84.541 (2), 72.557 (2)
V3)666.01 (10)
Z1
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.25 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.921, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
5755, 2373, 2174
Rint0.036
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.126, 1.23
No. of reflections2373
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.60

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—O12.388 (4)Cu1—N11.902 (3)
Cu1—O22.053 (3)Cu1—N21.951 (4)
Cu1—O42.003 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O60.822.102.669 (8)126
O1—H1B···O2i0.821.992.809 (5)175
O6—H6A···O3i0.822.312.919 (9)132
O6—H6B···O3ii0.822.062.851 (8)163
C2—H2A···O1iii0.932.543.348 (6)146
C4—H4A···O3iv0.932.523.411 (6)160
C8—H8A···O1v0.932.493.381 (6)161
C9—H9A···O5vi0.932.473.382 (6)167
C13—H13A···O5vii0.932.353.265 (6)166
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x, y+1, z; (iv) x, y+2, z+2; (v) x1, y, z; (vi) x1, y1, z; (vii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaigneau, J., Marrot, J. & Riou, D. (2004). Acta Cryst. C60, m101–m103.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDong, G.-Y., Fan, L.-H., Yang, L.-X. & Khan, I. U. (2010). Acta Cryst. E66, m532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhosh, S. K., Ribas, J. & Bharadwaj, P. K. (2004). CrystEngComm, 6, 250–256.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds