organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Methyl­phen­yl)-3-[(1-phenyl­ethyl­­idene)amino]­thio­urea

aCollege of Chemistry and Chemical Engineering, Xuchang University, Henan 461000, People's Republic of China
*Correspondence e-mail: zhangyanling315@126.com

(Received 19 May 2011; accepted 23 May 2011; online 28 May 2011)

In the title compound, C16H17N3S, the amino­thio­urea unit is nearly planar (r.m.s. deviation = 0.0425 Å), and is twisted with respect to the tolyl and phenyl rings by 57.84 (7) and 15.88 (14)°, respectively; the tolyl and phenyl rings are twisted by 65.64 (11)° to each other. Inter­molecular N—H⋯S and weak C—H⋯S hydrogen bonds are present in the crystal structure.

Related literature

The title compound is a derivative of thio­semicarbazone. For applications of thio­semicarbazones in the biological field, see: Hu et al. (2006[Hu, W.-X., Zhou, W., Xia, C.-N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3S

  • Mr = 283.39

  • Monoclinic, P 21 /c

  • a = 10.5881 (3) Å

  • b = 5.7355 (2) Å

  • c = 26.9746 (7) Å

  • β = 108.670 (2)°

  • V = 1551.91 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.79 mm−1

  • T = 291 K

  • 0.25 × 0.18 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.60, Tmax = 0.73

  • 15835 measured reflections

  • 2945 independent reflections

  • 2587 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.126

  • S = 1.06

  • 2945 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.90 (2) 2.86 (2) 3.7456 (16) 167.8 (19)
C16—H16B⋯S1i 0.96 2.74 3.471 (2) 133
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Thiosemicarbazones have attracted our attention because of their biological applications (Hu et al., 2006). A few single-crystal structures were reported. For understanding their anticancer activity, it is necessary to have detailed information on their geometries.

The molecular structure of (I) is shown in Fig 1. The molecules reveal an E configuration. The dihedral angles formed by the tolyl and phenyl rings with the almost planar aminothiourea unit (r.m.s. deviation = 0.0425 Å) are 57.84 (7) and 15.88 (14)°, respectively. Intermolecular N—H···S and C—H···S interactions occur in the crystal structure (Table 1).

Related literature top

The title compound is a derivative of thiosemicarbazone. For applications of thiosemicarbazones in the biological field, see: Hu et al. (2006).

Experimental top

N-(p-Tolyl)thiosemicarbazide (2.7 g, 15 mmol) and acetophenone (1.8 g, 15 mmol) was dissolved in 95% ethanol (20 ml), and the solution was refluxed for 3 h. Fine colorless crystals appeared on cooling. They were filtered and washed by 95% ethanol to give 2.9 g of the title compound in 69.0% yield. Single crystals suitable for X-ray measurements were obtained from ether by slow evaporation at room temperature.

Refinement top

Imino H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.93–0.96 and refined using a riding model, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level.
(E)-1-(4-Methylphenyl)-3-[(1-phenylethylidene)amino]thiourea top
Crystal data top
C16H17N3SF(000) = 600
Mr = 283.39Dx = 1.213 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
a = 10.5881 (3) ÅCell parameters from 6724 reflections
b = 5.7355 (2) Åθ = 3.5–70.9°
c = 26.9746 (7) ŵ = 1.79 mm1
β = 108.670 (2)°T = 291 K
V = 1551.91 (8) Å3Prismatic, colorless
Z = 40.25 × 0.18 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2945 independent reflections
Radiation source: Enhance (Cu) X-ray Source2587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.2312 pixels mm-1θmax = 70.9°, θmin = 3.5°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 76
Tmin = 0.60, Tmax = 0.73l = 2831
15835 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.2489P]
where P = (Fo2 + 2Fc2)/3
2945 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H17N3SV = 1551.91 (8) Å3
Mr = 283.39Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.5881 (3) ŵ = 1.79 mm1
b = 5.7355 (2) ÅT = 291 K
c = 26.9746 (7) Å0.25 × 0.18 × 0.18 mm
β = 108.670 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
2945 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2587 reflections with I > 2σ(I)
Tmin = 0.60, Tmax = 0.73Rint = 0.041
15835 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.23 e Å3
2945 reflectionsΔρmin = 0.24 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.08154 (5)0.02598 (9)0.436028 (18)0.05334 (18)
N10.82552 (14)0.5213 (3)0.42960 (6)0.0465 (3)
N20.90859 (14)0.3341 (3)0.44695 (6)0.0499 (4)
N30.99833 (16)0.4238 (3)0.38311 (6)0.0510 (4)
C11.06088 (19)0.2091 (4)0.31610 (7)0.0559 (5)
H11.00440.08760.31790.067*
C21.1318 (2)0.1997 (4)0.28098 (7)0.0656 (6)
H2A1.12290.06990.25950.079*
C31.2149 (2)0.3777 (5)0.27725 (7)0.0651 (6)
C41.2278 (2)0.5681 (4)0.30964 (8)0.0630 (5)
H41.28410.68960.30770.076*
C51.15789 (19)0.5810 (4)0.34519 (7)0.0520 (4)
H51.16720.71090.36670.062*
C61.07490 (16)0.4014 (3)0.34853 (6)0.0443 (4)
C71.2928 (3)0.3658 (8)0.23886 (12)0.1137 (13)
H7A1.24910.45930.20870.171*
H7B1.29710.20700.22830.171*
H7C1.38140.42370.25530.171*
C80.99248 (15)0.2719 (3)0.42007 (6)0.0440 (4)
C90.74014 (16)0.5714 (3)0.45287 (7)0.0437 (4)
C100.64955 (15)0.7680 (3)0.43048 (6)0.0452 (4)
C110.6772 (2)0.9235 (4)0.39573 (7)0.0584 (5)
H110.75470.90580.38690.070*
C120.5910 (3)1.1032 (5)0.37429 (9)0.0761 (7)
H120.61021.20570.35100.091*
C130.4749 (2)1.1320 (5)0.38739 (9)0.0783 (8)
H130.41621.25260.37260.094*
C140.4478 (2)0.9828 (5)0.42192 (12)0.0773 (7)
H140.37071.00240.43090.093*
C150.53386 (19)0.8031 (4)0.44367 (10)0.0665 (6)
H150.51460.70370.46750.080*
C160.7269 (2)0.4397 (4)0.49895 (8)0.0570 (5)
H16A0.68580.53770.51820.086*
H16B0.81370.39320.52120.086*
H16C0.67280.30380.48690.086*
H20.904 (2)0.230 (4)0.4714 (8)0.058 (6)*
H30.960 (2)0.548 (4)0.3831 (8)0.053 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0594 (3)0.0488 (3)0.0626 (3)0.01893 (19)0.0347 (2)0.01199 (19)
N10.0428 (7)0.0442 (9)0.0593 (8)0.0093 (6)0.0257 (6)0.0052 (6)
N20.0502 (8)0.0488 (9)0.0607 (8)0.0150 (7)0.0319 (6)0.0117 (7)
N30.0550 (8)0.0492 (10)0.0578 (8)0.0193 (7)0.0305 (7)0.0099 (7)
C10.0614 (10)0.0575 (12)0.0464 (8)0.0029 (9)0.0138 (7)0.0037 (8)
C20.0828 (13)0.0722 (15)0.0404 (8)0.0195 (11)0.0177 (8)0.0086 (8)
C30.0717 (12)0.0870 (17)0.0436 (9)0.0292 (12)0.0282 (8)0.0116 (9)
C40.0648 (11)0.0709 (14)0.0624 (11)0.0067 (10)0.0333 (9)0.0157 (10)
C50.0624 (10)0.0480 (11)0.0518 (9)0.0075 (8)0.0268 (8)0.0018 (7)
C60.0450 (8)0.0503 (10)0.0395 (7)0.0137 (7)0.0162 (6)0.0063 (6)
C70.130 (3)0.159 (3)0.0798 (16)0.037 (2)0.0733 (18)0.0119 (19)
C80.0398 (7)0.0478 (10)0.0487 (8)0.0052 (7)0.0201 (6)0.0017 (7)
C90.0392 (7)0.0441 (10)0.0535 (8)0.0035 (7)0.0229 (6)0.0005 (7)
C100.0375 (7)0.0506 (10)0.0490 (8)0.0058 (7)0.0159 (6)0.0033 (7)
C110.0623 (11)0.0632 (13)0.0556 (10)0.0202 (9)0.0273 (8)0.0082 (9)
C120.0911 (16)0.0768 (17)0.0577 (11)0.0305 (13)0.0201 (10)0.0146 (11)
C130.0655 (12)0.0806 (18)0.0706 (13)0.0360 (12)0.0040 (10)0.0071 (12)
C140.0433 (10)0.0823 (18)0.1062 (18)0.0183 (10)0.0237 (11)0.0094 (14)
C150.0480 (10)0.0686 (15)0.0930 (14)0.0100 (9)0.0367 (10)0.0057 (12)
C160.0595 (10)0.0586 (12)0.0638 (10)0.0104 (9)0.0351 (8)0.0095 (9)
Geometric parameters (Å, º) top
S1—C81.6746 (18)C7—H7A0.9600
N1—N21.372 (2)C7—H7B0.9600
N1—C91.287 (2)C7—H7C0.9600
N2—C81.362 (2)C9—C101.478 (2)
N2—H20.90 (2)C9—C161.499 (2)
N3—C61.424 (2)C10—C111.391 (3)
N3—C81.340 (2)C10—C151.395 (2)
N3—H30.82 (2)C11—H110.9300
C1—H10.9300C11—C121.375 (3)
C1—C21.386 (3)C12—H120.9300
C1—C61.386 (3)C12—C131.393 (4)
C2—H2A0.9300C13—H130.9300
C2—C31.373 (4)C13—C141.361 (4)
C3—C41.378 (4)C14—H140.9300
C3—C71.517 (3)C14—C151.376 (3)
C4—H40.9300C15—H150.9300
C4—C51.388 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C5—C61.376 (3)C16—H16C0.9600
C9—N1—N2118.83 (15)N2—C8—S1119.57 (13)
N1—N2—H2126.2 (14)N3—C8—S1125.62 (12)
C8—N2—N1118.67 (15)N3—C8—N2114.78 (16)
C8—N2—H2114.3 (14)N1—C9—C10115.87 (15)
C6—N3—H3117.8 (16)N1—C9—C16123.94 (16)
C8—N3—C6126.88 (15)C10—C9—C16120.17 (14)
C8—N3—H3115.0 (16)C11—C10—C9121.03 (15)
C2—C1—H1120.3C11—C10—C15118.04 (18)
C2—C1—C6119.4 (2)C15—C10—C9120.93 (17)
C6—C1—H1120.3C10—C11—H11119.7
C1—C2—H2A119.3C12—C11—C10120.6 (2)
C3—C2—C1121.4 (2)C12—C11—H11119.7
C3—C2—H2A119.3C11—C12—H12119.9
C2—C3—C4118.58 (18)C11—C12—C13120.2 (2)
C2—C3—C7121.2 (3)C13—C12—H12119.9
C4—C3—C7120.2 (3)C12—C13—H13120.2
C3—C4—H4119.5C14—C13—C12119.7 (2)
C3—C4—C5121.0 (2)C14—C13—H13120.2
C5—C4—H4119.5C13—C14—H14119.8
C4—C5—H5120.1C13—C14—C15120.5 (2)
C6—C5—C4119.86 (19)C15—C14—H14119.8
C6—C5—H5120.1C10—C15—H15119.5
C1—C6—N3121.13 (18)C14—C15—C10121.0 (2)
C5—C6—N3119.00 (17)C14—C15—H15119.5
C5—C6—C1119.75 (16)C9—C16—H16A109.5
C3—C7—H7A109.5C9—C16—H16B109.5
C3—C7—H7B109.5C9—C16—H16C109.5
C3—C7—H7C109.5H16A—C16—H16B109.5
H7A—C7—H7B109.5H16A—C16—H16C109.5
H7A—C7—H7C109.5H16B—C16—H16C109.5
H7B—C7—H7C109.5
N1—N2—C8—S1172.72 (13)C6—C1—C2—C30.6 (3)
N1—N2—C8—N39.3 (2)C7—C3—C4—C5179.6 (2)
N1—C9—C10—C1115.8 (3)C8—N3—C6—C156.4 (3)
N1—C9—C10—C15164.35 (19)C8—N3—C6—C5127.6 (2)
N2—N1—C9—C10177.12 (15)C9—N1—N2—C8175.59 (16)
N2—N1—C9—C161.2 (3)C9—C10—C11—C12178.7 (2)
C1—C2—C3—C40.4 (3)C9—C10—C15—C14178.5 (2)
C1—C2—C3—C7179.7 (2)C10—C11—C12—C130.3 (4)
C2—C1—C6—N3176.51 (16)C11—C10—C15—C141.6 (3)
C2—C1—C6—C50.6 (3)C11—C12—C13—C140.6 (4)
C2—C3—C4—C50.3 (3)C12—C13—C14—C150.4 (4)
C3—C4—C5—C60.3 (3)C13—C14—C15—C100.8 (4)
C4—C5—C6—N3176.47 (16)C15—C10—C11—C121.4 (3)
C4—C5—C6—C10.4 (3)C16—C9—C10—C11165.88 (19)
C6—N3—C8—S13.6 (3)C16—C9—C10—C1514.0 (3)
C6—N3—C8—N2178.56 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.90 (2)2.86 (2)3.7456 (16)167.8 (19)
C16—H16B···S1i0.962.743.471 (2)133
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H17N3S
Mr283.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)10.5881 (3), 5.7355 (2), 26.9746 (7)
β (°) 108.670 (2)
V3)1551.91 (8)
Z4
Radiation typeCu Kα
µ (mm1)1.79
Crystal size (mm)0.25 × 0.18 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.60, 0.73
No. of measured, independent and
observed [I > 2σ(I)] reflections
15835, 2945, 2587
Rint0.041
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.06
No. of reflections2945
No. of parameters191
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.90 (2)2.86 (2)3.7456 (16)167.8 (19)
C16—H16B···S1i0.962.743.471 (2)133
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Henan Province (112102310538, 082300420110), the Natural Science Foundation of the Education Department of Henan Province (2010B150029) and the Scientific Research Foundation of Xuchang University of Henan Province, China (2009086) for supporting this work.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHu, W.-X., Zhou, W., Xia, C.-N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds