organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Hy­dr­oxy­meth­yl)furan-2-carb­­oxy­lic acid

aLaboratory of Microbial Pharmaceutical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: xuqingyan@xmu.edu.cn

(Received 21 May 2011; accepted 23 May 2011; online 28 May 2011)

In the title compound, C6H6O4, the furan ring is nearly coplanar with the carboxyl group, the maximum atomic deviation being 0.0248 (9) Å. The crystal packing is stabilized by classical O—H⋯O and weak C—H⋯O hydrogen bonding.

Related literature

For the biochemical significance of the title compound, see: Mrochek & Rainey (1972[Mrochek, J. & Rainey, W. (1972). Clin. Chem. 18, 821-828.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6O4

  • Mr = 142.11

  • Orthorhombic, P b c a

  • a = 10.838 (3) Å

  • b = 7.2601 (17) Å

  • c = 15.526 (4) Å

  • V = 1221.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 294 K

  • 0.32 × 0.22 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 5637 measured reflections

  • 1098 independent reflections

  • 1033 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.08

  • 1098 reflections

  • 99 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.87 (2) 1.83 (2) 2.6951 (16) 169.2 (19)
O4—H4A⋯O1ii 0.96 (2) 1.61 (2) 2.5643 (17) 171 (2)
C7—H7A⋯O4iii 0.97 2.45 3.265 (2) 142
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the molecular structure of the compound, all the carbon atoms locate in the same plane. The crystal packing is stabilized by O—H···O and weak C—H···O hydrogen bonding (Table 1).

Related literature top

For the biochemical significance of the title compound, see: Mrochek & Rainey (1972).

Experimental top

The title compound was obtained from the fermentation of Aspergillus sp. by column chromatography. The strain was isolated from a soil sample collected from Jinjiang salt-field, Fujian, China. The strain was cultured using half sea-water Potato Dextrose Agar medium at 28 degrees celsius for 14 days. The fermentation (40 liters) was extracted with ethyl acetate (EtOAc). The EtOAc extract (18.0 g) eluted with methanol-water (30%, 50%, 70%, 100%; V/V) to yield 12 fractions by column chromatography RP-18. Fraction 1 was further puried by Sephadex LH-20 (140 g) chromatography with methanol. Then 1–4 eluted with acetone by Sephadex LH-20 (80 g) chromatography, then the main components further puried by silica-gel column chromatography to afford the title compound (8.0 mg).

Refinement top

The carboxyl and hydroxy H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and were treated as riding on their parent atoms, with C—H distances of 0.93–0.97 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids.
5-(Hydroxymethyl)furan-2-carboxylic acid top
Crystal data top
C6H6O4F(000) = 592
Mr = 142.11Dx = 1.545 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 10988 reflections
a = 10.838 (3) Åθ = 2.6–25.2°
b = 7.2601 (17) ŵ = 0.13 mm1
c = 15.526 (4) ÅT = 294 K
V = 1221.7 (5) Å3Block, colourless
Z = 80.32 × 0.22 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1033 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.2°, θmin = 2.6°
ϕ and ω scansh = 1212
5637 measured reflectionsk = 88
1098 independent reflectionsl = 1813
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.5232P]
where P = (Fo2 + 2Fc2)/3
1098 reflections(Δ/σ)max = 0.001
99 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C6H6O4V = 1221.7 (5) Å3
Mr = 142.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.838 (3) ŵ = 0.13 mm1
b = 7.2601 (17) ÅT = 294 K
c = 15.526 (4) Å0.32 × 0.22 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1033 reflections with I > 2σ(I)
5637 measured reflectionsRint = 0.025
1098 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.19 e Å3
1098 reflectionsΔρmin = 0.21 e Å3
99 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93802 (10)0.18266 (16)0.31353 (7)0.0276 (3)
O20.84194 (9)0.14583 (14)0.49749 (6)0.0216 (3)
O30.68657 (9)0.30625 (16)0.68473 (7)0.0300 (3)
O40.88618 (9)0.26469 (16)0.65427 (7)0.0282 (3)
C50.74292 (13)0.19201 (19)0.54835 (9)0.0204 (3)
C60.79370 (13)0.08250 (18)0.42169 (8)0.0208 (3)
C70.88366 (14)0.0247 (2)0.35516 (9)0.0262 (4)
H7A0.94810.04870.38170.031*
H7B0.84240.05100.31250.031*
C80.76830 (13)0.2598 (2)0.63503 (9)0.0219 (3)
C90.66913 (13)0.0865 (2)0.42436 (9)0.0243 (4)
H9A0.61550.04980.38090.029*
C100.63590 (14)0.1574 (2)0.50616 (9)0.0242 (3)
H10A0.55640.17650.52680.029*
H4A0.898 (2)0.290 (3)0.7143 (16)0.060 (6)*
H1A1.018 (2)0.179 (3)0.3204 (13)0.051 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0203 (6)0.0392 (7)0.0235 (6)0.0018 (5)0.0007 (4)0.0040 (5)
O20.0178 (5)0.0265 (6)0.0205 (5)0.0012 (4)0.0005 (4)0.0004 (4)
O30.0213 (5)0.0445 (7)0.0242 (6)0.0059 (5)0.0039 (4)0.0031 (5)
O40.0188 (5)0.0425 (7)0.0231 (6)0.0034 (5)0.0003 (4)0.0070 (5)
C50.0189 (7)0.0215 (7)0.0209 (7)0.0024 (5)0.0044 (6)0.0035 (5)
C60.0257 (8)0.0178 (7)0.0188 (7)0.0001 (6)0.0015 (6)0.0010 (5)
C70.0273 (8)0.0281 (8)0.0232 (8)0.0002 (6)0.0018 (6)0.0014 (6)
C80.0188 (7)0.0223 (7)0.0246 (7)0.0016 (6)0.0018 (6)0.0030 (6)
C90.0237 (8)0.0251 (8)0.0242 (8)0.0019 (6)0.0038 (6)0.0003 (6)
C100.0179 (7)0.0282 (8)0.0265 (8)0.0002 (6)0.0021 (6)0.0022 (6)
Geometric parameters (Å, º) top
O1—C71.4421 (19)C5—C81.459 (2)
O1—H1A0.88 (2)C6—C91.351 (2)
O2—C61.3675 (17)C6—C71.481 (2)
O2—C51.3739 (16)C7—H7A0.9700
O3—C81.2224 (18)C7—H7B0.9700
O4—C81.3124 (18)C9—C101.417 (2)
O4—H4A0.96 (2)C9—H9A0.9300
C5—C101.355 (2)C10—H10A0.9300
C7—O1—H1A109.0 (13)O1—C7—H7B109.5
C6—O2—C5106.15 (11)C6—C7—H7B109.5
C8—O4—H4A111.1 (13)H7A—C7—H7B108.1
C10—C5—O2110.21 (12)O3—C8—O4123.66 (14)
C10—C5—C8132.03 (13)O3—C8—C5122.60 (13)
O2—C5—C8117.72 (12)O4—C8—C5113.74 (12)
C9—C6—O2110.38 (12)C6—C9—C10106.82 (13)
C9—C6—C7133.27 (13)C6—C9—H9A126.6
O2—C6—C7116.35 (12)C10—C9—H9A126.6
O1—C7—C6110.88 (12)C5—C10—C9106.44 (13)
O1—C7—H7A109.5C5—C10—H10A126.8
C6—C7—H7A109.5C9—C10—H10A126.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.87 (2)1.83 (2)2.6951 (16)169.2 (19)
O4—H4A···O1ii0.96 (2)1.61 (2)2.5643 (17)171 (2)
C7—H7A···O4iii0.972.453.265 (2)142
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1/2, z+1/2; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H6O4
Mr142.11
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)10.838 (3), 7.2601 (17), 15.526 (4)
V3)1221.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.32 × 0.22 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5637, 1098, 1033
Rint0.025
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.08
No. of reflections1098
No. of parameters99
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.87 (2)1.83 (2)2.6951 (16)169.2 (19)
O4—H4A···O1ii0.96 (2)1.61 (2)2.5643 (17)171 (2)
C7—H7A···O4iii0.972.453.265 (2)142
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1/2, z+1/2; (iii) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge financial support by the Fundamental Research Funds for the Central Universities, China (2010121092).

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMrochek, J. & Rainey, W. (1972). Clin. Chem. 18, 821-828.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds