metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(pyridine-3-carb­­oxy­lic acid-κN)(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)copper(II) monohydrate

aSchool of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
*Correspondence e-mail: nanpingwang2010@yahoo.com.cn

(Received 5 April 2011; accepted 20 May 2011; online 28 May 2011)

In the title CuII complex, [Cu(C7H3NO4)(C6H5NO2)(H2O)]·H2O, the environment of the Cu2+ ion is a distorted square pyramid with the axial site occupied by the O atom from the coordinated water mol­ecule and the square base formed by two O and two N atoms from the tridentate anion and the neutral monodentate pyridine-3-carboxylic acid ligand. O—H⋯O hydrogen bonds, as well as ππ inter­actions [centroid–centroid distance = 3.945 (3) Å] contribute to the stabilization of this structure.

Related literature

For the use of transition-metal–carboxyl­ate systems in supra­molecular chemistry and functional materials, see: MacDonald et al. (2000[MacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692-11702.]); Siddiqui et al. (2008[Siddiqui, K. A., Mehrotra, G. K., Mrozinski, J. & Butcher, R. J. (2008). Eur. J. Inorg. Chem. pp. 4166-4172.]); Custelcean & Gorbunova (2005[Custelcean, R. & Gorbunova, M. G. (2005). J. Am. Chem. Soc. 127, 16362-16363.]). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., VanRijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3NO4)(C6H5NO2)(H2O)]·H2O

  • Mr = 387.79

  • Triclinic, [P \overline 1]

  • a = 7.3241 (12) Å

  • b = 9.5290 (16) Å

  • c = 11.1895 (18) Å

  • α = 107.471 (3)°

  • β = 92.822 (3)°

  • γ = 101.547 (3)°

  • V = 724.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 293 K

  • 0.34 × 0.28 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.612, Tmax = 0.674

  • 3704 measured reflections

  • 2544 independent reflections

  • 2036 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.089

  • S = 1.01

  • 2544 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O1Wi 0.85 1.87 2.715 (4) 175
O5—H5A⋯O7i 0.85 2.08 2.888 (4) 158
O6—H6⋯O4ii 0.82 1.79 2.586 (4) 164
O1W—H1WC⋯O3iii 0.85 2.14 2.983 (4) 172
O1W—H1WD⋯O2 0.85 1.95 2.775 (4) 163
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x, y+1, z+1; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

In recent years, the chemistry of transition metal carboxylate systems is of great interest because of their extensive usage in supramolecular chemistry and functional materials (Custelcean & Gorbunova, 2005; MacDonald, et al., 2000; Siddiqui, et al., 2008). Here, we report a new CuIIcomplex with pyridine-2,6-dicarboxylic acid and pyridine-3-carboxylic acid.

In this complex, the Cu2+ ion is coordinated by one oxygen atom from water molecule, two oxygen atoms from the dianion of pyridine-2,6-dicarboxylic acid, and two nitrogen atoms from pyridine-2,6-dicarboxylate and pyridine-3-carboxylic acid, respectively (Fig. 1). Thus, the coordination environment of Cu2+ ion is a distorted square pyramid, as indicated by τ value of 0.06 (Addison, et al., 1984). The asymmetric units are linked into three-dimensional structure through C—H···O and O—H···O hydrogen bonds and π-π interactions between the neighbouring pyridine rings with centroid–centroid distance of 3.945 (3) Å (Fig. 2).

Related literature top

For the use of transition-metal–carboxylate systems in supramolecular chemistry and functional materials, see: MacDonald et al. (2000); Siddiqui et al. (2008); Custelcean & Gorbunova (2005). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984).

Experimental top

A mixture of Cu(CH3COO)2.H2O (0.5 mmol), pyridine-2,6-dicarboxylic acid (0.5 mmol), pyridine-3-carboxylic acid (0.5 mmol) in H2O (4 ml) and CH3OH (4 ml) was adjusted to pH ca 7.5 by triethylamine, sealed in a Teflon lined stainless steel container and heated at 140 °C for 3 days. After the sample was cooled to room temperature, blue crystals were collected with a yield of 30%.

Refinement top

All H atoms were refined using a riding model. C—H values were set to 0.93 Å with Uiso(H) =1.2 Ueq(C), and O—H values were set to 0.82 to 0.85 Å with Uiso(H) =1.5 Ueq(N).

Computing details top

Data collection: APEX2(Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with atomic labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The three-dimensional packing diagram of title compound, showing O—H···O and C—H···O hydrogen-bonds (dashed lines) and ππ interactions.
Aqua(pyridine-3-carboxylic acid-κN)(pyridine-2,6-dicarboxylato- κ3O2,N,O6)copper(II) monohydrate top
Crystal data top
[Cu(C7H3NO4)(C6H5NO2)(H2O)]·H2OZ = 2
Mr = 387.79F(000) = 394
Triclinic, P1Dx = 1.777 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3241 (12) ÅCell parameters from 3246 reflections
b = 9.5290 (16) Åθ = 1.9–28.0°
c = 11.1895 (18) ŵ = 1.56 mm1
α = 107.471 (3)°T = 293 K
β = 92.822 (3)°Block, blue
γ = 101.547 (3)°0.34 × 0.28 × 0.24 mm
V = 724.8 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2544 independent reflections
Radiation source: fine-focus sealed tube2036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.612, Tmax = 0.674k = 117
3704 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0156P)2 + 0.0P]
where P = (Fo2 + 2Fc2)/3
2544 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(C7H3NO4)(C6H5NO2)(H2O)]·H2Oγ = 101.547 (3)°
Mr = 387.79V = 724.8 (2) Å3
Triclinic, P1Z = 2
a = 7.3241 (12) ÅMo Kα radiation
b = 9.5290 (16) ŵ = 1.56 mm1
c = 11.1895 (18) ÅT = 293 K
α = 107.471 (3)°0.34 × 0.28 × 0.24 mm
β = 92.822 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2544 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2036 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.674Rint = 0.058
3704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.01Δρmax = 0.61 e Å3
2544 reflectionsΔρmin = 0.38 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.72746 (7)0.75885 (6)0.84260 (4)0.03334 (18)
C10.6201 (6)0.9587 (5)0.7304 (4)0.0314 (10)
C20.6438 (5)0.8236 (4)0.6230 (3)0.0285 (9)
C30.6152 (6)0.7997 (5)0.4943 (4)0.0358 (10)
H30.57220.86840.46260.043*
C40.6533 (6)0.6692 (5)0.4152 (4)0.0354 (10)
H40.63430.64970.32840.043*
C50.7184 (5)0.5677 (5)0.4608 (3)0.0340 (10)
H50.74590.48150.40640.041*
C60.7420 (5)0.5976 (4)0.5907 (3)0.0289 (9)
C70.8072 (5)0.5053 (5)0.6655 (4)0.0304 (10)
C80.9050 (6)0.7252 (5)1.0648 (4)0.0397 (11)
H80.92150.63651.00730.048*
C90.9646 (6)0.7553 (5)1.1898 (4)0.0374 (11)
H91.01960.68851.21680.045*
C100.9409 (5)0.8866 (5)1.2737 (4)0.0353 (10)
H100.97830.90951.35930.042*
C110.8617 (5)0.9847 (4)1.2313 (3)0.0275 (9)
C120.8029 (5)0.9449 (4)1.1039 (3)0.0316 (10)
H120.74651.00951.07480.038*
C130.8343 (6)1.1300 (5)1.3159 (4)0.0326 (10)
N10.7036 (4)0.7233 (4)0.6650 (3)0.0286 (8)
N20.8244 (5)0.8170 (4)1.0215 (3)0.0328 (8)
O10.6624 (4)0.9519 (3)0.8403 (2)0.0372 (7)
O20.5679 (4)1.0631 (3)0.7065 (2)0.0413 (8)
O30.8087 (4)0.5614 (3)0.7853 (2)0.0376 (7)
O40.8507 (4)0.3867 (3)0.6120 (2)0.0447 (8)
O50.4365 (4)0.6488 (3)0.8620 (2)0.0461 (8)
H5B0.42060.64930.93690.069*
H5A0.36230.69700.84000.069*
O60.8709 (5)1.1433 (3)1.4365 (2)0.0436 (8)
H60.86071.22671.48060.065*
O70.7889 (4)1.2257 (3)1.2796 (3)0.0456 (8)
O1W0.5969 (5)1.3367 (3)0.8942 (3)0.0705 (11)
H1WC0.65221.40740.86830.106*
H1WD0.60981.25290.84470.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0503 (3)0.0311 (3)0.0194 (3)0.0134 (3)0.0010 (2)0.0071 (2)
C10.034 (2)0.030 (2)0.031 (2)0.006 (2)0.0038 (18)0.012 (2)
C20.032 (2)0.033 (2)0.024 (2)0.010 (2)0.0030 (17)0.0127 (19)
C30.040 (3)0.040 (3)0.032 (2)0.009 (2)0.0003 (19)0.019 (2)
C40.043 (3)0.043 (3)0.019 (2)0.005 (2)0.0024 (18)0.012 (2)
C50.038 (2)0.034 (3)0.026 (2)0.005 (2)0.0084 (18)0.006 (2)
C60.029 (2)0.030 (2)0.025 (2)0.006 (2)0.0018 (17)0.0070 (19)
C70.033 (2)0.029 (2)0.028 (2)0.008 (2)0.0020 (18)0.007 (2)
C80.052 (3)0.033 (3)0.034 (2)0.016 (2)0.001 (2)0.006 (2)
C90.050 (3)0.039 (3)0.027 (2)0.016 (2)0.0017 (19)0.013 (2)
C100.038 (3)0.044 (3)0.021 (2)0.007 (2)0.0010 (18)0.009 (2)
C110.031 (2)0.029 (2)0.021 (2)0.0022 (19)0.0013 (16)0.0084 (18)
C120.041 (3)0.027 (2)0.026 (2)0.009 (2)0.0022 (18)0.0079 (19)
C130.032 (2)0.034 (3)0.026 (2)0.003 (2)0.0011 (18)0.004 (2)
N10.035 (2)0.030 (2)0.0204 (17)0.0055 (17)0.0008 (14)0.0087 (15)
N20.041 (2)0.036 (2)0.0220 (18)0.0128 (18)0.0016 (15)0.0084 (16)
O10.058 (2)0.0322 (17)0.0246 (15)0.0160 (15)0.0012 (13)0.0098 (13)
O20.056 (2)0.0345 (18)0.0377 (17)0.0172 (16)0.0006 (14)0.0149 (14)
O30.062 (2)0.0345 (17)0.0184 (15)0.0219 (15)0.0017 (13)0.0056 (13)
O40.071 (2)0.0382 (18)0.0262 (16)0.0273 (17)0.0013 (14)0.0037 (14)
O50.051 (2)0.057 (2)0.0354 (17)0.0119 (17)0.0056 (14)0.0217 (16)
O60.067 (2)0.0390 (19)0.0219 (15)0.0192 (18)0.0012 (14)0.0012 (14)
O70.066 (2)0.0359 (19)0.0338 (17)0.0190 (17)0.0024 (15)0.0061 (15)
O1W0.126 (3)0.044 (2)0.044 (2)0.018 (2)0.033 (2)0.0157 (17)
Geometric parameters (Å, º) top
Cu1—N11.906 (3)C7—O31.284 (4)
Cu1—N21.963 (3)C8—N21.335 (5)
Cu1—O11.998 (3)C8—C91.370 (5)
Cu1—O32.017 (3)C8—H80.9300
Cu1—O52.231 (3)C9—C101.370 (5)
C1—O21.229 (5)C9—H90.9300
C1—O11.277 (4)C10—C111.374 (5)
C1—C21.520 (5)C10—H100.9300
C2—N11.321 (5)C11—C121.383 (5)
C2—C31.387 (5)C11—C131.482 (5)
C3—C41.381 (5)C12—N21.333 (4)
C3—H30.9300C12—H120.9300
C4—C51.371 (5)C13—O71.198 (5)
C4—H40.9300C13—O61.327 (4)
C5—C61.389 (5)O5—H5B0.8500
C5—H50.9300O5—H5A0.8501
C6—N11.329 (4)O6—H60.8200
C6—C71.507 (5)O1W—H1WC0.8500
C7—O41.222 (5)O1W—H1WD0.8499
N1—Cu1—N2164.24 (13)N2—C8—C9123.2 (4)
N1—Cu1—O181.06 (12)N2—C8—H8118.4
N2—Cu1—O199.27 (12)C9—C8—H8118.4
N1—Cu1—O380.30 (12)C10—C9—C8118.1 (4)
N2—Cu1—O397.28 (12)C10—C9—H9121.0
O1—Cu1—O3160.68 (10)C8—C9—H9121.0
N1—Cu1—O599.42 (11)C9—C10—C11120.0 (4)
N2—Cu1—O596.26 (12)C9—C10—H10120.0
O1—Cu1—O594.65 (11)C11—C10—H10120.0
O3—Cu1—O593.36 (11)C10—C11—C12118.4 (4)
O2—C1—O1126.0 (4)C10—C11—C13123.2 (3)
O2—C1—C2119.6 (3)C12—C11—C13118.4 (4)
O1—C1—C2114.3 (4)N2—C12—C11122.1 (4)
N1—C2—C3120.0 (4)N2—C12—H12118.9
N1—C2—C1111.8 (3)C11—C12—H12118.9
C3—C2—C1128.2 (4)O7—C13—O6124.0 (4)
C4—C3—C2117.1 (4)O7—C13—C11124.1 (4)
C4—C3—H3121.5O6—C13—C11111.9 (4)
C2—C3—H3121.5C2—N1—C6123.9 (3)
C5—C4—C3122.0 (4)C2—N1—Cu1117.6 (3)
C5—C4—H4119.0C6—N1—Cu1118.5 (3)
C3—C4—H4119.0C12—N2—C8118.2 (3)
C4—C5—C6118.0 (4)C12—N2—Cu1121.1 (3)
C4—C5—H5121.0C8—N2—Cu1120.6 (3)
C6—C5—H5121.0C1—O1—Cu1114.7 (3)
N1—C6—C5119.0 (4)C7—O3—Cu1115.1 (2)
N1—C6—C7111.8 (3)Cu1—O5—H5B113.4
C5—C6—C7129.2 (4)Cu1—O5—H5A107.7
O4—C7—O3125.2 (4)H5B—O5—H5A108.0
O4—C7—C6120.6 (3)C13—O6—H6109.5
O3—C7—C6114.3 (3)H1WC—O1W—H1WD108.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1Wi0.851.872.715 (4)175
O5—H5A···O7i0.852.082.888 (4)158
O6—H6···O4ii0.821.792.586 (4)164
O1W—H1WC···O3iii0.852.142.983 (4)172
O1W—H1WD···O20.851.952.775 (4)163
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H3NO4)(C6H5NO2)(H2O)]·H2O
Mr387.79
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3241 (12), 9.5290 (16), 11.1895 (18)
α, β, γ (°)107.471 (3), 92.822 (3), 101.547 (3)
V3)724.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.34 × 0.28 × 0.24
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.612, 0.674
No. of measured, independent and
observed [I > 2σ(I)] reflections
3704, 2544, 2036
Rint0.058
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.089, 1.01
No. of reflections2544
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.38

Computer programs: APEX2(Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1Wi0.851.872.715 (4)175.4
O5—H5A···O7i0.852.082.888 (4)158.1
O6—H6···O4ii0.821.792.586 (4)163.5
O1W—H1WC···O3iii0.852.142.983 (4)171.7
O1W—H1WD···O20.851.952.775 (4)162.7
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

We are grateful for financial support from the Science and Technology Bureau of Nantong (grant No. K2009041).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., VanRijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CrossRef Google Scholar
First citationBruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCustelcean, R. & Gorbunova, M. G. (2005). J. Am. Chem. Soc. 127, 16362–16363.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacDonald, J. C., Dorrestein, P. C., Pilley, M. M., Foote, M. M., Lundburg, J. L., Henning, R. W., Schultz, A. J. & Manson, J. L. (2000). J. Am. Chem. Soc. 122, 11692–11702.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, K. A., Mehrotra, G. K., Mrozinski, J. & Butcher, R. J. (2008). Eur. J. Inorg. Chem. pp. 4166–4172.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds