organic compounds
N,P,P-Triisopropylphosphinic amide
aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29A, 18059 Rostock, Germany
*Correspondence e-mail: normen.peulecke@catalysis.de
The title compound, C9H22NOP, was obtained by slow diffusion of oxygen into a toluene solution of iPr2PNHiPr. In the crystal, an intermolecular N—H⋯O hydrogen bond occurs.
Related literature
For the synthesis of the starting compound (iPr)2PNHiPr, see: Kuchen et al. (1990). For a similar synthesis of the title compound, see: Brück et al. (1995). For similar structures of R2P(O)NHR in which the P atom has at least one attached alkyl substituent, see: Burns et al. (1997); Denmark & Dorow (2002); Kolodiazhnyi et al. (2003); Francesco et al. (2010).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2005); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811018551/yk2008sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811018551/yk2008Isup2.hkl
A toluene solution (20 mL) of 0.4 g (2.3 mmol) (iPr)2PN(H)iPr (Kuchen et al., 1990) was exposed to dry air over a period of 48 h. After evaporation of the solvent, the oily residue was dissolved in n-hexane, filtrated and stored at -40°C for crystallization. After 3 days colourless crystals were formed, which were suitable for X-ray analysis. The analytical data of C9H22NOP correlated with those in the literature (Brück et al., 1995).
H atoms were placed in idealized positions with d(N—H) = 0.88, d(C—H) = 0.98 (CH3) and 1.00 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for NH and CH.
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. |
C9H22NOP | F(000) = 424 |
Mr = 191.25 | Dx = 1.037 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5563 reflections |
a = 15.030 (3) Å | θ = 2.1–29.2° |
b = 8.4813 (17) Å | µ = 0.19 mm−1 |
c = 10.071 (2) Å | T = 195 K |
β = 107.36 (3)° | Prism, colourless |
V = 1225.3 (4) Å3 | 0.42 × 0.26 × 0.20 mm |
Z = 4 |
Stoe IPDS II diffractometer | 2012 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.035 |
Graphite monochromator | θmax = 27.5°, θmin = 2.8° |
ω scans | h = −19→19 |
19581 measured reflections | k = −11→11 |
2807 independent reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 0.89 | w = 1/[σ2(Fo2) + (0.0547P)2] where P = (Fo2 + 2Fc2)/3 |
2807 reflections | (Δ/σ)max = 0.001 |
115 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C9H22NOP | V = 1225.3 (4) Å3 |
Mr = 191.25 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.030 (3) Å | µ = 0.19 mm−1 |
b = 8.4813 (17) Å | T = 195 K |
c = 10.071 (2) Å | 0.42 × 0.26 × 0.20 mm |
β = 107.36 (3)° |
Stoe IPDS II diffractometer | 2012 reflections with I > 2σ(I) |
19581 measured reflections | Rint = 0.035 |
2807 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 0.89 | Δρmax = 0.39 e Å−3 |
2807 reflections | Δρmin = −0.16 e Å−3 |
115 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.70679 (12) | 0.5276 (2) | 0.6731 (2) | 0.0525 (4) | |
H1B | 0.6513 | 0.5582 | 0.5941 | 0.063* | |
C2 | 0.68976 (19) | 0.5848 (2) | 0.8073 (3) | 0.0830 (7) | |
H2A | 0.7434 | 0.5574 | 0.8868 | 0.125* | |
H2B | 0.6336 | 0.5342 | 0.8178 | 0.125* | |
H2C | 0.6813 | 0.6995 | 0.8034 | 0.125* | |
C3 | 0.79173 (16) | 0.6067 (3) | 0.6497 (3) | 0.0802 (7) | |
H3A | 0.7812 | 0.7207 | 0.6396 | 0.120* | |
H3B | 0.8021 | 0.5645 | 0.5650 | 0.120* | |
H3C | 0.8466 | 0.5858 | 0.7294 | 0.120* | |
C4 | 0.61524 (11) | 0.22776 (19) | 0.69367 (17) | 0.0418 (4) | |
H4 | 0.6119 | 0.2607 | 0.7874 | 0.050* | |
C5 | 0.52745 (12) | 0.2872 (3) | 0.5848 (2) | 0.0653 (6) | |
H5A | 0.5320 | 0.2652 | 0.4915 | 0.098* | |
H5B | 0.5213 | 0.4010 | 0.5960 | 0.098* | |
H5C | 0.4727 | 0.2333 | 0.5971 | 0.098* | |
C6 | 0.62213 (15) | 0.0496 (2) | 0.6924 (2) | 0.0692 (6) | |
H6A | 0.5651 | 0.0034 | 0.7039 | 0.104* | |
H6B | 0.6759 | 0.0151 | 0.7689 | 0.104* | |
H6C | 0.6298 | 0.0150 | 0.6037 | 0.104* | |
C7 | 0.89734 (10) | 0.2189 (2) | 0.79953 (16) | 0.0427 (4) | |
H7 | 0.9106 | 0.2800 | 0.7226 | 0.051* | |
C8 | 0.96785 (13) | 0.2667 (3) | 0.9330 (2) | 0.0733 (6) | |
H8A | 0.9625 | 0.3801 | 0.9478 | 0.110* | |
H8B | 1.0306 | 0.2429 | 0.9282 | 0.110* | |
H8C | 0.9566 | 0.2083 | 1.0104 | 0.110* | |
C9 | 0.90379 (17) | 0.0463 (3) | 0.7687 (3) | 0.0834 (7) | |
H9A | 0.8915 | −0.0166 | 0.8429 | 0.125* | |
H9B | 0.9664 | 0.0226 | 0.7633 | 0.125* | |
H9C | 0.8576 | 0.0206 | 0.6797 | 0.125* | |
N1 | 0.80376 (9) | 0.26201 (16) | 0.80317 (13) | 0.0398 (3) | |
H1A | 0.7925 | 0.2590 | 0.8840 | 0.048* | |
O1 | 0.73426 (8) | 0.26804 (15) | 0.53446 (11) | 0.0531 (3) | |
P1 | 0.71920 (3) | 0.31507 (5) | 0.66763 (4) | 0.03470 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0490 (10) | 0.0468 (9) | 0.0619 (11) | 0.0063 (8) | 0.0167 (9) | 0.0155 (9) |
C2 | 0.1089 (19) | 0.0465 (12) | 0.1096 (19) | 0.0121 (12) | 0.0570 (16) | −0.0108 (12) |
C3 | 0.0785 (15) | 0.0565 (13) | 0.112 (2) | −0.0137 (11) | 0.0373 (14) | 0.0151 (12) |
C4 | 0.0398 (8) | 0.0532 (10) | 0.0348 (8) | −0.0039 (7) | 0.0148 (7) | 0.0047 (7) |
C5 | 0.0366 (9) | 0.0924 (16) | 0.0629 (12) | −0.0074 (9) | 0.0087 (8) | 0.0160 (11) |
C6 | 0.0697 (13) | 0.0576 (12) | 0.0814 (15) | −0.0150 (10) | 0.0243 (12) | 0.0030 (10) |
C7 | 0.0377 (8) | 0.0581 (11) | 0.0365 (8) | 0.0107 (7) | 0.0174 (7) | 0.0075 (7) |
C8 | 0.0426 (10) | 0.1149 (19) | 0.0573 (12) | 0.0060 (11) | 0.0072 (9) | −0.0030 (12) |
C9 | 0.0787 (15) | 0.0704 (15) | 0.1029 (19) | 0.0283 (12) | 0.0297 (14) | −0.0056 (13) |
N1 | 0.0383 (7) | 0.0593 (8) | 0.0250 (6) | 0.0094 (6) | 0.0143 (5) | 0.0085 (6) |
O1 | 0.0553 (7) | 0.0817 (9) | 0.0270 (6) | 0.0022 (6) | 0.0193 (5) | 0.0009 (5) |
P1 | 0.03607 (19) | 0.0451 (2) | 0.02528 (19) | 0.00340 (18) | 0.01274 (14) | 0.00474 (18) |
C1—C3 | 1.521 (3) | C6—H6A | 0.9800 |
C1—C2 | 1.528 (3) | C6—H6B | 0.9800 |
C1—P1 | 1.8150 (18) | C6—H6C | 0.9800 |
C1—H1B | 1.0000 | C7—N1 | 1.4644 (19) |
C2—H2A | 0.9800 | C7—C8 | 1.498 (3) |
C2—H2B | 0.9800 | C7—C9 | 1.505 (3) |
C2—H2C | 0.9800 | C7—H7 | 1.0000 |
C3—H3A | 0.9800 | C8—H8A | 0.9800 |
C3—H3B | 0.9800 | C8—H8B | 0.9800 |
C3—H3C | 0.9800 | C8—H8C | 0.9800 |
C4—C6 | 1.515 (3) | C9—H9A | 0.9800 |
C4—C5 | 1.527 (2) | C9—H9B | 0.9800 |
C4—P1 | 1.8175 (16) | C9—H9C | 0.9800 |
C4—H4 | 1.0000 | N1—P1 | 1.6265 (14) |
C5—H5A | 0.9800 | N1—H1A | 0.8800 |
C5—H5B | 0.9800 | O1—P1 | 1.4799 (11) |
C5—H5C | 0.9800 | ||
C3—C1—C2 | 111.54 (18) | H6A—C6—H6B | 109.5 |
C3—C1—P1 | 109.54 (13) | C4—C6—H6C | 109.5 |
C2—C1—P1 | 112.84 (13) | H6A—C6—H6C | 109.5 |
C3—C1—H1B | 107.6 | H6B—C6—H6C | 109.5 |
C2—C1—H1B | 107.6 | N1—C7—C8 | 109.72 (14) |
P1—C1—H1B | 107.6 | N1—C7—C9 | 111.68 (15) |
C1—C2—H2A | 109.5 | C8—C7—C9 | 112.11 (17) |
C1—C2—H2B | 109.5 | N1—C7—H7 | 107.7 |
H2A—C2—H2B | 109.5 | C8—C7—H7 | 107.7 |
C1—C2—H2C | 109.5 | C9—C7—H7 | 107.7 |
H2A—C2—H2C | 109.5 | C7—C8—H8A | 109.5 |
H2B—C2—H2C | 109.5 | C7—C8—H8B | 109.5 |
C1—C3—H3A | 109.5 | H8A—C8—H8B | 109.5 |
C1—C3—H3B | 109.5 | C7—C8—H8C | 109.5 |
H3A—C3—H3B | 109.5 | H8A—C8—H8C | 109.5 |
C1—C3—H3C | 109.5 | H8B—C8—H8C | 109.5 |
H3A—C3—H3C | 109.5 | C7—C9—H9A | 109.5 |
H3B—C3—H3C | 109.5 | C7—C9—H9B | 109.5 |
C6—C4—C5 | 111.69 (16) | H9A—C9—H9B | 109.5 |
C6—C4—P1 | 109.96 (12) | C7—C9—H9C | 109.5 |
C5—C4—P1 | 110.96 (11) | H9A—C9—H9C | 109.5 |
C6—C4—H4 | 108.0 | H9B—C9—H9C | 109.5 |
C5—C4—H4 | 108.0 | C7—N1—P1 | 124.33 (10) |
P1—C4—H4 | 108.0 | C7—N1—H1A | 117.8 |
C4—C5—H5A | 109.5 | P1—N1—H1A | 117.8 |
C4—C5—H5B | 109.5 | O1—P1—N1 | 113.17 (7) |
H5A—C5—H5B | 109.5 | O1—P1—C1 | 109.89 (8) |
C4—C5—H5C | 109.5 | N1—P1—C1 | 108.11 (8) |
H5A—C5—H5C | 109.5 | O1—P1—C4 | 113.05 (8) |
H5B—C5—H5C | 109.5 | N1—P1—C4 | 104.85 (7) |
C4—C6—H6A | 109.5 | C1—P1—C4 | 107.44 (8) |
C4—C6—H6B | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.88 | 1.98 | 2.8344 (17) | 165 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H22NOP |
Mr | 191.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 195 |
a, b, c (Å) | 15.030 (3), 8.4813 (17), 10.071 (2) |
β (°) | 107.36 (3) |
V (Å3) | 1225.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.19 |
Crystal size (mm) | 0.42 × 0.26 × 0.20 |
Data collection | |
Diffractometer | Stoe IPDS II diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19581, 2807, 2012 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.091, 0.89 |
No. of reflections | 2807 |
No. of parameters | 115 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.16 |
Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.88 | 1.98 | 2.8344 (17) | 165 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.
References
Brück, A., Kuchen, W. & Peters, W. (1995). Phosphorus Sulfur Silicon Relat. Elem. 107, 129–133. Google Scholar
Burns, B., Gamble, M. P., Simm, A. R. C., Studley, J. R., Alcock, N. W. & Wills, M. (1997). Tetrahedron Asymmetry, 8, 73–78. CrossRef CAS Google Scholar
Denmark, S. E. & Dorow, R. L. (2002). Chirality, 14, 241–257. Web of Science CrossRef PubMed CAS Google Scholar
Francesco, I. N., Wagner, A. & Colobert, F. (2010). Chem. Commun. 46, 2139–2141. CrossRef CAS Google Scholar
Kolodiazhnyi, O. I., Gryshkun, E. V., Andrushko, N. V., Freytag, M., Jones, P. G. & Schmutzler, R. (2003). Tetrahedron Asymmetry, 14, 181–183. CrossRef CAS Google Scholar
Kuchen, W., Langsch, D. & Peters, W. (1990). Phosphorus Sulfur Silicon Relat. Elem. 54, 55–61. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aminophosphines with alkyl-substituents undergo oxidation very easily compared to their analogue aryl-substituted species. Most of the structurally characterized P,P-diorganylphosphinic amides R1R2P(O)NHR3 have a sterogenic phosphorus or nitrogen centre (Burns et al., 1997, Denmark et al., 2002, Kolodiazhnyi et al., 2003 and Francesco et al., 2010). Here we report about the structural characterization of the known compound (iPr)2P(O)N(H)iPr (Fig. 1). The P1—O1 distance is with 1.4799 (11) Å in the range of a P═O double bond. A strong intermolecular hydrogen bond N1—H1A···O1 (N1···O1 2.834 (2), H1A···O1 1.98 Å and N1—H1A···O1 165°) was observed.