metal-organic compounds
Bis(1,10-phenanthroline-κ2N,N′)bis(thiocyanato-κN)cadmium
aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
*Correspondence e-mail: garikoitz.beobide@ehu.es
The title compound, [Cd(NCS)2(C12H8N2)2], has been obtained from the decomposition reaction of dithiooxamide in a dimethylformamide solution containing 1,10-phenanthroline (phen) and Cd(NO3)2·4H2O. Its is formed by monuclear CdII entities in which the metal atom is sited on a twofold rotation axis. The CdII atom is six-coordinated in the form of a distorted octahedron by two chelating phenanthroline molecules and two thiocyanate anions coordinated through their N atoms. In the crystal, C—H⋯N hydrogen bonds are established between the phenanthroline and thiocyanate ligands of neighbouring complexes.
Related literature
For the coordination versatility of the thiocyanate anion in transition metal complexes, see: Goher et al. (2000). For isotypic Mn(II), Fe(II), Co(II), Cu(II) and Zn(II) structures, see: Holleman et al. (1994); Gallois et al. (1990); Yin (2007); Parker et al. (1996); Liu et al. (2005). For another CdII–phen complex with a CdN6 coordination environment, see: He et al. (2004). For Cd—N bond lengths in related structures, see: Moon et al. (2000).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S160053681101289X/zj2006sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681101289X/zj2006Isup2.hkl
Cd(NO3)2.4H2O (43.3 mg, 0.140 mmol), phen (66.4 mg, 0.368 mmol) and dithiooxamide (18.4 mg, 0.153 mmol) were mixed in 30 ml of dimethylformamide. The reaction mixture was stirred for 30 min and subsequently it was allowed to stand in air. Rombohedral yellow crystals were obtained three weeks later. They were filtered out, washed with ethanol and dried at room temperature (yield 40%). Elemental analysis calculated for C26H16CdN6S2: C 53.02, H 2.74, Cd 19.08, N 14.27, S 10.89%; found: C 53.96, H 3.01, Cd 18.75, N 13.87, S 10.63%.
H atoms were included at geometrically calculated positions and refined as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].
Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell
CrysAlis CCD (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) showing atom labels and 50% probability displacement ellipsoids for non-H atoms. Atoms with sufix i are generated by the symmetry operator (–x, y, 3/2 – z). | |
Fig. 2. View of the crystal packing of (I) showing the hydrogen bonding scheme. |
[Cd(NCS)2(C12H8N2)2] | F(000) = 1176 |
Mr = 588.97 | Dx = 1.664 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 19593 reflections |
a = 13.5295 (2) Å | θ = 3.0–30.1° |
b = 9.91538 (18) Å | µ = 1.14 mm−1 |
c = 17.5297 (2) Å | T = 100 K |
V = 2351.62 (6) Å3 | Rhombohedral, yellow |
Z = 4 | 0.32 × 0.22 × 0.21 mm |
Oxford Diffraction Xcalibur diffractometer | 3444 independent reflections |
Radiation source: fine-focus sealed tube | 2606 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 30.1°, θmin = 3.0° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2003) | h = −18→19 |
Tmin = 0.757, Tmax = 0.826 | k = −13→10 |
19593 measured reflections | l = −24→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0606P)2 + 3.0087P] where P = (Fo2 + 2Fc2)/3 |
3444 reflections | (Δ/σ)max < 0.001 |
159 parameters | Δρmax = 1.56 e Å−3 |
0 restraints | Δρmin = −0.83 e Å−3 |
[Cd(NCS)2(C12H8N2)2] | V = 2351.62 (6) Å3 |
Mr = 588.97 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 13.5295 (2) Å | µ = 1.14 mm−1 |
b = 9.91538 (18) Å | T = 100 K |
c = 17.5297 (2) Å | 0.32 × 0.22 × 0.21 mm |
Oxford Diffraction Xcalibur diffractometer | 3444 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2003) | 2606 reflections with I > 2σ(I) |
Tmin = 0.757, Tmax = 0.826 | Rint = 0.031 |
19593 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.11 | Δρmax = 1.56 e Å−3 |
3444 reflections | Δρmin = −0.83 e Å−3 |
159 parameters |
Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.170.32 (release 06.06.2003 CrysAlis170 VC++)(compiled Jun 6 2003,13:53:32). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd | 0.0000 | 0.31999 (3) | 0.7500 | 0.01949 (10) | |
S1 | −0.16408 (7) | 0.01037 (9) | 0.56558 (5) | 0.0346 (2) | |
N1 | −0.00666 (17) | 0.4887 (3) | 0.84583 (15) | 0.0237 (5) | |
N2 | −0.16737 (19) | 0.3741 (3) | 0.77514 (14) | 0.0213 (5) | |
N3 | −0.0504 (2) | 0.1673 (3) | 0.66235 (16) | 0.0308 (6) | |
C13 | −0.0980 (2) | 0.1038 (3) | 0.62292 (16) | 0.0224 (5) | |
C12 | −0.0987 (2) | 0.5344 (3) | 0.86435 (16) | 0.0226 (6) | |
C9 | −0.3426 (2) | 0.3557 (4) | 0.75684 (17) | 0.0283 (6) | |
H9 | −0.3950 | 0.3137 | 0.7321 | 0.034* | |
C11 | −0.1831 (2) | 0.4731 (3) | 0.82731 (15) | 0.0215 (5) | |
C7 | −0.2791 (2) | 0.5182 (3) | 0.84580 (16) | 0.0254 (6) | |
C8 | −0.3593 (2) | 0.4548 (4) | 0.80914 (18) | 0.0303 (7) | |
H8 | −0.4236 | 0.4806 | 0.8206 | 0.036* | |
C1 | 0.0703 (3) | 0.5433 (3) | 0.88069 (19) | 0.0313 (7) | |
H1 | 0.1330 | 0.5104 | 0.8695 | 0.038* | |
C4 | −0.1141 (2) | 0.6393 (3) | 0.91695 (18) | 0.0283 (6) | |
C10 | −0.2452 (3) | 0.3186 (3) | 0.74108 (16) | 0.0256 (6) | |
H10 | −0.2342 | 0.2517 | 0.7049 | 0.031* | |
C3 | −0.0296 (3) | 0.6967 (4) | 0.9512 (2) | 0.0370 (8) | |
H3 | −0.0362 | 0.7674 | 0.9857 | 0.044* | |
C2 | 0.0618 (3) | 0.6478 (4) | 0.9335 (2) | 0.0381 (8) | |
H2 | 0.1179 | 0.6839 | 0.9564 | 0.046* | |
C6 | −0.2909 (2) | 0.6262 (4) | 0.89896 (18) | 0.0313 (7) | |
H6 | −0.3541 | 0.6573 | 0.9103 | 0.038* | |
C5 | −0.2122 (3) | 0.6839 (3) | 0.93295 (19) | 0.0315 (7) | |
H5 | −0.2220 | 0.7540 | 0.9674 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd | 0.01802 (15) | 0.01969 (16) | 0.02076 (15) | 0.000 | 0.00092 (10) | 0.000 |
S1 | 0.0382 (4) | 0.0350 (4) | 0.0306 (4) | −0.0064 (4) | −0.0062 (3) | −0.0011 (3) |
N1 | 0.0205 (11) | 0.0264 (12) | 0.0242 (11) | −0.0014 (10) | 0.0004 (9) | −0.0025 (10) |
N2 | 0.0199 (11) | 0.0222 (12) | 0.0219 (10) | −0.0003 (10) | 0.0006 (9) | 0.0008 (9) |
N3 | 0.0250 (14) | 0.0317 (15) | 0.0356 (14) | 0.0000 (11) | −0.0032 (11) | −0.0054 (12) |
C13 | 0.0219 (13) | 0.0227 (14) | 0.0226 (12) | 0.0036 (11) | 0.0020 (11) | 0.0025 (11) |
C12 | 0.0250 (14) | 0.0226 (14) | 0.0202 (12) | 0.0007 (11) | 0.0031 (11) | 0.0001 (10) |
C9 | 0.0201 (14) | 0.0333 (16) | 0.0316 (15) | 0.0009 (12) | −0.0022 (12) | 0.0022 (12) |
C11 | 0.0219 (13) | 0.0212 (13) | 0.0215 (12) | 0.0014 (11) | 0.0027 (10) | 0.0031 (10) |
C7 | 0.0255 (14) | 0.0263 (15) | 0.0245 (13) | 0.0032 (12) | 0.0043 (11) | 0.0030 (11) |
C8 | 0.0213 (14) | 0.0360 (17) | 0.0338 (15) | 0.0067 (13) | 0.0012 (12) | 0.0033 (13) |
C1 | 0.0267 (15) | 0.0338 (17) | 0.0333 (15) | −0.0048 (13) | −0.0019 (13) | −0.0078 (14) |
C4 | 0.0304 (16) | 0.0263 (15) | 0.0282 (14) | 0.0002 (13) | 0.0034 (12) | −0.0042 (12) |
C10 | 0.0217 (14) | 0.0267 (15) | 0.0284 (14) | 0.0004 (11) | −0.0005 (11) | −0.0015 (11) |
C3 | 0.0374 (18) | 0.0364 (19) | 0.0371 (18) | −0.0039 (15) | 0.0022 (15) | −0.0161 (15) |
C2 | 0.0328 (18) | 0.042 (2) | 0.0391 (18) | −0.0073 (16) | −0.0018 (15) | −0.0142 (16) |
C6 | 0.0302 (16) | 0.0330 (17) | 0.0308 (16) | 0.0081 (14) | 0.0085 (13) | 0.0008 (13) |
C5 | 0.0373 (18) | 0.0292 (17) | 0.0279 (15) | 0.0038 (14) | 0.0072 (13) | −0.0045 (13) |
Cd—N3 | 2.262 (3) | C9—H9 | 0.9300 |
Cd—N3i | 2.262 (3) | C11—C7 | 1.411 (4) |
Cd—N2i | 2.369 (3) | C7—C8 | 1.409 (5) |
Cd—N2 | 2.369 (3) | C7—C6 | 1.429 (5) |
Cd—N1i | 2.372 (3) | C8—H8 | 0.9300 |
Cd—N1 | 2.372 (3) | C1—C2 | 1.394 (5) |
S1—C13 | 1.634 (3) | C1—H1 | 0.9300 |
N1—C1 | 1.323 (4) | C4—C3 | 1.410 (5) |
N1—C12 | 1.365 (4) | C4—C5 | 1.428 (5) |
N2—C10 | 1.329 (4) | C10—H10 | 0.9300 |
N2—C11 | 1.358 (4) | C3—C2 | 1.364 (5) |
N3—C13 | 1.135 (4) | C3—H3 | 0.9300 |
C12—C4 | 1.405 (4) | C2—H2 | 0.9300 |
C12—C11 | 1.448 (4) | C6—C5 | 1.347 (5) |
C9—C8 | 1.362 (5) | C6—H6 | 0.9300 |
C9—C10 | 1.396 (5) | C5—H5 | 0.9300 |
N3—Cd—N3i | 95.97 (15) | N2—C11—C12 | 118.8 (3) |
N3—Cd—N2i | 108.26 (9) | C7—C11—C12 | 119.3 (3) |
N3i—Cd—N2i | 89.42 (10) | C8—C7—C11 | 117.5 (3) |
N3—Cd—N2 | 89.42 (10) | C8—C7—C6 | 123.1 (3) |
N3i—Cd—N2 | 108.26 (9) | C11—C7—C6 | 119.4 (3) |
N2i—Cd—N2 | 153.81 (12) | C9—C8—C7 | 120.1 (3) |
N3—Cd—N1i | 90.14 (10) | C9—C8—H8 | 120.0 |
N3i—Cd—N1i | 160.29 (9) | C7—C8—H8 | 120.0 |
N2i—Cd—N1i | 70.87 (8) | N1—C1—C2 | 123.1 (3) |
N2—Cd—N1i | 90.48 (8) | N1—C1—H1 | 118.4 |
N3—Cd—N1 | 160.29 (9) | C2—C1—H1 | 118.4 |
N3i—Cd—N1 | 90.14 (10) | C12—C4—C3 | 117.3 (3) |
N2i—Cd—N1 | 90.48 (8) | C12—C4—C5 | 119.7 (3) |
N2—Cd—N1 | 70.87 (8) | C3—C4—C5 | 123.0 (3) |
N1i—Cd—N1 | 90.34 (13) | N2—C10—C9 | 123.3 (3) |
C1—N1—C12 | 118.2 (3) | N2—C10—H10 | 118.3 |
C1—N1—Cd | 125.9 (2) | C9—C10—H10 | 118.3 |
C12—N1—Cd | 115.94 (18) | C2—C3—C4 | 119.6 (3) |
C10—N2—C11 | 118.5 (3) | C2—C3—H3 | 120.2 |
C10—N2—Cd | 125.4 (2) | C4—C3—H3 | 120.2 |
C11—N2—Cd | 116.04 (19) | C3—C2—C1 | 119.3 (3) |
C13—N3—Cd | 162.9 (3) | C3—C2—H2 | 120.4 |
N3—C13—S1 | 178.6 (3) | C1—C2—H2 | 120.4 |
N1—C12—C4 | 122.5 (3) | C5—C6—C7 | 121.2 (3) |
N1—C12—C11 | 118.3 (2) | C5—C6—H6 | 119.4 |
C4—C12—C11 | 119.2 (3) | C7—C6—H6 | 119.4 |
C8—C9—C10 | 118.7 (3) | C6—C5—C4 | 121.1 (3) |
C8—C9—H9 | 120.7 | C6—C5—H5 | 119.5 |
C10—C9—H9 | 120.7 | C4—C5—H5 | 119.5 |
N2—C11—C7 | 121.9 (3) |
Symmetry code: (i) −x, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···N3ii | 0.93 | 2.54 | 3.373 (4) | 149 |
Symmetry code: (ii) x−1/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd(NCS)2(C12H8N2)2] |
Mr | 588.97 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 100 |
a, b, c (Å) | 13.5295 (2), 9.91538 (18), 17.5297 (2) |
V (Å3) | 2351.62 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.14 |
Crystal size (mm) | 0.32 × 0.22 × 0.21 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2003) |
Tmin, Tmax | 0.757, 0.826 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19593, 3444, 2606 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.117, 1.11 |
No. of reflections | 3444 |
No. of parameters | 159 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.56, −0.83 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Cd—N3 | 2.262 (3) | Cd—N1 | 2.372 (3) |
Cd—N2 | 2.369 (3) | ||
N3—Cd—N3i | 95.97 (15) | N2—Cd—N1i | 90.48 (8) |
N3—Cd—N2i | 108.26 (9) | N3—Cd—N1 | 160.29 (9) |
N3—Cd—N2 | 89.42 (10) | N2—Cd—N1 | 70.87 (8) |
N2i—Cd—N2 | 153.81 (12) | N1i—Cd—N1 | 90.34 (13) |
N3—Cd—N1i | 90.14 (10) |
Symmetry code: (i) −x, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···N3ii | 0.93 | 2.54 | 3.373 (4) | 149 |
Symmetry code: (ii) x−1/2, y+1/2, −z+3/2. |
Acknowledgements
Financial support from the Ministerio de Ciencia e Innovación (Project MAT2008–05690/MAT) and the Gobierno Vasco (IT477–10) is gratefully acknowledged. We are also thankful for the technical and human support provided by SGIker (UPV/EHU, MICINN, GV/EJ, ESF).
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gallois, B., Real, J. A., Hauw, C. & Zarembowitch, J. (1990). Inorg. Chem. 29, 1152–1158. CSD CrossRef CAS Web of Science Google Scholar
Goher, M. A. S., Yang, Q. C. & Mak, T. C. W. (2000). Polyhedron, 19, 615–621. Web of Science CSD CrossRef CAS Google Scholar
He, X., Lu, C.-Z., Wu, X.-Y., Zhang, Q.-Z., Chen, S.-M. & Liu, J.-H. (2004). Acta Cryst. E60, m1124–m1125. Web of Science CSD CrossRef IUCr Journals Google Scholar
Holleman, S. R., Parker, O. J. & Breneman, G. L. (1994). Acta Cryst. C50, 867–869. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Liu, Y.-Y., Ma, J.-F. & Yang, J. (2005). Acta Cryst. E61, m2367–m2368. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moon, H.-S., Kim, C.-H. & Lee, S.-G. (2000). Acta Cryst. C56, 425–426. CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland. Google Scholar
Parker, O. J., Aubol, S. L. & Breneman, G. L. (1996). Acta Cryst. C52, 39–41. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yin, G.-Q. (2007). Acta Cryst. E63, m1542–m1543. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes based on thiocyanate anion have been widely studied due the coordination versatility of this ligand (Goher et al., 2000). Regarding to the title compound, it deserves to note that isostructural compounds of Mn(II), Fe(II), Co(II), Cu(II) and Zn(II) have been previously reported (Holleman et al., 1994; Gallois et al., 1990; Yin, 2007;Parker et al., 1996; Liu et al., 2005). However, to the best of our knowledge,the crystal structure described herein represents the first example of the CdII analogue (I). The cadmium(II) cation is placed on a twofold rotation axis showing a distorted octahedral coordination geometry. The coordination environment is completed by four N atoms of two chelating phen ligands in cis arrangement and by two N atoms of two thiocyanate anions (Fig. 1). The two phen ligands are almost perpendicular to each other, with a dihedral angle of 84.8 (1)°. The Cd—N distances corresponding to chelating phen ligands (ca 2.37 Å) are comparable to values found in other CdII-phen complex with CdN6 coordination environment (He et al., 2004). While the bond Cd—N distance (2.262 (3) Å) corresponding to thiocyanate N atoms is sligthly shorter and similar to those found in related compounds (Moon et al., 2000). In the crystal structure, neighbouring complexes interact by means of C—H···N hydrogen bondings (Table 2). Figure 2 shows a view of the crystal packing with the hydrogen bonding interaction scheme.