metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m704-m705

Bis(1,10-phenanthroline-κ2N,N′)bis­­(thio­cyanato-κN)cadmium

aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
*Correspondence e-mail: garikoitz.beobide@ehu.es

(Received 17 March 2011; accepted 6 April 2011; online 7 May 2011)

The title compound, [Cd(NCS)2(C12H8N2)2], has been obtained from the decomposition reaction of dithio­oxamide in a dimethyl­formamide solution containing 1,10-phenanthroline (phen) and Cd(NO3)2·4H2O. Its crystal structure is formed by monuclear CdII entities in which the metal atom is sited on a twofold rotation axis. The CdII atom is six-coordinated in the form of a distorted octa­hedron by two chelating phenanthroline mol­ecules and two thio­cyanate anions coordinated through their N atoms. In the crystal, C—H⋯N hydrogen bonds are established between the phenanthroline and thio­cyanate ligands of neighbouring complexes.

Related literature

For the coordination versatility of the thio­cyanate anion in transition metal complexes, see: Goher et al. (2000[Goher, M. A. S., Yang, Q. C. & Mak, T. C. W. (2000). Polyhedron, 19, 615-621.]). For isotypic Mn(II), Fe(II), Co(II), Cu(II) and Zn(II) structures, see: Holleman et al. (1994[Holleman, S. R., Parker, O. J. & Breneman, G. L. (1994). Acta Cryst. C50, 867-869.]); Gallois et al. (1990[Gallois, B., Real, J. A., Hauw, C. & Zarembowitch, J. (1990). Inorg. Chem. 29, 1152-1158.]); Yin (2007[Yin, G.-Q. (2007). Acta Cryst. E63, m1542-m1543.]); Parker et al. (1996[Parker, O. J., Aubol, S. L. & Breneman, G. L. (1996). Acta Cryst. C52, 39-41.]); Liu et al. (2005[Liu, Y.-Y., Ma, J.-F. & Yang, J. (2005). Acta Cryst. E61, m2367-m2368.]). For another CdII–phen complex with a CdN6 coordination environment, see: He et al. (2004[He, X., Lu, C.-Z., Wu, X.-Y., Zhang, Q.-Z., Chen, S.-M. & Liu, J.-H. (2004). Acta Cryst. E60, m1124-m1125.]). For Cd—N bond lengths in related structures, see: Moon et al. (2000[Moon, H.-S., Kim, C.-H. & Lee, S.-G. (2000). Acta Cryst. C56, 425-426.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C12H8N2)2]

  • Mr = 588.97

  • Orthorhombic, P b c n

  • a = 13.5295 (2) Å

  • b = 9.91538 (18) Å

  • c = 17.5297 (2) Å

  • V = 2351.62 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 100 K

  • 0.32 × 0.22 × 0.21 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]) Tmin = 0.757, Tmax = 0.826

  • 19593 measured reflections

  • 3444 independent reflections

  • 2606 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.11

  • 3444 reflections

  • 159 parameters

  • H-atom parameters constrained

  • Δρmax = 1.56 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd—N3 2.262 (3)
Cd—N2 2.369 (3)
Cd—N1 2.372 (3)
N3—Cd—N3i 95.97 (15)
N3—Cd—N2i 108.26 (9)
N3—Cd—N2 89.42 (10)
N2i—Cd—N2 153.81 (12)
N3—Cd—N1i 90.14 (10)
N2—Cd—N1i 90.48 (8)
N3—Cd—N1 160.29 (9)
N2—Cd—N1 70.87 (8)
N1i—Cd—N1 90.34 (13)
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N3ii 0.93 2.54 3.373 (4) 149
Symmetry code: (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes based on thiocyanate anion have been widely studied due the coordination versatility of this ligand (Goher et al., 2000). Regarding to the title compound, it deserves to note that isostructural compounds of Mn(II), Fe(II), Co(II), Cu(II) and Zn(II) have been previously reported (Holleman et al., 1994; Gallois et al., 1990; Yin, 2007;Parker et al., 1996; Liu et al., 2005). However, to the best of our knowledge,the crystal structure described herein represents the first example of the CdII analogue (I). The cadmium(II) cation is placed on a twofold rotation axis showing a distorted octahedral coordination geometry. The coordination environment is completed by four N atoms of two chelating phen ligands in cis arrangement and by two N atoms of two thiocyanate anions (Fig. 1). The two phen ligands are almost perpendicular to each other, with a dihedral angle of 84.8 (1)°. The Cd—N distances corresponding to chelating phen ligands (ca 2.37 Å) are comparable to values found in other CdII-phen complex with CdN6 coordination environment (He et al., 2004). While the bond Cd—N distance (2.262 (3) Å) corresponding to thiocyanate N atoms is sligthly shorter and similar to those found in related compounds (Moon et al., 2000). In the crystal structure, neighbouring complexes interact by means of C—H···N hydrogen bondings (Table 2). Figure 2 shows a view of the crystal packing with the hydrogen bonding interaction scheme.

Related literature top

For the coordination versatility of the thiocyanate anion in transition metal complexes, see: Goher et al. (2000). For isotypic Mn(II), Fe(II), Co(II), Cu(II) and Zn(II) structures, see: Holleman et al. (1994); Gallois et al. (1990); Yin (2007); Parker et al. (1996); Liu et al. (2005). For another CdII–phen complex with a CdN6 coordination environment, see: He et al. (2004). For Cd—N bond lengths in related structures, see: Moon et al. (2000).

Experimental top

Cd(NO3)2.4H2O (43.3 mg, 0.140 mmol), phen (66.4 mg, 0.368 mmol) and dithiooxamide (18.4 mg, 0.153 mmol) were mixed in 30 ml of dimethylformamide. The reaction mixture was stirred for 30 min and subsequently it was allowed to stand in air. Rombohedral yellow crystals were obtained three weeks later. They were filtered out, washed with ethanol and dried at room temperature (yield 40%). Elemental analysis calculated for C26H16CdN6S2: C 53.02, H 2.74, Cd 19.08, N 14.27, S 10.89%; found: C 53.96, H 3.01, Cd 18.75, N 13.87, S 10.63%.

Refinement top

H atoms were included at geometrically calculated positions and refined as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labels and 50% probability displacement ellipsoids for non-H atoms. Atoms with sufix i are generated by the symmetry operator (–x, y, 3/2 – z).
[Figure 2] Fig. 2. View of the crystal packing of (I) showing the hydrogen bonding scheme.
Bis(1,10-phenanthroline-κ2N,N')bis(thiocyanato- κN)cadmium top
Crystal data top
[Cd(NCS)2(C12H8N2)2]F(000) = 1176
Mr = 588.97Dx = 1.664 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 19593 reflections
a = 13.5295 (2) Åθ = 3.0–30.1°
b = 9.91538 (18) ŵ = 1.14 mm1
c = 17.5297 (2) ÅT = 100 K
V = 2351.62 (6) Å3Rhombohedral, yellow
Z = 40.32 × 0.22 × 0.21 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3444 independent reflections
Radiation source: fine-focus sealed tube2606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 30.1°, θmin = 3.0°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003)
h = 1819
Tmin = 0.757, Tmax = 0.826k = 1310
19593 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0606P)2 + 3.0087P]
where P = (Fo2 + 2Fc2)/3
3444 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 1.56 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Cd(NCS)2(C12H8N2)2]V = 2351.62 (6) Å3
Mr = 588.97Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 13.5295 (2) ŵ = 1.14 mm1
b = 9.91538 (18) ÅT = 100 K
c = 17.5297 (2) Å0.32 × 0.22 × 0.21 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3444 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003)
2606 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.826Rint = 0.031
19593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.11Δρmax = 1.56 e Å3
3444 reflectionsΔρmin = 0.83 e Å3
159 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.170.32 (release 06.06.2003 CrysAlis170 VC++)(compiled Jun 6 2003,13:53:32). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.00000.31999 (3)0.75000.01949 (10)
S10.16408 (7)0.01037 (9)0.56558 (5)0.0346 (2)
N10.00666 (17)0.4887 (3)0.84583 (15)0.0237 (5)
N20.16737 (19)0.3741 (3)0.77514 (14)0.0213 (5)
N30.0504 (2)0.1673 (3)0.66235 (16)0.0308 (6)
C130.0980 (2)0.1038 (3)0.62292 (16)0.0224 (5)
C120.0987 (2)0.5344 (3)0.86435 (16)0.0226 (6)
C90.3426 (2)0.3557 (4)0.75684 (17)0.0283 (6)
H90.39500.31370.73210.034*
C110.1831 (2)0.4731 (3)0.82731 (15)0.0215 (5)
C70.2791 (2)0.5182 (3)0.84580 (16)0.0254 (6)
C80.3593 (2)0.4548 (4)0.80914 (18)0.0303 (7)
H80.42360.48060.82060.036*
C10.0703 (3)0.5433 (3)0.88069 (19)0.0313 (7)
H10.13300.51040.86950.038*
C40.1141 (2)0.6393 (3)0.91695 (18)0.0283 (6)
C100.2452 (3)0.3186 (3)0.74108 (16)0.0256 (6)
H100.23420.25170.70490.031*
C30.0296 (3)0.6967 (4)0.9512 (2)0.0370 (8)
H30.03620.76740.98570.044*
C20.0618 (3)0.6478 (4)0.9335 (2)0.0381 (8)
H20.11790.68390.95640.046*
C60.2909 (2)0.6262 (4)0.89896 (18)0.0313 (7)
H60.35410.65730.91030.038*
C50.2122 (3)0.6839 (3)0.93295 (19)0.0315 (7)
H50.22200.75400.96740.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.01802 (15)0.01969 (16)0.02076 (15)0.0000.00092 (10)0.000
S10.0382 (4)0.0350 (4)0.0306 (4)0.0064 (4)0.0062 (3)0.0011 (3)
N10.0205 (11)0.0264 (12)0.0242 (11)0.0014 (10)0.0004 (9)0.0025 (10)
N20.0199 (11)0.0222 (12)0.0219 (10)0.0003 (10)0.0006 (9)0.0008 (9)
N30.0250 (14)0.0317 (15)0.0356 (14)0.0000 (11)0.0032 (11)0.0054 (12)
C130.0219 (13)0.0227 (14)0.0226 (12)0.0036 (11)0.0020 (11)0.0025 (11)
C120.0250 (14)0.0226 (14)0.0202 (12)0.0007 (11)0.0031 (11)0.0001 (10)
C90.0201 (14)0.0333 (16)0.0316 (15)0.0009 (12)0.0022 (12)0.0022 (12)
C110.0219 (13)0.0212 (13)0.0215 (12)0.0014 (11)0.0027 (10)0.0031 (10)
C70.0255 (14)0.0263 (15)0.0245 (13)0.0032 (12)0.0043 (11)0.0030 (11)
C80.0213 (14)0.0360 (17)0.0338 (15)0.0067 (13)0.0012 (12)0.0033 (13)
C10.0267 (15)0.0338 (17)0.0333 (15)0.0048 (13)0.0019 (13)0.0078 (14)
C40.0304 (16)0.0263 (15)0.0282 (14)0.0002 (13)0.0034 (12)0.0042 (12)
C100.0217 (14)0.0267 (15)0.0284 (14)0.0004 (11)0.0005 (11)0.0015 (11)
C30.0374 (18)0.0364 (19)0.0371 (18)0.0039 (15)0.0022 (15)0.0161 (15)
C20.0328 (18)0.042 (2)0.0391 (18)0.0073 (16)0.0018 (15)0.0142 (16)
C60.0302 (16)0.0330 (17)0.0308 (16)0.0081 (14)0.0085 (13)0.0008 (13)
C50.0373 (18)0.0292 (17)0.0279 (15)0.0038 (14)0.0072 (13)0.0045 (13)
Geometric parameters (Å, º) top
Cd—N32.262 (3)C9—H90.9300
Cd—N3i2.262 (3)C11—C71.411 (4)
Cd—N2i2.369 (3)C7—C81.409 (5)
Cd—N22.369 (3)C7—C61.429 (5)
Cd—N1i2.372 (3)C8—H80.9300
Cd—N12.372 (3)C1—C21.394 (5)
S1—C131.634 (3)C1—H10.9300
N1—C11.323 (4)C4—C31.410 (5)
N1—C121.365 (4)C4—C51.428 (5)
N2—C101.329 (4)C10—H100.9300
N2—C111.358 (4)C3—C21.364 (5)
N3—C131.135 (4)C3—H30.9300
C12—C41.405 (4)C2—H20.9300
C12—C111.448 (4)C6—C51.347 (5)
C9—C81.362 (5)C6—H60.9300
C9—C101.396 (5)C5—H50.9300
N3—Cd—N3i95.97 (15)N2—C11—C12118.8 (3)
N3—Cd—N2i108.26 (9)C7—C11—C12119.3 (3)
N3i—Cd—N2i89.42 (10)C8—C7—C11117.5 (3)
N3—Cd—N289.42 (10)C8—C7—C6123.1 (3)
N3i—Cd—N2108.26 (9)C11—C7—C6119.4 (3)
N2i—Cd—N2153.81 (12)C9—C8—C7120.1 (3)
N3—Cd—N1i90.14 (10)C9—C8—H8120.0
N3i—Cd—N1i160.29 (9)C7—C8—H8120.0
N2i—Cd—N1i70.87 (8)N1—C1—C2123.1 (3)
N2—Cd—N1i90.48 (8)N1—C1—H1118.4
N3—Cd—N1160.29 (9)C2—C1—H1118.4
N3i—Cd—N190.14 (10)C12—C4—C3117.3 (3)
N2i—Cd—N190.48 (8)C12—C4—C5119.7 (3)
N2—Cd—N170.87 (8)C3—C4—C5123.0 (3)
N1i—Cd—N190.34 (13)N2—C10—C9123.3 (3)
C1—N1—C12118.2 (3)N2—C10—H10118.3
C1—N1—Cd125.9 (2)C9—C10—H10118.3
C12—N1—Cd115.94 (18)C2—C3—C4119.6 (3)
C10—N2—C11118.5 (3)C2—C3—H3120.2
C10—N2—Cd125.4 (2)C4—C3—H3120.2
C11—N2—Cd116.04 (19)C3—C2—C1119.3 (3)
C13—N3—Cd162.9 (3)C3—C2—H2120.4
N3—C13—S1178.6 (3)C1—C2—H2120.4
N1—C12—C4122.5 (3)C5—C6—C7121.2 (3)
N1—C12—C11118.3 (2)C5—C6—H6119.4
C4—C12—C11119.2 (3)C7—C6—H6119.4
C8—C9—C10118.7 (3)C6—C5—C4121.1 (3)
C8—C9—H9120.7C6—C5—H5119.5
C10—C9—H9120.7C4—C5—H5119.5
N2—C11—C7121.9 (3)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N3ii0.932.543.373 (4)149
Symmetry code: (ii) x1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C12H8N2)2]
Mr588.97
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)13.5295 (2), 9.91538 (18), 17.5297 (2)
V3)2351.62 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.32 × 0.22 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2003)
Tmin, Tmax0.757, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
19593, 3444, 2606
Rint0.031
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.11
No. of reflections3444
No. of parameters159
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.56, 0.83

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cd—N32.262 (3)Cd—N12.372 (3)
Cd—N22.369 (3)
N3—Cd—N3i95.97 (15)N2—Cd—N1i90.48 (8)
N3—Cd—N2i108.26 (9)N3—Cd—N1160.29 (9)
N3—Cd—N289.42 (10)N2—Cd—N170.87 (8)
N2i—Cd—N2153.81 (12)N1i—Cd—N190.34 (13)
N3—Cd—N1i90.14 (10)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N3ii0.932.543.373 (4)149
Symmetry code: (ii) x1/2, y+1/2, z+3/2.
 

Acknowledgements

Financial support from the Ministerio de Ciencia e Innovación (Project MAT2008–05690/MAT) and the Gobierno Vasco (IT477–10) is gratefully acknowledged. We are also thankful for the technical and human support provided by SGIker (UPV/EHU, MICINN, GV/EJ, ESF).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGallois, B., Real, J. A., Hauw, C. & Zarembowitch, J. (1990). Inorg. Chem. 29, 1152–1158.  CSD CrossRef CAS Web of Science Google Scholar
First citationGoher, M. A. S., Yang, Q. C. & Mak, T. C. W. (2000). Polyhedron, 19, 615–621.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, X., Lu, C.-Z., Wu, X.-Y., Zhang, Q.-Z., Chen, S.-M. & Liu, J.-H. (2004). Acta Cryst. E60, m1124–m1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolleman, S. R., Parker, O. J. & Breneman, G. L. (1994). Acta Cryst. C50, 867–869.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, Y.-Y., Ma, J.-F. & Yang, J. (2005). Acta Cryst. E61, m2367–m2368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoon, H.-S., Kim, C.-H. & Lee, S.-G. (2000). Acta Cryst. C56, 425–426.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.  Google Scholar
First citationParker, O. J., Aubol, S. L. & Breneman, G. L. (1996). Acta Cryst. C52, 39–41.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, G.-Q. (2007). Acta Cryst. E63, m1542–m1543.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m704-m705
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds