organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl N-{2-[bis­­(prop-2-yn-1-yl)amino]­phen­yl}carbamate

aDepartment of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 225 001, U.P. India, and bChemical Biology Laboratory, Department of Chemistry, University of Delhi 110 007, Delhi, India
*Correspondence e-mail: dralka@bhu.ac.in, awasthisatish@yahoo.com

(Received 31 March 2011; accepted 4 May 2011; online 11 May 2011)

In the crystal of the title compound, C17H20N2O2, the molecules are linked by C—H⋯O interactions. Intra­molecular C—H⋯O and N—H⋯N hydrogen bonds also occur.

Related literature

For applications of alkyne scaffolds in biology, medicinal and materials chemistry, see: Diederich et al. (2005[Diederich, F., Stang, P. J. & Tykwinski, R. R. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science. Weinheim: Wiley-VCH.]); Stang & Diederich (1995[Stang, P. J. & Diederich, F. (1995). Modern Acetylene Chemistry. Weinheim: VCH.]); Lam et al. (1988[Lam, J., Bretel, H., Arnason, T. & Hansen, L. (1988). Chemistry and Biology of Naturally-Occurring Acetylenes and Related Compounds. Amsterdam: Elsevier.]); Patai (1994[Patai, S. (1994). Chemistry of Triple-Bonded Functional Groups. New York: Wiley.]). For background to click chemistry, which involves 1,3-dipolar cyclo­addition of an alkyne with an azide and is an efficient and highly versatile tool that has allowed the preparation of a variety of macromolecule conjugates such as sugars, peptides or proteins and DNA, see: Rostovtsev et al. (2002[Rostovtsev, V. V., Green, L.-G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596-2599.]). For the synthesis, see: Lilienkampf et al. (2009[Lilienkampf, A., Mao, J., Wan, B., Wang, Y., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 2109-2118.]). For inter­molecular inter­actions, see: Steiner & Desiraju (1998[Steiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891-892.]). For intra­molecular C—H⋯O hydrogen bonds, see: Smith et al. (1993[Smith, B. D., Haller, K. J. & Shang, M. (1993). J. Org. Chem. 58, 6905-6907.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O2

  • Mr = 284.35

  • Monoclinic, C 2/c

  • a = 19.1936 (12) Å

  • b = 8.7181 (4) Å

  • c = 19.7619 (9) Å

  • β = 99.513 (5)°

  • V = 3261.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.40 × 0.39 × 0.38 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.953, Tmax = 1.000

  • 6969 measured reflections

  • 4389 independent reflections

  • 2427 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.156

  • S = 0.96

  • 4389 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.97 2.55 3.512 (2) 171
C9—H9⋯O1ii 0.93 2.28 3.194 (3) 166
C2—H2⋯O1 0.93 2.32 2.911 (3) 121
N1—HN1⋯N2 0.810 (19) 2.28 (2) 2.703 (2) 114 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x, -y+2, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The carbon-carbon triple bond is an important and versatile functional group in organic chemistry. Alkynes are found in numerous natural products as well as in synthetic organic molecules. These alkyne scaffolds have various applications in biology, medicinal and material chemistry (Diederich et al., 2005; Stang & Diederich 1995; Lam et al., 1988; Patai 1994). Click chemistry developed by Sharpless (Rostovtsev et al., 2002) involves 1,3-dipolar cycloaddition of alkyne with azide as an efficient and highly versatile tool that has allowed to prepare a variety of macromolecule conjugates such as sugars, peptides or proteins and DNA. As part of our ongoing work on antimicrobial studies on small molecules, we characterized and report here the crystal structure of [2-(di-prop-2-ynyl-amino)phenyl]carbamic acid tert-butyl ester (Figure1).

In the crystal structure, the compound is stabilized by intermolecular interaction between C10—H10B···O1 and C9—H9···O1 (Steiner & Desiraju, 1998) and intramolecular hydrogen bond between C2—H2···O1 (Smith et al., 1993) and N1—HN1···N2 as seen in the crystal packing diagram along b axis (Table 1, Figure 2). Considering C1—C6 C13—C15 N1 N2 O1 O2 atom as plane A, C7 C8 C9 atom as plane B, C10 C11 C12 atom as plane C, the dihedral angels between planes A/B, A/C and B/C are 74.74°, 57.52°, 48.94° respectively, suggests that the molecule is not co-planar.

Related literature top

For applications of alkyne scaffolds in biology, medicinal and materials chemistry, see: Diederich et al. (2005); Stang & Diederich (1995); Lam et al. (1988); Patai (1994). For background to click chemistry, which involves 1,3-dipolar cycloaddition of an alkyne with an azide and is an efficient and highly versatile tool that has allowed the preparation of a variety of macromolecule conjugates such as sugars, peptides or proteins and DNA, see: Rostovtsev et al. (2002). For the synthesis, see: Lilienkampf et al. (2009). For intermolecular interactions, see: Steiner & Desiraju (1998). For intramolecular C—H···O hydrogen bonds, see: Smith et al. (1993).

Experimental top

The synthesis of the title compound was carried out according to the published procedure (Lilienkampf, et al., 2009). Briefly, to a solution of (2-aminophenyl)carbamic acid tert-butyl ester (1.5 g, 7.2 mmol) in dry acetone was added anhydrous K2CO3 (7.95 g, 54.6 m mol) and reaction mixture was refluxed for 15–30 minutes. Subsequently, KI (0.60 g m, 3.6 mmol) and propargyl bromide (0.75 ml, 7.8 mmol) were added and further refluxed the reaction mixture for 18 hrs. The reaction mixture was cooled, filtered, and the filtrate was evaporated in vacuo to give the product. The crude product was purified by column chromatography using hexane and dichloromethane (65:35) as eluent. The purified product was recrystallized from hexane-dichloromethane (1:1). The colourless crystals were obtained by slow evaporation of solvent at room temperature in several days. Yield: 20%.

1H NMR (CDCl3): 8.11 (bs, 1H, NH), 7.56–7.55 (m, 1H, Ar—H), 7.35- 7.32 (m, 1H, Ar—H), 7.19–7.14 (m, 1H, Ar—H), 6.99–6.94 (m, 1H, Ar—H), 3.83 (s, 4H, CH2), 2.28 (s, 2H, CH), 1.51 (s, 9H, 3xCH3).

Refinement top

All H atoms were located from difference Fourier map (range of C—H = 0.93 - 0.97 Å, and N–H = 0.81 Å) and allowed to refine freely.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of molecule with thermal ellipsoids drawn at 50% probability level Color code: White: C; red: O; blue: N; white: H
[Figure 2] Fig. 2. Intermolecular interaction between C—H···O (blue line) and Intramolecular hydrogen bond (red line) showed in packing diagram of molecule along b-plane
[Figure 3] Fig. 3. The formation of the title compound.
tert-Butyl N-{2-[bis(prop-2-yn-1-yl)amino]phenyl}carbamate top
Crystal data top
C17H20N2O2F(000) = 1216.0
Mr = 284.35Dx = 1.158 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4389 reflections
a = 19.1936 (12) Åθ = 3.2–29.0°
b = 8.7181 (4) ŵ = 0.08 mm1
c = 19.7619 (9) ÅT = 293 K
β = 99.513 (5)°Block, colourless
V = 3261.3 (3) Å30.40 × 0.39 × 0.38 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4389 independent reflections
Radiation source: fine-focus sealed tube2427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 29.1°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 247
Tmin = 0.953, Tmax = 1.000k = 1010
6969 measured reflectionsl = 2326
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0754P)2 + 1.325P]
where P = (Fo2 + 2Fc2)/3
4389 reflections(Δ/σ)max = 0.05
194 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H20N2O2V = 3261.3 (3) Å3
Mr = 284.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.1936 (12) ŵ = 0.08 mm1
b = 8.7181 (4) ÅT = 293 K
c = 19.7619 (9) Å0.40 × 0.39 × 0.38 mm
β = 99.513 (5)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4389 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2427 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 1.000Rint = 0.019
6969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.19 e Å3
4389 reflectionsΔρmin = 0.19 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
HN10.1292 (11)0.706 (2)0.4601 (9)0.038 (5)*
N10.13858 (9)0.78587 (19)0.47962 (8)0.0397 (4)
O20.05794 (7)0.71231 (15)0.53892 (6)0.0505 (4)
N20.17096 (8)0.68525 (17)0.35922 (7)0.0399 (4)
C10.18983 (9)0.8707 (2)0.45262 (8)0.0362 (4)
O10.11848 (8)0.93110 (16)0.57014 (6)0.0548 (4)
C130.10630 (10)0.8202 (2)0.53354 (8)0.0380 (4)
C60.20658 (10)0.8197 (2)0.38966 (8)0.0383 (4)
C20.22421 (11)0.9975 (2)0.48421 (10)0.0454 (5)
H20.21301.03240.52560.055*
C110.19018 (12)0.4288 (3)0.31791 (9)0.0510 (5)
C50.25792 (11)0.8980 (2)0.36113 (10)0.0507 (5)
H50.26910.86550.31940.061*
C100.21577 (11)0.5866 (2)0.32379 (9)0.0476 (5)
H10A0.21680.62740.27830.057*
H10B0.26370.58790.34890.057*
C80.10589 (12)0.7963 (3)0.25187 (10)0.0586 (6)
C30.27519 (12)1.0729 (2)0.45480 (11)0.0544 (5)
H30.29801.15810.47650.065*
C70.10173 (11)0.7167 (2)0.31671 (9)0.0491 (5)
H7A0.07710.62020.30640.059*
H7B0.07390.77860.34310.059*
C140.00843 (11)0.7249 (2)0.58831 (9)0.0484 (5)
C40.29225 (12)1.0225 (2)0.39370 (12)0.0576 (6)
H40.32701.07270.37440.069*
C120.17318 (14)0.2999 (3)0.31334 (12)0.0681 (7)
H120.15970.19740.30970.082*
C150.03735 (16)0.5849 (3)0.57144 (14)0.0852 (9)
H15A0.06290.59350.52550.128*
H15B0.07010.57720.60310.128*
H15C0.00810.49490.57500.128*
C90.11141 (16)0.8551 (4)0.20009 (13)0.0838 (8)
H90.11580.90200.15870.101*
C160.04878 (15)0.7145 (4)0.66033 (11)0.0833 (9)
H16A0.07500.62030.66560.125*
H16B0.01630.71690.69240.125*
H16C0.08080.79960.66890.125*
C170.03353 (15)0.8709 (3)0.57635 (15)0.0854 (9)
H17A0.05850.87270.53000.128*
H17B0.00210.95720.58370.128*
H17C0.06680.87590.60760.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0456 (10)0.0393 (9)0.0381 (8)0.0030 (7)0.0187 (7)0.0042 (7)
O20.0517 (9)0.0599 (8)0.0465 (7)0.0109 (7)0.0271 (6)0.0086 (6)
N20.0396 (9)0.0496 (9)0.0328 (7)0.0035 (7)0.0129 (6)0.0014 (6)
C10.0340 (10)0.0386 (9)0.0379 (9)0.0065 (8)0.0118 (7)0.0075 (7)
O10.0565 (9)0.0634 (9)0.0486 (7)0.0082 (7)0.0212 (6)0.0186 (7)
C130.0358 (10)0.0462 (10)0.0332 (8)0.0030 (8)0.0094 (7)0.0006 (7)
C60.0362 (10)0.0424 (10)0.0386 (9)0.0062 (8)0.0126 (7)0.0083 (7)
C20.0431 (11)0.0422 (10)0.0530 (11)0.0036 (9)0.0133 (8)0.0008 (8)
C110.0530 (13)0.0616 (14)0.0412 (10)0.0101 (11)0.0160 (9)0.0043 (9)
C50.0506 (13)0.0553 (12)0.0518 (11)0.0017 (10)0.0250 (9)0.0092 (9)
C100.0457 (12)0.0610 (13)0.0391 (9)0.0088 (10)0.0155 (8)0.0007 (8)
C80.0522 (14)0.0731 (15)0.0499 (12)0.0075 (12)0.0066 (9)0.0173 (10)
C30.0455 (13)0.0434 (11)0.0756 (14)0.0007 (10)0.0141 (10)0.0011 (10)
C70.0418 (12)0.0638 (13)0.0432 (10)0.0022 (10)0.0113 (8)0.0076 (9)
C140.0456 (12)0.0621 (12)0.0435 (10)0.0018 (10)0.0247 (8)0.0024 (9)
C40.0466 (13)0.0529 (12)0.0794 (14)0.0020 (10)0.0287 (11)0.0122 (11)
C120.0762 (18)0.0616 (15)0.0727 (15)0.0037 (13)0.0307 (13)0.0087 (11)
C150.081 (2)0.095 (2)0.0936 (18)0.0271 (16)0.0533 (15)0.0110 (15)
C90.081 (2)0.108 (2)0.0634 (15)0.0147 (17)0.0150 (13)0.0378 (15)
C160.086 (2)0.121 (2)0.0472 (13)0.0107 (18)0.0253 (12)0.0175 (13)
C170.0630 (17)0.093 (2)0.110 (2)0.0268 (15)0.0427 (15)0.0300 (16)
Geometric parameters (Å, º) top
N1—C131.352 (2)C8—C71.471 (3)
N1—C11.404 (2)C3—C41.374 (3)
N1—HN10.801 (19)C3—H30.9300
O2—C131.338 (2)C7—H7A0.9700
O2—C141.475 (2)C7—H7B0.9700
N2—C61.438 (2)C14—C171.504 (3)
N2—C71.476 (2)C14—C161.507 (3)
N2—C101.472 (2)C14—C151.509 (3)
C1—C21.382 (3)C4—H40.9300
C1—C61.407 (2)C12—H120.9300
O1—C131.207 (2)C15—H15A0.9600
C6—C51.392 (3)C15—H15B0.9600
C2—C31.384 (3)C15—H15C0.9600
C2—H20.9300C9—H90.9300
C11—C121.170 (3)C16—H16A0.9600
C11—C101.459 (3)C16—H16B0.9600
C5—C41.374 (3)C16—H16C0.9600
C5—H50.9300C17—H17A0.9600
C10—H10A0.9700C17—H17B0.9600
C10—H10B0.9700C17—H17C0.9600
C8—C91.164 (3)
C13—N1—C1128.60 (16)C8—C7—H7A108.7
C13—N1—HN1118.4 (14)N2—C7—H7A108.7
C1—N1—HN1113.0 (14)C8—C7—H7B108.7
C13—O2—C14122.13 (14)N2—C7—H7B108.7
C6—N2—C7114.07 (15)H7A—C7—H7B107.6
C6—N2—C10113.60 (15)O2—C14—C17110.24 (16)
C7—N2—C10112.31 (14)O2—C14—C16109.50 (18)
C2—C1—C6119.35 (16)C17—C14—C16112.2 (2)
C2—C1—N1124.15 (16)O2—C14—C15102.07 (16)
C6—C1—N1116.50 (16)C17—C14—C15111.9 (2)
O1—C13—O2125.71 (16)C16—C14—C15110.5 (2)
O1—C13—N1125.54 (17)C5—C4—C3119.92 (19)
O2—C13—N1108.74 (15)C5—C4—H4120.0
C5—C6—C1118.91 (18)C3—C4—H4120.0
C5—C6—N2123.34 (16)C11—C12—H12180.0
C1—C6—N2117.72 (15)C14—C15—H15A109.5
C3—C2—C1120.53 (18)C14—C15—H15B109.5
C3—C2—H2119.7H15A—C15—H15B109.5
C1—C2—H2119.7C14—C15—H15C109.5
C12—C11—C10176.5 (2)H15A—C15—H15C109.5
C4—C5—C6120.96 (19)H15B—C15—H15C109.5
C4—C5—H5119.5C8—C9—H9180.0
C6—C5—H5119.5C14—C16—H16A109.5
C11—C10—N2111.90 (16)C14—C16—H16B109.5
C11—C10—H10A109.2H16A—C16—H16B109.5
N2—C10—H10A109.2C14—C16—H16C109.5
C11—C10—H10B109.2H16A—C16—H16C109.5
N2—C10—H10B109.2H16B—C16—H16C109.5
H10A—C10—H10B107.9C14—C17—H17A109.5
C9—C8—C7177.1 (3)C14—C17—H17B109.5
C4—C3—C2120.3 (2)H17A—C17—H17B109.5
C4—C3—H3119.8C14—C17—H17C109.5
C2—C3—H3119.8H17A—C17—H17C109.5
C8—C7—N2114.21 (17)H17B—C17—H17C109.5
C13—N1—C1—C210.1 (3)N1—C1—C2—C3178.67 (18)
C13—N1—C1—C6170.50 (17)C1—C6—C5—C40.4 (3)
C14—O2—C13—O15.5 (3)N2—C6—C5—C4177.51 (18)
C14—O2—C13—N1173.54 (16)C12—C11—C10—N2149 (4)
C1—N1—C13—O12.8 (3)C6—N2—C10—C11157.11 (15)
C1—N1—C13—O2176.26 (16)C7—N2—C10—C1171.6 (2)
C2—C1—C6—C50.5 (3)C1—C2—C3—C40.0 (3)
N1—C1—C6—C5178.92 (16)C9—C8—C7—N246 (6)
C2—C1—C6—N2178.52 (16)C6—N2—C7—C870.5 (2)
N1—C1—C6—N20.9 (2)C10—N2—C7—C860.6 (2)
C7—N2—C6—C596.4 (2)C13—O2—C14—C1757.2 (3)
C10—N2—C6—C534.0 (2)C13—O2—C14—C1666.8 (2)
C7—N2—C6—C185.68 (18)C13—O2—C14—C15176.18 (18)
C10—N2—C6—C1143.86 (16)C6—C5—C4—C31.1 (3)
C6—C1—C2—C30.7 (3)C2—C3—C4—C50.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.972.553.512 (2)171
C9—H9···O1ii0.932.283.194 (3)166
C2—H2···O10.932.322.911 (3)121
N1—HN1···N20.810 (19)2.28 (2)2.703 (2)114 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H20N2O2
Mr284.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.1936 (12), 8.7181 (4), 19.7619 (9)
β (°) 99.513 (5)
V3)3261.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.39 × 0.38
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.953, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6969, 4389, 2427
Rint0.019
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.156, 0.96
No. of reflections4389
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.9702.553.512 (2)171
C9—H9···O1ii0.9302.283.194 (3)166
C2—H2···O10.9302.322.911 (3)121
N1—HN1···N20.810 (19)2.28 (2)2.703 (2)114 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+2, z1/2.
 

Acknowledgements

AA, MKS and CM are thankful to the University Grant Commission (scheme No. 34–311/2008), New Delhi, and Banaras Hindu University, Varanasi, India, for financial assistance. SKA is thankful to the University of Delhi, India, for financial assistance.

References

First citationDiederich, F., Stang, P. J. & Tykwinski, R. R. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science. Weinheim: Wiley-VCH.  Google Scholar
First citationLam, J., Bretel, H., Arnason, T. & Hansen, L. (1988). Chemistry and Biology of Naturally-Occurring Acetylenes and Related Compounds. Amsterdam: Elsevier.  Google Scholar
First citationLilienkampf, A., Mao, J., Wan, B., Wang, Y., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 2109–2118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPatai, S. (1994). Chemistry of Triple-Bonded Functional Groups. New York: Wiley.  Google Scholar
First citationRostovtsev, V. V., Green, L.-G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, B. D., Haller, K. J. & Shang, M. (1993). J. Org. Chem. 58, 6905–6907.  CrossRef CAS Google Scholar
First citationStang, P. J. & Diederich, F. (1995). Modern Acetylene Chemistry. Weinheim: VCH.  Google Scholar
First citationSteiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891–892.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds