metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(di-2-pyridyl­amine-κ2N2,N2′)(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)zinc monohydrate

aDepartment of Elementary Education, Elementary Science Education, Faculty of Education, Kırıkkale University, 71450 Yahşihan/Kırıkkale, Turkey, and bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: durankayafigen@gmail.com

(Received 8 April 2011; accepted 25 April 2011; online 7 May 2011)

In the title compound, [Zn(C7H3NO4)(C10H9N3)(H2O)]·H2O, the ZnII atom has a distorted octa­hedral coordination geometry. One of the water mol­ecules is coordinated with the ZnII ion and this mol­ecule forms an O—H⋯O inter­action with the lattice water mol­ecule. The pyridine-2,6-dicarboxyl­ate ligand is almost planar (r.m.s. deviation = 0.0242 Å). In the crystal, C—H⋯O, C—H⋯N, O—H⋯O and N—H⋯O hydrogen bonds are present.

Related literature

For the biological activity of 2,6-pyridine­dicarb­oxy­lic acid, see: Chung et al. (1971[Chung, L., Rajan, K. S., Merdinger, E. & Grecz, N. (1971). Biophys. J. 11, 470-482.]); Tang et al. (1968[Tang, T., Rajan, K. S. & Grecz, N. (1968). Biophys. J. 8, 1458-1474.]). For the crystal structures of pyridine-2,6-dicarboxyl­ate derivatives, see: Uçar et al. (2007a[Uçar, İ., Bulut, A. & Büyükgüngör, O. (2007a). J. Phys. Chem. Solids, 68, 2271-2277.],b[Uçar, İ., Karabulut, B., Bulut, A. & Büyükgüngör, O. (2007b). J. Mol. Struct. 834-836, 336-344.]); Uçar et al. (2009[Uçar, İ., Bulut, İ., Bulut, A. & Karadağ, A. (2009). Struct. Chem. 20, 825-838.]); Cui et al. (2011[Cui, G.-H., Liu, T.-F. & Peng, X. (2011). J. Chem. Crystallogr. 41, 322-327.]). For C—H⋯O inter­actions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H3NO4)(C10H9N3)(H2O)]·H2O

  • Mr = 437.71

  • Triclinic, [P \overline 1]

  • a = 6.8349 (5) Å

  • b = 11.1246 (8) Å

  • c = 12.1910 (9) Å

  • α = 96.109 (6)°

  • β = 96.404 (6)°

  • γ = 107.381 (6)°

  • V = 869.51 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 296 K

  • 0.44 × 0.27 × 0.13 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.598, Tmax = 0.833

  • 7786 measured reflections

  • 3398 independent reflections

  • 3093 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.071

  • S = 1.05

  • 3398 reflections

  • 315 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯N4 0.93 (3) 2.59 (3) 3.189 (3) 123 (2)
O5—H5B⋯O6 0.82 (4) 1.95 (4) 2.750 (3) 166 (4)
N2—H5⋯O3i 0.75 (3) 2.08 (3) 2.823 (2) 172 (3)
O6—H6B⋯O1ii 0.86 (2) 2.05 (2) 2.832 (3) 151 (2)
O5—H5A⋯O2iii 0.83 (4) 1.97 (4) 2.804 (3) 176 (3)
C2—H2⋯O2ii 0.94 (3) 2.56 (3) 3.432 (3) 155 (2)
C3—H3⋯O4iv 0.86 (3) 2.41 (3) 3.117 (3) 140 (2)
C15—H15⋯O2v 0.88 (3) 2.57 (3) 3.309 (3) 142 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) x, y+1, z; (v) -x, -y, -z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The large amount of the 2,6-pyridinedicarboxylic acid (dipicolinic acid, DPA) is contain by bacterial spores and may be related to heat resistance of bacterial spores (Chung et al., 1971; Tang et al., 1968).

In the Figure 1 is shown that the pyridine-2,6-dicarboxylato ligand has connected to ZnII ion through the carboxyl group and ring nitrogen. The metal atom has also connected to 2,2-dipyridylamine ligand thought two ring nitrogens. Thus, the Zn(II) atom has a distorted octahedral coordination geometry by two N atoms from the dipyridylamine ligand, one N atom and two O atoms from the pyridine-2,6-dicarboxylato ligand and one O atom from aqua ligand.

The a lot of crystal structures with pyridine-2,6-dicarboxylato ligand were reported in literature ( Uçar et al., 2007a; Uçar et al., 2007b; Uçar et al., 2009; Cui et al., 2011) and our crystal structre is very similar with the crystal structure reported by Uçar et al., (2007a). The Zn1—N1, Zn1—N3 and Zn1—N4 bond distances are 2.1318 (18) Å, 2.0327 (17) Å and 2.0269 (16) Å, respectively, while the Zn1—O1, Zn1—O3 and Zn1—O5 bond distances are 2.1947 (15) Å, 2.1755 (14) Å and 2.3148 (19) Å, respectively. In the crystal structure, the O3—C11—O4 and O1—C17—O2 bond angle for carboxylate groups are 126.5 (2)° and 126.4 (2)°, respectively. The some geometrical parameter were found as N1—Zn1—N3=89.01 (7)°, O3—Zn1—O1=152.19 (6)°, O1—Zn1—N4=75.75 (6)° and O3—Zn1—N4=76.80 (6)°.

The crystal structure contains intra and inter hydrogen bonds. The d parameter for C—H···O hydrogen bonds had separated a wide range and had different shapes for different donor atoms (Desiraju & Steiner, 1999). The d parameters of our crystal structure for H2···O2, H3···O4 and H15···O2 are 2.56 (3) Å, 2.41 (3) Å and 2.57 (3) Å, respectively. The D parameters for C—H···N interactions had given somewhat longer than C—H···O interactions (Desiraju & Steiner, 1999). The geometric parameters for C10—H10···N4 and C15—H15···O2 interactions are 0.93 (3) Å, 2.59 (3) Å, 3.189 (3) Å, 123 (2)° and 0.88 (3) Å, 2.57 (3) Å, 3.309 (3) Å, 142 (2)°, respectively. The d parameters for these interactions are 2.59 (3) Å and 2.57 (3) Å as well as d value for C10—H10···N4 is longer than d value for C15—H15···O2, but the D value is bigger for this interaction, due to the angle belong to C15—H15···O2 interaction is bigger than other interaction. The O5—H5B···O6 hydrogen bond is between the water molecules and the geometric parameters belong to this hydrogen bond are 0.82 (4) Å, 1.95 (4) Å, 2.750 (3) Å and 166 (4)°, respectively. The other hydrogen bonds have been given in Table 1.

Related literature top

For the biological activity of 2,6-pyridinedicarboxylic acid, see: Chung et al. (1971); Tang et al. (1968). For the crystal structures of pyridine-2,6-dicarboxylate derivatives, see: Uçar et al. (2007a,b); Uçar et al. (2009); Cui et al. (2011). For C—H···O interactions, see: Desiraju & Steiner (1999).

Experimental top

To ethanol/water (30ml, ca. 1:1, v/v) containing ZnCl2.4H2O (1mmol) and disodium dipicolinate (1mmol), 2,2-dipyridylamine (1mmol) was added slowly with continuous stirring. The resulting solutions were refluxed for 1h and then filtered. The blue filtrates were allowed about 2 weeks at room temperature, and then the colorless crystals of title complex suitable for X-ray diffraction analyses were collected.

Refinement top

H6A and H6B atoms were located in a difference map and were refined with O–H and H···H distance restrains 0.80 (2) Å and 1.60 (2) Å, respectively. Other H atoms were located in a difference map and refined freely.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoid are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound in the unit cell. The hydrogen bonds were shown dashed lines.
Aqua(di-2-pyridylamine-κ2N2,N2')(pyridine-2,6- dicarboxylato-κ3O2,N,O6)zinc monohydrate top
Crystal data top
[Zn(C7H3NO4)(C10H9N3)(H2O)]·H2OZ = 2
Mr = 437.71F(000) = 448
Triclinic, P1Dx = 1.672 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8349 (5) ÅCell parameters from 18443 reflections
b = 11.1246 (8) Åθ = 2.4–27.4°
c = 12.1910 (9) ŵ = 1.46 mm1
α = 96.109 (6)°T = 296 K
β = 96.404 (6)°Prism, colorless
γ = 107.381 (6)°0.44 × 0.27 × 0.13 mm
V = 869.51 (11) Å3
Data collection top
Stoe IPDS 2
diffractometer
3398 independent reflections
Radiation source: fine-focus sealed tube3093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
w–scan rotationθmax = 26.0°, θmin = 2.4°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 88
Tmin = 0.598, Tmax = 0.833k = 1313
7786 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.4854P]
where P = (Fo2 + 2Fc2)/3
3398 reflections(Δ/σ)max = 0.001
315 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Zn(C7H3NO4)(C10H9N3)(H2O)]·H2Oγ = 107.381 (6)°
Mr = 437.71V = 869.51 (11) Å3
Triclinic, P1Z = 2
a = 6.8349 (5) ÅMo Kα radiation
b = 11.1246 (8) ŵ = 1.46 mm1
c = 12.1910 (9) ÅT = 296 K
α = 96.109 (6)°0.44 × 0.27 × 0.13 mm
β = 96.404 (6)°
Data collection top
Stoe IPDS 2
diffractometer
3398 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3093 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 0.833Rint = 0.019
7786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0283 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.36 e Å3
3398 reflectionsΔρmin = 0.51 e Å3
315 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8321 (4)0.6257 (2)0.2034 (2)0.0405 (5)
C20.9281 (4)0.7536 (2)0.2147 (2)0.0457 (5)
C31.0007 (4)0.8203 (2)0.3211 (2)0.0448 (5)
C40.9665 (3)0.7576 (2)0.4108 (2)0.0384 (5)
C50.8625 (3)0.62585 (18)0.39379 (17)0.0305 (4)
C60.7053 (3)0.45086 (19)0.50443 (17)0.0301 (4)
C70.6890 (3)0.4313 (2)0.61532 (19)0.0371 (5)
C80.5781 (4)0.3143 (2)0.6365 (2)0.0428 (5)
C90.4779 (4)0.2187 (2)0.5475 (2)0.0457 (5)
C100.4947 (4)0.2455 (2)0.4423 (2)0.0421 (5)
C110.8865 (3)0.1646 (2)0.28574 (18)0.0373 (5)
C120.6742 (3)0.10009 (19)0.21539 (17)0.0318 (4)
C130.5899 (4)0.0290 (2)0.1784 (2)0.0404 (5)
C140.3928 (4)0.0736 (2)0.1172 (2)0.0451 (6)
C150.2853 (3)0.0102 (2)0.0934 (2)0.0400 (5)
C160.3784 (3)0.13814 (19)0.13253 (16)0.0315 (4)
C170.2853 (3)0.2443 (2)0.11450 (17)0.0353 (4)
N10.6108 (3)0.35941 (16)0.41824 (15)0.0340 (4)
N20.8254 (3)0.56958 (17)0.48748 (16)0.0328 (4)
N30.8026 (3)0.55946 (16)0.29092 (14)0.0319 (4)
N40.5679 (3)0.17928 (15)0.19219 (14)0.0301 (3)
O10.4027 (2)0.35555 (15)0.15426 (14)0.0452 (4)
O20.1071 (2)0.21538 (16)0.06327 (14)0.0456 (4)
O30.9333 (2)0.28411 (14)0.31253 (12)0.0360 (3)
O40.9925 (3)0.09778 (17)0.31240 (19)0.0629 (6)
O50.8755 (3)0.38070 (19)0.10477 (16)0.0480 (4)
O60.7196 (4)0.4353 (2)0.0951 (2)0.0736 (6)
Zn10.69556 (4)0.36631 (2)0.25541 (2)0.03462 (9)
H6A0.598 (3)0.411 (2)0.062 (2)0.052*
H6B0.727 (4)0.5068 (19)0.118 (2)0.052*
H10.788 (4)0.577 (3)0.131 (2)0.046 (7)*
H20.937 (4)0.790 (3)0.149 (2)0.054 (8)*
H31.064 (4)0.901 (3)0.331 (2)0.051 (8)*
H41.005 (4)0.797 (2)0.483 (2)0.039 (6)*
H50.881 (4)0.612 (2)0.540 (2)0.032 (6)*
H5A0.941 (5)0.329 (3)0.094 (3)0.060 (9)*
H5B0.818 (6)0.384 (3)0.043 (3)0.077 (11)*
H70.754 (4)0.499 (3)0.672 (2)0.045 (7)*
H80.567 (4)0.299 (3)0.709 (2)0.046 (7)*
H90.391 (5)0.139 (3)0.558 (2)0.059 (8)*
H100.427 (4)0.185 (3)0.380 (2)0.047 (7)*
H130.661 (4)0.083 (3)0.195 (2)0.052 (8)*
H140.336 (4)0.159 (3)0.092 (2)0.053 (8)*
H150.160 (5)0.016 (3)0.055 (2)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0449 (12)0.0410 (12)0.0389 (12)0.0179 (10)0.0067 (9)0.0071 (10)
C20.0487 (13)0.0418 (13)0.0538 (14)0.0191 (11)0.0142 (11)0.0175 (11)
C30.0397 (12)0.0277 (11)0.0670 (16)0.0088 (9)0.0094 (11)0.0105 (11)
C40.0347 (11)0.0291 (10)0.0480 (13)0.0097 (8)0.0003 (9)0.0016 (9)
C50.0232 (9)0.0277 (10)0.0405 (11)0.0108 (7)0.0005 (8)0.0015 (8)
C60.0235 (9)0.0304 (10)0.0367 (10)0.0116 (8)0.0002 (8)0.0020 (8)
C70.0329 (10)0.0413 (12)0.0373 (11)0.0142 (9)0.0016 (9)0.0032 (9)
C80.0398 (12)0.0497 (14)0.0442 (13)0.0184 (10)0.0102 (10)0.0136 (11)
C90.0403 (12)0.0372 (12)0.0614 (15)0.0101 (10)0.0162 (11)0.0119 (11)
C100.0381 (12)0.0329 (11)0.0493 (13)0.0046 (9)0.0074 (10)0.0011 (10)
C110.0351 (11)0.0342 (11)0.0404 (11)0.0128 (9)0.0054 (9)0.0014 (9)
C120.0320 (10)0.0295 (10)0.0327 (10)0.0106 (8)0.0003 (8)0.0011 (8)
C130.0405 (12)0.0298 (11)0.0490 (13)0.0121 (9)0.0000 (10)0.0024 (9)
C140.0428 (12)0.0269 (11)0.0560 (14)0.0028 (9)0.0006 (11)0.0049 (10)
C150.0304 (11)0.0361 (11)0.0440 (12)0.0029 (9)0.0040 (9)0.0027 (9)
C160.0277 (9)0.0326 (10)0.0299 (10)0.0064 (8)0.0008 (8)0.0002 (8)
C170.0310 (10)0.0376 (11)0.0344 (10)0.0106 (9)0.0033 (8)0.0009 (9)
N10.0306 (8)0.0285 (8)0.0397 (9)0.0070 (7)0.0025 (7)0.0006 (7)
N20.0327 (9)0.0276 (9)0.0322 (9)0.0067 (7)0.0051 (7)0.0022 (7)
N30.0318 (8)0.0286 (8)0.0350 (9)0.0106 (7)0.0016 (7)0.0031 (7)
N40.0294 (8)0.0277 (8)0.0300 (8)0.0078 (7)0.0021 (6)0.0001 (7)
O10.0388 (8)0.0328 (8)0.0579 (10)0.0125 (7)0.0144 (7)0.0006 (7)
O20.0343 (8)0.0477 (9)0.0491 (9)0.0145 (7)0.0125 (7)0.0026 (7)
O30.0324 (7)0.0308 (7)0.0396 (8)0.0092 (6)0.0078 (6)0.0010 (6)
O40.0539 (11)0.0424 (10)0.0875 (14)0.0246 (8)0.0250 (10)0.0019 (9)
O50.0541 (10)0.0532 (11)0.0450 (10)0.0274 (9)0.0081 (8)0.0114 (8)
O60.0919 (17)0.0610 (13)0.0670 (14)0.0290 (12)0.0116 (12)0.0154 (11)
Zn10.03612 (14)0.02497 (13)0.03752 (15)0.00839 (9)0.00719 (10)0.00130 (9)
Geometric parameters (Å, º) top
C1—N31.360 (3)C11—C121.525 (3)
C1—C21.362 (3)C12—N41.332 (3)
C1—H10.95 (3)C12—C131.381 (3)
C2—C31.382 (4)C13—C141.384 (3)
C2—H20.94 (3)C13—H130.90 (3)
C3—C41.363 (4)C14—C151.383 (3)
C3—H30.86 (3)C14—H140.91 (3)
C4—C51.406 (3)C15—C161.380 (3)
C4—H40.92 (3)C15—H150.88 (3)
C5—N31.339 (3)C16—N41.334 (2)
C5—N21.372 (3)C16—C171.523 (3)
C6—N11.336 (3)C17—O21.237 (2)
C6—N21.382 (3)C17—O11.266 (3)
C6—C71.403 (3)N1—Zn12.1318 (18)
C7—C81.364 (3)N2—H50.75 (3)
C7—H70.93 (3)N3—Zn12.0327 (17)
C8—C91.389 (4)N4—Zn12.0269 (16)
C8—H80.93 (3)O1—Zn12.1947 (15)
C9—C101.357 (4)O3—Zn12.1755 (14)
C9—H90.94 (3)O5—Zn12.3148 (19)
C10—N11.361 (3)O5—H5A0.83 (4)
C10—H100.93 (3)O5—H5B0.82 (4)
C11—O41.226 (3)O6—H6A0.944 (16)
C11—O31.268 (3)O6—H6B0.860 (17)
N3—C1—C2123.8 (2)C16—C15—C14118.5 (2)
N3—C1—H1116.2 (16)C16—C15—H15120 (2)
C2—C1—H1119.9 (16)C14—C15—H15121.7 (19)
C1—C2—C3118.3 (2)N4—C16—C15120.37 (19)
C1—C2—H2116.5 (18)N4—C16—C17113.52 (17)
C3—C2—H2125.2 (18)C15—C16—C17126.11 (18)
C4—C3—C2119.4 (2)O2—C17—O1126.4 (2)
C4—C3—H3120.3 (19)O2—C17—C16118.48 (19)
C2—C3—H3120.4 (19)O1—C17—C16115.11 (17)
C3—C4—C5119.7 (2)C6—N1—C10117.04 (19)
C3—C4—H4123.9 (16)C6—N1—Zn1122.80 (14)
C5—C4—H4116.5 (16)C10—N1—Zn1118.08 (15)
N3—C5—N2122.07 (18)C5—N2—C6133.38 (18)
N3—C5—C4121.2 (2)C5—N2—H5113.4 (19)
N2—C5—C4116.70 (19)C6—N2—H5113.2 (19)
N1—C6—N2120.82 (19)C5—N3—C1117.46 (18)
N1—C6—C7122.11 (19)C5—N3—Zn1125.03 (14)
N2—C6—C7117.06 (18)C1—N3—Zn1117.26 (15)
C8—C7—C6119.2 (2)C12—N4—C16121.92 (17)
C8—C7—H7122.3 (16)C12—N4—Zn1118.39 (13)
C6—C7—H7118.4 (16)C16—N4—Zn1119.64 (14)
C7—C8—C9119.1 (2)C17—O1—Zn1115.49 (13)
C7—C8—H8120.6 (17)C11—O3—Zn1115.28 (12)
C9—C8—H8120.2 (17)Zn1—O5—H5A117 (2)
C10—C9—C8118.5 (2)Zn1—O5—H5B120 (3)
C10—C9—H9119.6 (18)H5A—O5—H5B106 (3)
C8—C9—H9121.8 (18)H6A—O6—H6B107 (2)
C9—C10—N1123.9 (2)N4—Zn1—N3169.48 (7)
C9—C10—H10121.3 (17)N4—Zn1—N198.90 (7)
N1—C10—H10114.8 (17)N3—Zn1—N189.01 (7)
O4—C11—O3126.5 (2)N4—Zn1—O376.80 (6)
O4—C11—C12118.25 (19)N3—Zn1—O3110.79 (6)
O3—C11—C12115.21 (18)N1—Zn1—O386.62 (6)
N4—C12—C13120.53 (18)N4—Zn1—O175.75 (6)
N4—C12—C11114.27 (17)N3—Zn1—O195.92 (6)
C13—C12—C11125.19 (19)N1—Zn1—O1101.92 (7)
C12—C13—C14118.4 (2)O3—Zn1—O1152.19 (6)
C12—C13—H13120.5 (18)N4—Zn1—O585.73 (7)
C14—C13—H13121.1 (18)N3—Zn1—O588.44 (7)
C15—C14—C13120.2 (2)N1—Zn1—O5164.45 (7)
C15—C14—H14120.7 (18)O3—Zn1—O579.96 (7)
C13—C14—H14119.1 (18)O1—Zn1—O593.61 (7)
N3—C1—C2—C30.3 (4)C15—C16—N4—Zn1176.87 (16)
C1—C2—C3—C42.7 (4)C17—C16—N4—Zn13.2 (2)
C2—C3—C4—C51.4 (3)O2—C17—O1—Zn1173.65 (19)
C3—C4—C5—N32.5 (3)C16—C17—O1—Zn16.8 (2)
C3—C4—C5—N2177.3 (2)O4—C11—O3—Zn1176.9 (2)
N1—C6—C7—C81.9 (3)C12—C11—O3—Zn11.7 (2)
N2—C6—C7—C8177.71 (19)C12—N4—Zn1—N3139.2 (3)
C6—C7—C8—C92.3 (3)C16—N4—Zn1—N343.2 (4)
C7—C8—C9—C100.2 (4)C12—N4—Zn1—N182.39 (16)
C8—C9—C10—N12.5 (4)C16—N4—Zn1—N195.14 (16)
O4—C11—C12—N4178.7 (2)C12—N4—Zn1—O31.98 (15)
O3—C11—C12—N40.0 (3)C16—N4—Zn1—O3179.51 (16)
O4—C11—C12—C130.1 (4)C12—N4—Zn1—O1177.47 (17)
O3—C11—C12—C13178.9 (2)C16—N4—Zn1—O14.99 (15)
N4—C12—C13—C140.2 (3)C12—N4—Zn1—O582.65 (16)
C11—C12—C13—C14178.5 (2)C16—N4—Zn1—O599.81 (16)
C12—C13—C14—C150.5 (4)C5—N3—Zn1—N4162.2 (3)
C13—C14—C15—C160.3 (4)C1—N3—Zn1—N423.7 (5)
C14—C15—C16—N40.2 (3)C5—N3—Zn1—N123.17 (16)
C14—C15—C16—C17179.7 (2)C1—N3—Zn1—N1162.73 (16)
N4—C16—C17—O2177.65 (19)C5—N3—Zn1—O362.84 (17)
C15—C16—C17—O22.4 (3)C1—N3—Zn1—O3111.27 (16)
N4—C16—C17—O12.7 (3)C5—N3—Zn1—O1125.05 (16)
C15—C16—C17—O1177.2 (2)C1—N3—Zn1—O160.85 (16)
N2—C6—N1—C10179.72 (19)C5—N3—Zn1—O5141.49 (16)
C7—C6—N1—C100.7 (3)C1—N3—Zn1—O532.62 (16)
N2—C6—N1—Zn117.0 (3)C6—N1—Zn1—N4160.71 (15)
C7—C6—N1—Zn1162.58 (15)C10—N1—Zn1—N42.40 (17)
C9—C10—N1—C63.0 (3)C6—N1—Zn1—N326.25 (16)
C9—C10—N1—Zn1161.11 (19)C10—N1—Zn1—N3170.64 (17)
N3—C5—N2—C610.9 (3)C6—N1—Zn1—O384.64 (16)
C4—C5—N2—C6168.9 (2)C10—N1—Zn1—O378.47 (16)
N1—C6—N2—C56.7 (3)C6—N1—Zn1—O1122.10 (16)
C7—C6—N2—C5173.7 (2)C10—N1—Zn1—O174.79 (17)
N2—C5—N3—C1174.93 (19)C6—N1—Zn1—O554.4 (3)
C4—C5—N3—C14.8 (3)C10—N1—Zn1—O5108.8 (3)
N2—C5—N3—Zn111.0 (3)C11—O3—Zn1—N41.98 (15)
C4—C5—N3—Zn1169.25 (15)C11—O3—Zn1—N3174.37 (15)
C2—C1—N3—C53.6 (3)C11—O3—Zn1—N197.98 (16)
C2—C1—N3—Zn1171.01 (19)C11—O3—Zn1—O111.4 (2)
C13—C12—N4—C160.4 (3)C11—O3—Zn1—O589.92 (16)
C11—C12—N4—C16179.23 (18)C17—O1—Zn1—N46.50 (16)
C13—C12—N4—Zn1177.11 (17)C17—O1—Zn1—N3179.98 (17)
C11—C12—N4—Zn11.8 (2)C17—O1—Zn1—N189.78 (17)
C15—C16—N4—C120.6 (3)C17—O1—Zn1—O315.9 (3)
C17—C16—N4—C12179.36 (18)C17—O1—Zn1—O591.17 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N40.93 (3)2.59 (3)3.189 (3)123 (2)
O5—H5B···O60.82 (4)1.95 (4)2.750 (3)166 (4)
N2—H5···O3i0.75 (3)2.08 (3)2.823 (2)172 (3)
O6—H6B···O1ii0.86 (2)2.05 (2)2.832 (3)151 (2)
O5—H5A···O2iii0.83 (4)1.97 (4)2.804 (3)176 (3)
C2—H2···O2ii0.94 (3)2.56 (3)3.432 (3)155 (2)
C3—H3···O4iv0.86 (3)2.41 (3)3.117 (3)140 (2)
C15—H15···O2v0.88 (3)2.57 (3)3.309 (3)142 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) x, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H3NO4)(C10H9N3)(H2O)]·H2O
Mr437.71
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8349 (5), 11.1246 (8), 12.1910 (9)
α, β, γ (°)96.109 (6), 96.404 (6), 107.381 (6)
V3)869.51 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.44 × 0.27 × 0.13
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.598, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
7786, 3398, 3093
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.05
No. of reflections3398
No. of parameters315
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.51

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N40.93 (3)2.59 (3)3.189 (3)123 (2)
O5—H5B···O60.82 (4)1.95 (4)2.750 (3)166 (4)
N2—H5···O3i0.75 (3)2.08 (3)2.823 (2)172 (3)
O6—H6B···O1ii0.860 (17)2.05 (2)2.832 (3)151 (2)
O5—H5A···O2iii0.83 (4)1.97 (4)2.804 (3)176 (3)
C2—H2···O2ii0.94 (3)2.56 (3)3.432 (3)155 (2)
C3—H3···O4iv0.86 (3)2.41 (3)3.117 (3)140 (2)
C15—H15···O2v0.88 (3)2.57 (3)3.309 (3)142 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) x, y, z.
 

Acknowledgements

The authors thank the Ondokuz Mayis University Research Fund for financial support.

References

First citationChung, L., Rajan, K. S., Merdinger, E. & Grecz, N. (1971). Biophys. J. 11, 470–482.  CrossRef Google Scholar
First citationCui, G.-H., Liu, T.-F. & Peng, X. (2011). J. Chem. Crystallogr. 41, 322–327.  CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTang, T., Rajan, K. S. & Grecz, N. (1968). Biophys. J. 8, 1458–1474.  CrossRef CAS PubMed Web of Science Google Scholar
First citationUçar, İ., Bulut, İ., Bulut, A. & Karadağ, A. (2009). Struct. Chem. 20, 825–838.  Google Scholar
First citationUçar, İ., Bulut, A. & Büyükgüngör, O. (2007a). J. Phys. Chem. Solids, 68, 2271–2277.  Google Scholar
First citationUçar, İ., Karabulut, B., Bulut, A. & Büyükgüngör, O. (2007b). J. Mol. Struct. 834–836, 336–344.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds