organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1454-o1455

6-Amino-3-methyl-4-(3-nitro­phen­yl)-1-phenyl-1H,4H-pyrano[2,3-c]pyrazole-5-carbo­nitrile

aDepartment of Chemical Engineering, Anyang Institute of Technology, Anyang, Henan 455000, People's Republic of China, and bCollege of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
*Correspondence e-mail: wumingshu@126.com

(Received 2 April 2011; accepted 9 May 2011; online 20 May 2011)

The title compound, C20H15N5O3, was synthesized by the one-pot reaction of a four-component reaction protocol in aqueous medium. The pyrano[2,3-c]pyrazole system is essentially planar, with a maximum deviation of 0.026 (2) Å. The 3-nitro­phenyl and phenyl rings make dihedral angles of 81.11 (5) and 13.36 (1)°, respectively, with the mean plane of the pyrano[2,3-c]pyrazole ring. The crystal structure is stabilized by N—H⋯N hydrogen bonds, which form infinite chain propagating along the c axis and by N—H⋯O hydrogen bonds, which form infinite chains propagating along the a axis. There are also N—O⋯N—C dipole–dipole inter­actions along the a axis with an O⋯N distance of 3.061 (3) Å, which is shorter than that of the N—H⋯O hydrogen bond [3.196 (3) Å].

Related literature

For the anti­microbial, insecticidal and anti-inflammatory activity of pyran­opyrazole derivatives, see: El-Tamany et al. (1999[El-Tamany, E. S., El-Shahed, F. A. & Mohamed, B. H. (1999). J. Serb. Chem. Soc. 64, 9-8.]); Ismail et al. (2003[Ismail, Z. H., Aly, G. M., El-Degwi, M. S., Heiba, H. I. & Ghorab, M. M. (2003). Egypt. J. Biotechnol. 13, 73-82.]); Zaki et al. (2006[Zaki, M. E. A., Soliman, H. A., Hiekal, O. A. & Rashad, A. E. (2006). Z. Naturforsch. Teil C, 61, 1-5.]) and for their applications as pharmaceutical ingredients and biodegradable agrochemicals, see: Junek & Aigner (1973[Junek, H. & Aigner, H. (1973). Chem. Ber. 106, 914-921.]); Sharanin et al. (1983[Sharanin, Y. A., Sharanina, L. G. & Puzanova, V. V. (1983). Zh. Org. Khim. 19, 2609-2615.]); Vasuki & Kumaravel (2008[Vasuki, G. & Kumaravel, K. (2008). Tetrahedron Lett. 49, 5636-5638.]); Wamhoff et al. (1993[Wamhoff, H., Kroth, E. & Strauch, K. (1993). Synthesis, 11, 1129-1132.]). For the Chk1 kinase inhibitor, see: Foloppe et al. (2006[Foloppe, N., Fisher, L. M., Howes, R., Potter, A., Robertson Alan, G. S. & Surgenor, A. E. (2006). Bioorg. Med. Chem. 14, 4792-4802.]). For the use of multi-component reaction (MCR) protocols in water in the development of libraries of medicinal scaffolds, see: Chanda & Fokin (2009[Chanda, A. & Fokin, V. V. (2009). Chem. Rev. 109, 725-748.]); Tejedor & Garcia-Tellado (2007[Tejedor, D. & Garcia-Tellado, F. (2007). Chem. Soc. Rev. 36, 484-491.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N5O3

  • Mr = 373.37

  • Monoclinic, P 21 /c

  • a = 9.5089 (8) Å

  • b = 13.9137 (11) Å

  • c = 13.3747 (12) Å

  • β = 96.263 (1)°

  • V = 1759.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.50 × 0.48 × 0.47 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.955

  • 8659 measured reflections

  • 3087 independent reflections

  • 1961 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.121

  • S = 1.07

  • 3087 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2i 0.86 2.63 3.196 (3) 124
N3—H3B⋯N4ii 0.86 2.22 3.067 (3) 169
C19—H19⋯O2iii 0.93 2.54 3.294 (4) 139
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multi-component reaction (MCR) protocols in water will be one of the most suitable strategies, which will meet the requirements of green chemistry as well as for developing libraries of medicinal scaffolds (Chanda et al., 2009; Tejedor et al., 2007). pyranopyrazoles are an important class of heterocyclic compounds. They found applications as pharmaceutical ingredients and biodegradable agrochemicals (Junek et al., 1973; Wamhoff et al., 1993; Sharanin et al., 1983; Vasuki et al., 2008). In order to further study the structure-activity relationship of pyranopyrazoles, we performed the synthesis of the title compound through an efficient and eco-friendly four-component one-pot reaction protocol in aqueous medium in the presence of catalytic amount dodecyltrimethylammonium bromide and present the crystal structure of the title compound in the hope that its structural features will appear interesting and helpful its practical applications. In the title molecule (Fig. 1), The pyranopyrazole ring essentially planar with a maximum deviation of 0.026 (0) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles formed by the mean plane of the pyranopyrazole fragment with the 3-nitrophenyl ring and phenyl ring is 81.11 (5)° and 13.36 (1)° , respectively. In the crystal the molecular packing (Fig. 2) is stabilized by Infinite chains via N-H···N hydrogen bonds propagate along c-axis, infinite chains via N-H···O hydrogen bonds propagate along a-axis and along a-axis there exists N-O···N-C dipole-dipole interactions with O···N distance of 3.061 Å which shorter than that of N-H···O (3.196 Å) hydrogen bond.

Related literature top

For the antimicrobial, insecticidal and anti-inflammatory activity of pyranopyrazole derivatives, see: El-Tamany et al. (1999); Ismail et al. (2003); Zaki et al. (2006) and for their applications as pharmaceutical ingredients and biodegradable agrochemicals, see: Junek & Aigner (1973); Sharanin et al. (1983); Vasuki & Kumaravel (2008); Wamhoff et al. (1993). For the Chk1 kinase inhibitor, see: Foloppe et al. (2006). For the use of multi-component reaction (MCR) protocols in water in the development of libraries of medicinal scaffolds, see: Chanda & Fokin (2009); Tejedor & Garcia-Tellado (2007).

Experimental top

To a stirred aqueous mixture of phenylhydrazine ( 0.216g, 2 mmol) and ethyl acetoacetate ( 0.260g, 2 mmol), 3-nitrobenzaldehyde ( 0.302g, 2 mmol), malonitrile ( 0.132g, 2 mmol) and piperidine (5 mol %) were added successively at 363 K in the presence of catalytic amount dodecyltrimethylammonium bromide with vigorous stirring for 10 min. The precipitated solid was filtered, washed with water and then with a mixture of ethyl acetate/hexane (20:80). The product obtained was purified by flash chromatograghy. Single crystals of the title compound suitable for single-crystal X-ray analysis were obtained by recrystallization from ethanol.

Refinement top

H atoms bonded to N atoms were located in a difference map and refined with distance restraints of N—H = 0.860 Å, and withUiso(H) =1.2Ueq(N). The remaining H atoms were positioned geometrically and refined using a riding model with C-H = 0.93-0.98 Å , and with Uiso(H)= 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the a axis Intermolecular hydrogen bonds are shown as dashed lines.
6-Amino-3-methyl-4-(3-nitrophenyl)-1-phenyl-1H,4H- pyrano[2,3-c]pyrazole-5-carbonitrile top
Crystal data top
C20H15N5O3F(000) = 776
Mr = 373.37Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5089 (8) ÅCell parameters from 2416 reflections
b = 13.9137 (11) Åθ = 2.6–23.5°
c = 13.3747 (12) ŵ = 0.10 mm1
β = 96.263 (1)°T = 298 K
V = 1759.0 (3) Å3Plate, colourless
Z = 40.50 × 0.48 × 0.47 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3087 independent reflections
Radiation source: fine-focus sealed tube1961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1111
Tmin = 0.952, Tmax = 0.955k = 1616
8659 measured reflectionsl = 915
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.6842P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3087 reflectionsΔρmax = 0.19 e Å3
255 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0100 (13)
Crystal data top
C20H15N5O3V = 1759.0 (3) Å3
Mr = 373.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5089 (8) ŵ = 0.10 mm1
b = 13.9137 (11) ÅT = 298 K
c = 13.3747 (12) Å0.50 × 0.48 × 0.47 mm
β = 96.263 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3087 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1961 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.955Rint = 0.037
8659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
3087 reflectionsΔρmin = 0.17 e Å3
255 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.71933 (19)0.52908 (13)0.63123 (13)0.0440 (5)
N20.8060 (2)0.46605 (13)0.58687 (15)0.0507 (5)
N30.3851 (2)0.75499 (15)0.52319 (15)0.0565 (6)
H3A0.33390.78790.47850.068*
H3B0.37760.76410.58600.068*
N40.3550 (2)0.74422 (18)0.24916 (17)0.0741 (7)
N51.0378 (2)0.80263 (17)0.3702 (2)0.0674 (7)
O10.54812 (16)0.64832 (11)0.57873 (10)0.0471 (4)
O21.0555 (2)0.79273 (15)0.46155 (19)0.0900 (7)
O31.1104 (2)0.85581 (18)0.3254 (2)0.1121 (9)
C10.6433 (2)0.57976 (15)0.55812 (16)0.0404 (5)
C20.6769 (2)0.55266 (16)0.46700 (16)0.0418 (5)
C30.7801 (2)0.48064 (16)0.48860 (18)0.0466 (6)
C40.8571 (3)0.42635 (18)0.4160 (2)0.0625 (7)
H4A0.91900.46910.38530.094*
H4B0.79030.39870.36510.094*
H4C0.91180.37610.45080.094*
C50.4761 (2)0.68993 (16)0.49508 (17)0.0429 (6)
C60.5006 (2)0.66700 (16)0.40010 (16)0.0429 (6)
C70.6133 (2)0.59767 (16)0.37153 (16)0.0434 (6)
H70.56730.54740.32830.052*
C80.7221 (2)0.64836 (16)0.31459 (16)0.0412 (5)
C90.8293 (2)0.70132 (16)0.36589 (17)0.0445 (6)
H90.83680.70530.43570.053*
C100.9247 (2)0.74805 (16)0.31350 (19)0.0482 (6)
C110.9187 (3)0.74412 (19)0.2108 (2)0.0650 (7)
H110.98480.77620.17670.078*
C120.8126 (3)0.6916 (2)0.1602 (2)0.0722 (8)
H120.80630.68750.09040.087*
C130.7148 (3)0.64464 (19)0.21116 (17)0.0567 (7)
H130.64260.60980.17520.068*
C140.4173 (3)0.71120 (18)0.31880 (18)0.0510 (6)
C150.7217 (3)0.52889 (16)0.73764 (17)0.0466 (6)
C160.6181 (3)0.57274 (18)0.78491 (18)0.0575 (7)
H160.54540.60600.74760.069*
C170.6223 (4)0.5672 (2)0.8885 (2)0.0740 (9)
H170.55210.59670.92080.089*
C180.7290 (4)0.5184 (2)0.9436 (2)0.0851 (10)
H180.73030.51371.01310.102*
C190.8331 (4)0.4768 (2)0.8965 (2)0.0856 (10)
H190.90660.44490.93430.103*
C200.8312 (3)0.4813 (2)0.7935 (2)0.0684 (8)
H200.90280.45270.76190.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0465 (11)0.0447 (11)0.0404 (11)0.0003 (9)0.0034 (9)0.0016 (9)
N20.0507 (12)0.0471 (12)0.0553 (13)0.0015 (10)0.0105 (10)0.0039 (10)
N30.0560 (12)0.0692 (14)0.0443 (12)0.0159 (11)0.0054 (10)0.0013 (10)
N40.0683 (15)0.1012 (19)0.0511 (14)0.0056 (14)0.0008 (12)0.0171 (14)
N50.0482 (14)0.0591 (14)0.096 (2)0.0073 (11)0.0149 (14)0.0085 (15)
O10.0511 (9)0.0555 (10)0.0340 (8)0.0053 (8)0.0018 (7)0.0017 (7)
O20.0833 (15)0.0804 (14)0.0994 (18)0.0252 (12)0.0219 (14)0.0020 (14)
O30.0880 (16)0.1111 (18)0.147 (2)0.0534 (15)0.0570 (16)0.0233 (16)
C10.0384 (12)0.0439 (13)0.0394 (13)0.0043 (11)0.0059 (10)0.0012 (11)
C20.0441 (13)0.0418 (12)0.0403 (13)0.0090 (10)0.0079 (11)0.0008 (10)
C30.0472 (14)0.0436 (13)0.0508 (15)0.0072 (11)0.0140 (12)0.0025 (11)
C40.0662 (17)0.0579 (16)0.0672 (17)0.0054 (13)0.0251 (14)0.0015 (14)
C50.0384 (12)0.0509 (14)0.0385 (13)0.0049 (11)0.0008 (10)0.0035 (11)
C60.0380 (12)0.0541 (14)0.0366 (13)0.0080 (11)0.0035 (10)0.0033 (11)
C70.0459 (13)0.0486 (13)0.0355 (13)0.0096 (11)0.0043 (11)0.0063 (10)
C80.0429 (13)0.0458 (13)0.0351 (12)0.0002 (10)0.0056 (10)0.0018 (10)
C90.0458 (13)0.0491 (13)0.0390 (13)0.0013 (11)0.0061 (11)0.0019 (11)
C100.0412 (13)0.0444 (13)0.0606 (16)0.0014 (11)0.0126 (12)0.0014 (12)
C110.0699 (18)0.0646 (17)0.0664 (18)0.0081 (15)0.0342 (15)0.0064 (15)
C120.089 (2)0.090 (2)0.0416 (15)0.0100 (18)0.0238 (15)0.0038 (15)
C130.0625 (16)0.0697 (17)0.0384 (14)0.0096 (14)0.0074 (12)0.0054 (13)
C140.0469 (14)0.0646 (16)0.0416 (14)0.0040 (12)0.0058 (12)0.0037 (13)
C150.0578 (15)0.0422 (13)0.0382 (13)0.0122 (12)0.0012 (12)0.0036 (11)
C160.0750 (18)0.0536 (15)0.0437 (15)0.0003 (13)0.0049 (13)0.0018 (12)
C170.109 (2)0.0685 (19)0.0459 (16)0.0019 (17)0.0144 (17)0.0063 (14)
C180.142 (3)0.071 (2)0.0397 (16)0.008 (2)0.005 (2)0.0044 (15)
C190.113 (3)0.081 (2)0.056 (2)0.008 (2)0.0179 (19)0.0136 (17)
C200.0764 (19)0.0700 (18)0.0561 (17)0.0042 (15)0.0050 (15)0.0104 (14)
Geometric parameters (Å, º) top
N1—C11.350 (3)C7—C81.523 (3)
N1—N21.381 (2)C7—H70.9800
N1—C151.421 (3)C8—C91.378 (3)
N2—C31.326 (3)C8—C131.379 (3)
N3—C51.334 (3)C9—C101.369 (3)
N3—H3A0.8600C9—H90.9300
N3—H3B0.8600C10—C111.370 (3)
N4—C141.144 (3)C11—C121.364 (4)
N5—O31.214 (3)C11—H110.9300
N5—O21.222 (3)C12—C131.377 (4)
N5—C101.460 (3)C12—H120.9300
O1—C11.364 (3)C13—H130.9300
O1—C51.374 (2)C15—C161.371 (3)
C1—C21.347 (3)C15—C201.382 (3)
C2—C31.411 (3)C16—C171.384 (3)
C2—C71.490 (3)C16—H160.9300
C3—C41.484 (3)C17—C181.367 (4)
C4—H4A0.9600C17—H170.9300
C4—H4B0.9600C18—C191.360 (4)
C4—H4C0.9600C18—H180.9300
C5—C61.354 (3)C19—C201.377 (4)
C6—C141.414 (3)C19—H190.9300
C6—C71.522 (3)C20—H200.9300
C1—N1—N2108.55 (17)C9—C8—C13118.2 (2)
C1—N1—C15132.5 (2)C9—C8—C7120.29 (19)
N2—N1—C15118.94 (18)C13—C8—C7121.5 (2)
C3—N2—N1105.87 (18)C10—C9—C8119.6 (2)
C5—N3—H3A120.0C10—C9—H9120.2
C5—N3—H3B120.0C8—C9—H9120.2
H3A—N3—H3B120.0C9—C10—C11122.5 (2)
O3—N5—O2122.6 (3)C9—C10—N5118.2 (2)
O3—N5—C10119.1 (3)C11—C10—N5119.3 (2)
O2—N5—C10118.3 (2)C12—C11—C10117.8 (2)
C1—O1—C5114.40 (17)C12—C11—H11121.1
C2—C1—N1110.4 (2)C10—C11—H11121.1
C2—C1—O1127.4 (2)C11—C12—C13120.8 (2)
N1—C1—O1122.27 (19)C11—C12—H12119.6
C1—C2—C3104.0 (2)C13—C12—H12119.6
C1—C2—C7123.0 (2)C12—C13—C8121.1 (2)
C3—C2—C7133.0 (2)C12—C13—H13119.5
N2—C3—C2111.2 (2)C8—C13—H13119.5
N2—C3—C4121.2 (2)N4—C14—C6175.8 (3)
C2—C3—C4127.5 (2)C16—C15—C20120.0 (2)
C3—C4—H4A109.5C16—C15—N1121.8 (2)
C3—C4—H4B109.5C20—C15—N1118.1 (2)
H4A—C4—H4B109.5C15—C16—C17119.5 (3)
C3—C4—H4C109.5C15—C16—H16120.2
H4A—C4—H4C109.5C17—C16—H16120.2
H4B—C4—H4C109.5C18—C17—C16120.4 (3)
N3—C5—C6127.4 (2)C18—C17—H17119.8
N3—C5—O1109.72 (19)C16—C17—H17119.8
C6—C5—O1122.9 (2)C19—C18—C17119.7 (3)
C5—C6—C14118.6 (2)C19—C18—H18120.1
C5—C6—C7125.7 (2)C17—C18—H18120.1
C14—C6—C7115.70 (19)C18—C19—C20120.9 (3)
C2—C7—C6106.39 (18)C18—C19—H19119.5
C2—C7—C8112.92 (18)C20—C19—H19119.5
C6—C7—C8111.56 (18)C19—C20—C15119.3 (3)
C2—C7—H7108.6C19—C20—H20120.3
C6—C7—H7108.6C15—C20—H20120.3
C8—C7—H7108.6
C1—N1—N2—C30.1 (2)C2—C7—C8—C940.3 (3)
C15—N1—N2—C3178.88 (19)C6—C7—C8—C979.5 (2)
N2—N1—C1—C20.1 (2)C2—C7—C8—C13141.2 (2)
C15—N1—C1—C2178.6 (2)C6—C7—C8—C1399.0 (2)
N2—N1—C1—O1179.75 (18)C13—C8—C9—C100.2 (3)
C15—N1—C1—O11.7 (3)C7—C8—C9—C10178.7 (2)
C5—O1—C1—C23.0 (3)C8—C9—C10—C110.3 (4)
C5—O1—C1—N1177.44 (18)C8—C9—C10—N5179.3 (2)
N1—C1—C2—C30.1 (2)O3—N5—C10—C9169.2 (2)
O1—C1—C2—C3179.7 (2)O2—N5—C10—C910.8 (3)
N1—C1—C2—C7178.24 (19)O3—N5—C10—C1111.8 (4)
O1—C1—C2—C71.4 (3)O2—N5—C10—C11168.2 (3)
N1—N2—C3—C20.1 (2)C9—C10—C11—C120.3 (4)
N1—N2—C3—C4178.7 (2)N5—C10—C11—C12179.3 (2)
C1—C2—C3—N20.0 (3)C10—C11—C12—C130.3 (4)
C7—C2—C3—N2178.1 (2)C11—C12—C13—C80.7 (4)
C1—C2—C3—C4178.7 (2)C9—C8—C13—C120.7 (4)
C7—C2—C3—C40.7 (4)C7—C8—C13—C12179.2 (2)
C1—O1—C5—N3179.41 (18)C5—C6—C14—N4175 (4)
C1—O1—C5—C62.0 (3)C7—C6—C14—N45 (4)
N3—C5—C6—C144.0 (4)C1—N1—C15—C1613.3 (4)
O1—C5—C6—C14177.69 (19)N2—N1—C15—C16165.1 (2)
N3—C5—C6—C7175.1 (2)C1—N1—C15—C20167.8 (2)
O1—C5—C6—C73.3 (3)N2—N1—C15—C2013.8 (3)
C1—C2—C7—C65.6 (3)C20—C15—C16—C171.4 (4)
C3—C2—C7—C6176.6 (2)N1—C15—C16—C17177.4 (2)
C1—C2—C7—C8117.1 (2)C15—C16—C17—C180.1 (4)
C3—C2—C7—C860.7 (3)C16—C17—C18—C191.3 (5)
C5—C6—C7—C26.7 (3)C17—C18—C19—C201.4 (5)
C14—C6—C7—C2174.27 (19)C18—C19—C20—C150.0 (5)
C5—C6—C7—C8116.9 (2)C16—C15—C20—C191.4 (4)
C14—C6—C7—C862.2 (2)N1—C15—C20—C19177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.862.633.196 (3)124
N3—H3B···N4ii0.862.223.067 (3)169
C19—H19···O2iii0.932.543.294 (4)139
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H15N5O3
Mr373.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.5089 (8), 13.9137 (11), 13.3747 (12)
β (°) 96.263 (1)
V3)1759.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.48 × 0.47
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.952, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
8659, 3087, 1961
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.07
No. of reflections3087
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O2i0.862.633.196 (3)124
N3—H3B···N4ii0.862.223.067 (3)169
C19—H19···O2iii0.932.543.294 (4)139
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+2, y1/2, z+3/2.
 

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanda, A. & Fokin, V. V. (2009). Chem. Rev. 109, 725–748.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Tamany, E. S., El-Shahed, F. A. & Mohamed, B. H. (1999). J. Serb. Chem. Soc. 64, 9–8.  CAS Google Scholar
First citationFoloppe, N., Fisher, L. M., Howes, R., Potter, A., Robertson Alan, G. S. & Surgenor, A. E. (2006). Bioorg. Med. Chem. 14, 4792–4802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsmail, Z. H., Aly, G. M., El-Degwi, M. S., Heiba, H. I. & Ghorab, M. M. (2003). Egypt. J. Biotechnol. 13, 73–82.  CAS Google Scholar
First citationJunek, H. & Aigner, H. (1973). Chem. Ber. 106, 914–921.  CrossRef CAS Google Scholar
First citationSharanin, Y. A., Sharanina, L. G. & Puzanova, V. V. (1983). Zh. Org. Khim. 19, 2609–2615.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTejedor, D. & Garcia-Tellado, F. (2007). Chem. Soc. Rev. 36, 484–491.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVasuki, G. & Kumaravel, K. (2008). Tetrahedron Lett. 49, 5636–5638.  Web of Science CSD CrossRef CAS Google Scholar
First citationWamhoff, H., Kroth, E. & Strauch, K. (1993). Synthesis, 11, 1129–1132.  CrossRef CAS Google Scholar
First citationZaki, M. E. A., Soliman, H. A., Hiekal, O. A. & Rashad, A. E. (2006). Z. Naturforsch. Teil C, 61, 1–5.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1454-o1455
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds