metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m784-m785

Poly[di­aqua­(μ4-benzene-1,2,4,5-tetra­carboxyl­ato)[μ2-1,4-bis­­(3-pyridyl­meth­yl)piperazine]dizinc(II)]

aCollege of Life Science, Jilin University, Changchun 130022, People's Republic of China, bFaculty of Pharmacy, Jilin Medical College, Jilin 132013, People's Republic of China, and cDepartment of Etiology, Jilin Medical College, Jilin 132013, People's Republic of China
*Correspondence e-mail: leeyan201182@yahoo.cn

(Received 4 April 2011; accepted 17 May 2011; online 25 May 2011)

In the title compound, [Zn2(C10H2O8)(C16H20N4)(H2O)2]n, the ZnII atom is in a distorted tetra­hedral environment, being coordinated by one N atom from a 1,4-bis­(3-pyridyl­meth­yl)piperazine (3-bpmp) ligand, two O atoms from two carboxyl­ate groups of the pyromellitate anion and one water mol­ecule. The distortion of the tetrahedral coordination may be ascribed to the hydrogen bonds between the carboxyl­ate groups and the adjacent water mol­ecules. Each ZnII atom links to three organic ligands and each pyromellitate ligand coordinates to four ZnII atoms, forming a (3,4)-connected infinite three-dimensional framework. O—H⋯N inter­actions also occur.

Related literature

For a coordination polymer containing 3-bpmp, see: Martin et al. (2009[Martin, D., Knapp, W. R., Supkowski, R. M. & LaDuca, R. L. (2009). Inorg. Chim. Acta, pp. 1559-1562.]). For the preparation of N,N-bis­(3-pyridyl­meth­yl)piperazine, see: Pocic et al. (2005[Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624-628.]). 3-bpmp and its derivatives are important heteroaromatic N-donor bridging ligands for the construction of coordination polymers, see: Farnum & LaDuca (2010[Farnum, G. A. & LaDuca, R. L. (2010). Cryst. Growth Des. pp. 1897-1899.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C10H2O8)(C16H20N4)(H2O)2]

  • Mr = 685.24

  • Monoclinic, P 21 /c

  • a = 9.5630 (5) Å

  • b = 9.8747 (5) Å

  • c = 16.1808 (7) Å

  • β = 120.673 (2)°

  • V = 1314.20 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 293 K

  • 0.22 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.672, Tmax = 0.767

  • 7908 measured reflections

  • 3096 independent reflections

  • 2622 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.071

  • S = 1.03

  • 3096 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O5 1.9442 (16)
Zn1—O1 1.9762 (15)
Zn1—O3i 1.9795 (14)
Zn1—N1 2.0443 (18)
O5—Zn1—O1 121.11 (7)
O5—Zn1—O3i 106.68 (7)
O1—Zn1—O3i 103.27 (6)
O5—Zn1—N1 111.84 (8)
O1—Zn1—N1 104.45 (7)
O3i—Zn1—N1 108.74 (7)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4ii 0.85 1.82 2.662 (2) 173
O5—H5B⋯N2iii 0.85 1.91 2.751 (2) 169
Symmetry codes: (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

1,4-bis(3-pyridylmethyl)piperazine (3-bpmp) and its derivatives are important heteroaromatic N-donor bridging ligands for the construction of coordination polymers (Farnum & LaDuca, 2010). Whereas, only a handful of polymers based on 3-bpmp have been described (Martin et al., 2009). The title compound was prepared during an attempt to prepare a coordination polymer containing both pyromellitic acid and 3-bpmp ligands.

The asymmetric unit of the title compound (Fig. 1) contains a zincII ion, a half 3-bpmp ligand, a half pyromellitate anion on the crystallographic inversion centre, and one coordinated water molecule. the Zn1 atom is situated in a distorted tetrahedron center, coordinated by one N atoms (N1) from 3-bpmp, two O atoms (O1, O3i) from two carboxylate groups of pyromellitate and one water molecule (Table 1). The other two carboxylate O atoms (O2, O4i) are also close to the Zn1 center, however, the lengths of Zn1—O (2.730 (2) Å) and Zn1—O4i (2.884 (2) Å) are too long to be considered as bonding interactions, thus the ZnII center can be best described as four rather than six coordinated, which may be ascribed to the hydrogen bonds between the carboxylate groups and the adjacent water molecules (Table 1).

In the crystal structure, each pyromellitate ligand coordinates to four ZnII atoms in tetra-monodentate bridging mode, and each ZnII atom is linked to two pyromellitate ligands to construct waved (4,4)-grid [Zn2(pyromellitate)]n layers that are oriented parallel to the (1 0 1) crystal planes (Fig. 2). The two ZnII atoms between the adjacent layers are connected by 3-bpmp ligand thus a (3,4)-connected infinite three-dimensional framework are formed (Fig. 3). Withal, there are intralayer hydrogen bonding between the water molecule ligands and unligated pyromellitate O atoms provides additional stabilization of the layer motifs.

Related literature top

For a coordination polymer containing 3-bpmp, see: Martin et al. (2009). For the preparation of N,N-bis(3-pyridylmethyl)piperazine, see: Pocic et al. (2005). 1,4-bis(3-pyridylmethyl)piperazine (3-bpmp) and its derivatives are important heteroaromatic N-donor bridging ligands for the construction of coordination polymers, see: Farnum & LaDuca (2010).

Experimental top

Zinc nitrate hexahydrate and pyromellitic acid were obtained commercially. 1,4-bis(3-pyridylmethyl)piperazine was prepared via a published procedure (Pocic, et al., 2005). A mixture of zinc nitrate hexahydrate (135 mg, 0.50 mmol), pyromellitic acid (62 mg, 0.25 mmol), 1,4-bis(3-pyridylmethyl)piperazine (33 mg, 0.12 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr Acid Digestion bomb, which was then heated under autogenous pressure at 398 K for 72 h, then cooled to RT at a rate of 5 °c/h. The resulting yellowish crystals of the title compound were obtained. Elemental analysis (%) calcd for title compound: C, 45.57; H, 3.82; N, 8.18; found: 45.63; H, 3.87; N, 8.23.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.93Å (CH) or C—H = 0.95Å (CH2)), Uiso(H) = 1.2 times Ueq(C). The H atoms bound to water molecule O atoms were found in a difference Fourier map, restrained with O—H = 0.89 Å, and refined with Uiso(H)= 1.2 times Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title components with thermal ellipsoids at the 50% probability level. Symmetry codes: (i) 2 - x, -1/2 + y, 1.5 - z
[Figure 2] Fig. 2. Face-on view of the (4,4)-grid layer motif in the title compound viewing along the c axis.
[Figure 3] Fig. 3. A packing view of three-dimensional network of the title compound nearly viewing along the a axis.
Poly[diaqua(µ4-benzene-1,2,4,5-tetracarboxylato)[µ2-1,4-bis(3- pyridylmethyl)piperazine]dizinc(II)] top
Crystal data top
[Zn2(C10H2O8)(C16H20N4)(H2O)2]F(000) = 700
Mr = 685.24Dx = 1.732 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5630 (5) ÅCell parameters from 2721 reflections
b = 9.8747 (5) Åθ = 3.7–24.2°
c = 16.1808 (7) ŵ = 1.89 mm1
β = 120.673 (2)°T = 293 K
V = 1314.20 (11) Å3Block, yellow
Z = 20.22 × 0.16 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3096 independent reflections
Radiation source: fine-focus sealed tube2622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.672, Tmax = 0.767k = 126
7908 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.7095P]
where P = (Fo2 + 2Fc2)/3
3096 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Zn2(C10H2O8)(C16H20N4)(H2O)2]V = 1314.20 (11) Å3
Mr = 685.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.5630 (5) ŵ = 1.89 mm1
b = 9.8747 (5) ÅT = 293 K
c = 16.1808 (7) Å0.22 × 0.16 × 0.15 mm
β = 120.673 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3096 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2622 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.767Rint = 0.027
7908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
3096 reflectionsΔρmin = 0.44 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.86004 (3)0.65356 (2)0.795439 (16)0.02201 (8)
O10.80856 (18)0.79217 (16)0.69580 (11)0.0338 (4)
O20.6272 (2)0.8500 (2)0.73459 (13)0.0557 (6)
O30.91934 (16)1.09247 (16)0.66965 (10)0.0286 (3)
O40.92729 (17)0.96053 (17)0.56165 (11)0.0324 (4)
O50.8690 (2)0.69929 (17)0.91493 (11)0.0420 (4)
H5A0.89330.64510.96110.063*
H5B0.85480.77830.93030.063*
N10.6991 (2)0.50031 (18)0.72410 (12)0.0259 (4)
N20.14900 (18)0.44565 (17)0.51164 (11)0.0216 (3)
C10.6825 (2)0.8567 (2)0.68146 (14)0.0258 (4)
C20.5924 (2)0.93592 (19)0.58884 (13)0.0188 (4)
C30.6703 (2)1.00226 (19)0.54740 (13)0.0185 (4)
C40.4233 (2)0.9353 (2)0.54138 (13)0.0209 (4)
H40.37180.89210.56970.025*
C50.8530 (2)1.0158 (2)0.59632 (14)0.0213 (4)
C60.7442 (3)0.3710 (2)0.74772 (17)0.0337 (5)
H60.84540.35270.80140.040*
C70.6469 (3)0.2646 (2)0.69576 (17)0.0372 (5)
H70.68100.17590.71460.045*
C80.4979 (3)0.2906 (2)0.61535 (16)0.0320 (5)
H80.43080.21940.57920.038*
C90.4484 (2)0.4234 (2)0.58848 (14)0.0240 (4)
C100.5518 (2)0.5241 (2)0.64550 (15)0.0255 (4)
H100.51880.61360.62920.031*
C110.2899 (2)0.4555 (2)0.49833 (14)0.0277 (5)
H11A0.29520.54650.47750.033*
H11B0.27470.39340.44790.033*
C120.1496 (2)0.5559 (2)0.57275 (14)0.0259 (4)
H12A0.15030.64240.54450.031*
H12B0.24730.55030.63560.031*
C130.0016 (2)0.4524 (2)0.41650 (14)0.0268 (4)
H13A0.00330.37820.37670.032*
H13B0.00390.53660.38500.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01665 (12)0.02323 (14)0.01964 (12)0.00100 (9)0.00455 (9)0.00333 (9)
O10.0293 (8)0.0325 (9)0.0299 (8)0.0108 (7)0.0080 (7)0.0142 (7)
O20.0492 (11)0.0897 (17)0.0311 (9)0.0197 (10)0.0226 (9)0.0280 (10)
O30.0168 (7)0.0368 (9)0.0263 (7)0.0055 (6)0.0067 (6)0.0122 (6)
O40.0217 (7)0.0422 (10)0.0313 (8)0.0014 (7)0.0122 (6)0.0115 (7)
O50.0718 (13)0.0275 (9)0.0280 (8)0.0159 (8)0.0264 (9)0.0076 (7)
N10.0180 (8)0.0266 (9)0.0271 (9)0.0008 (7)0.0072 (7)0.0006 (7)
N20.0143 (7)0.0277 (9)0.0188 (8)0.0016 (7)0.0056 (6)0.0025 (7)
C10.0219 (10)0.0233 (11)0.0195 (9)0.0036 (8)0.0013 (8)0.0034 (8)
C20.0170 (9)0.0163 (9)0.0162 (8)0.0006 (7)0.0034 (7)0.0009 (7)
C30.0137 (8)0.0167 (9)0.0184 (9)0.0015 (7)0.0033 (7)0.0032 (7)
C40.0186 (9)0.0203 (10)0.0205 (9)0.0038 (7)0.0075 (8)0.0028 (7)
C50.0156 (9)0.0222 (10)0.0205 (9)0.0010 (7)0.0052 (7)0.0013 (8)
C60.0241 (11)0.0308 (12)0.0320 (12)0.0043 (9)0.0040 (9)0.0010 (9)
C70.0348 (13)0.0230 (11)0.0425 (13)0.0040 (9)0.0116 (11)0.0022 (10)
C80.0274 (11)0.0287 (12)0.0352 (12)0.0047 (9)0.0125 (10)0.0094 (9)
C90.0167 (9)0.0315 (11)0.0242 (10)0.0006 (8)0.0105 (8)0.0016 (8)
C100.0198 (10)0.0245 (11)0.0288 (10)0.0000 (8)0.0100 (8)0.0020 (8)
C110.0176 (9)0.0394 (13)0.0238 (10)0.0038 (9)0.0089 (8)0.0019 (9)
C120.0160 (9)0.0323 (12)0.0229 (10)0.0044 (8)0.0052 (8)0.0075 (8)
C130.0189 (9)0.0361 (12)0.0189 (9)0.0002 (9)0.0049 (8)0.0057 (8)
Geometric parameters (Å, º) top
Zn1—O51.9442 (16)C3—C51.512 (2)
Zn1—O11.9762 (15)C4—C3iii1.390 (3)
Zn1—O3i1.9795 (14)C4—H40.9300
Zn1—N12.0443 (18)C6—C71.370 (3)
O1—C11.276 (3)C6—H60.9300
O2—C11.220 (3)C7—C81.377 (3)
O3—C51.271 (2)C7—H70.9300
O3—Zn1ii1.9795 (14)C8—C91.387 (3)
O4—C51.235 (2)C8—H80.9300
O5—H5A0.8501C9—C101.374 (3)
O5—H5B0.8501C9—C111.507 (3)
N1—C61.340 (3)C10—H100.9300
N1—C101.352 (3)C11—H11A0.9700
N2—C121.469 (3)C11—H11B0.9700
N2—C111.472 (2)C12—C13iv1.514 (3)
N2—C131.479 (2)C12—H12A0.9700
C1—C21.511 (3)C12—H12B0.9700
C2—C41.392 (3)C13—C12iv1.514 (3)
C2—C31.394 (3)C13—H13A0.9700
C3—C4iii1.390 (3)C13—H13B0.9700
O5—Zn1—O1121.11 (7)N1—C6—H6118.8
O5—Zn1—O3i106.68 (7)C7—C6—H6118.8
O1—Zn1—O3i103.27 (6)C6—C7—C8119.3 (2)
O5—Zn1—N1111.84 (8)C6—C7—H7120.4
O1—Zn1—N1104.45 (7)C8—C7—H7120.4
O3i—Zn1—N1108.74 (7)C7—C8—C9119.7 (2)
C1—O1—Zn1108.28 (14)C7—C8—H8120.2
C5—O3—Zn1ii113.58 (13)C9—C8—H8120.2
Zn1—O5—H5A125.6C10—C9—C8117.44 (19)
Zn1—O5—H5B124.8C10—C9—C11121.47 (19)
H5A—O5—H5B109.5C8—C9—C11121.07 (19)
C6—N1—C10117.61 (18)N1—C10—C9123.6 (2)
C6—N1—Zn1120.29 (14)N1—C10—H10118.2
C10—N1—Zn1121.67 (14)C9—C10—H10118.2
C12—N2—C11111.10 (16)N2—C11—C9112.87 (16)
C12—N2—C13109.56 (15)N2—C11—H11A109.0
C11—N2—C13108.82 (15)C9—C11—H11A109.0
O2—C1—O1123.6 (2)N2—C11—H11B109.0
O2—C1—C2119.6 (2)C9—C11—H11B109.0
O1—C1—C2116.57 (19)H11A—C11—H11B107.8
C4—C2—C3119.48 (17)N2—C12—C13iv110.75 (16)
C4—C2—C1117.36 (17)N2—C12—H12A109.5
C3—C2—C1123.07 (17)C13iv—C12—H12A109.5
C4iii—C3—C2119.02 (17)N2—C12—H12B109.5
C4iii—C3—C5117.67 (17)C13iv—C12—H12B109.5
C2—C3—C5123.24 (17)H12A—C12—H12B108.1
C3iii—C4—C2121.50 (18)N2—C13—C12iv110.43 (16)
C3iii—C4—H4119.3N2—C13—H13A109.6
C2—C4—H4119.3C12iv—C13—H13A109.6
O4—C5—O3123.94 (18)N2—C13—H13B109.6
O4—C5—C3120.13 (17)C12iv—C13—H13B109.6
O3—C5—C3115.80 (17)H13A—C13—H13B108.1
N1—C6—C7122.4 (2)
O5—Zn1—O1—C148.49 (17)C4iii—C3—C5—O467.8 (3)
O3i—Zn1—O1—C1167.62 (14)C2—C3—C5—O4115.2 (2)
N1—Zn1—O1—C178.70 (15)C4iii—C3—C5—O3108.3 (2)
O5—Zn1—N1—C683.24 (18)C2—C3—C5—O368.7 (3)
O1—Zn1—N1—C6144.06 (17)C10—N1—C6—C70.3 (4)
O3i—Zn1—N1—C634.32 (19)Zn1—N1—C6—C7173.04 (19)
O5—Zn1—N1—C10104.37 (17)N1—C6—C7—C81.0 (4)
O1—Zn1—N1—C1028.33 (18)C6—C7—C8—C90.3 (4)
O3i—Zn1—N1—C10138.07 (16)C7—C8—C9—C101.0 (3)
Zn1—O1—C1—O213.3 (3)C7—C8—C9—C11177.0 (2)
Zn1—O1—C1—C2161.64 (13)C6—N1—C10—C91.0 (3)
O2—C1—C2—C434.3 (3)Zn1—N1—C10—C9171.57 (16)
O1—C1—C2—C4140.9 (2)C8—C9—C10—N11.7 (3)
O2—C1—C2—C3149.1 (2)C11—C9—C10—N1176.32 (19)
O1—C1—C2—C335.7 (3)C12—N2—C11—C970.1 (2)
C4—C2—C3—C4iii0.9 (3)C13—N2—C11—C9169.16 (18)
C1—C2—C3—C4iii175.55 (18)C10—C9—C11—N2100.7 (2)
C4—C2—C3—C5176.05 (18)C8—C9—C11—N281.4 (2)
C1—C2—C3—C57.5 (3)C11—N2—C12—C13iv178.22 (17)
C3—C2—C4—C3iii1.0 (3)C13—N2—C12—C13iv57.9 (2)
C1—C2—C4—C3iii175.72 (18)C12—N2—C13—C12iv57.8 (2)
Zn1ii—O3—C5—O414.7 (3)C11—N2—C13—C12iv179.41 (18)
Zn1ii—O3—C5—C3161.19 (13)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+2, z+1; (iv) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4v0.851.822.662 (2)173
O5—H5B···N2vi0.851.912.751 (2)169
Symmetry codes: (v) x, y+3/2, z+1/2; (vi) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn2(C10H2O8)(C16H20N4)(H2O)2]
Mr685.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.5630 (5), 9.8747 (5), 16.1808 (7)
β (°) 120.673 (2)
V3)1314.20 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.22 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.672, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
7908, 3096, 2622
Rint0.027
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.03
No. of reflections3096
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.44

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008) and local programs.

Selected geometric parameters (Å, º) top
Zn1—O51.9442 (16)Zn1—O3i1.9795 (14)
Zn1—O11.9762 (15)Zn1—N12.0443 (18)
O5—Zn1—O1121.11 (7)O5—Zn1—N1111.84 (8)
O5—Zn1—O3i106.68 (7)O1—Zn1—N1104.45 (7)
O1—Zn1—O3i103.27 (6)O3i—Zn1—N1108.74 (7)
Symmetry code: (i) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4ii0.851.822.662 (2)173
O5—H5B···N2iii0.851.912.751 (2)169
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported financially by the Education Committee of Jilin Province "12th Five-year Plan" Natural Science Foundation (No. 2011423).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarnum, G. A. & LaDuca, R. L. (2010). Cryst. Growth Des. pp. 1897–1899.  CrossRef Google Scholar
First citationMartin, D., Knapp, W. R., Supkowski, R. M. & LaDuca, R. L. (2009). Inorg. Chim. Acta, pp. 1559–1562.  Google Scholar
First citationPocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624–628.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m784-m785
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds