metal-organic compounds
Poly[diaqua(μ4-benzene-1,2,4,5-tetracarboxylato)[μ2-1,4-bis(3-pyridylmethyl)piperazine]dizinc(II)]
aCollege of Life Science, Jilin University, Changchun 130022, People's Republic of China, bFaculty of Pharmacy, Jilin Medical College, Jilin 132013, People's Republic of China, and cDepartment of Etiology, Jilin Medical College, Jilin 132013, People's Republic of China
*Correspondence e-mail: leeyan201182@yahoo.cn
In the title compound, [Zn2(C10H2O8)(C16H20N4)(H2O)2]n, the ZnII atom is in a distorted tetrahedral environment, being coordinated by one N atom from a 1,4-bis(3-pyridylmethyl)piperazine (3-bpmp) ligand, two O atoms from two carboxylate groups of the pyromellitate anion and one water molecule. The distortion of the tetrahedral coordination may be ascribed to the hydrogen bonds between the carboxylate groups and the adjacent water molecules. Each ZnII atom links to three organic ligands and each pyromellitate ligand coordinates to four ZnII atoms, forming a (3,4)-connected infinite three-dimensional framework. O—H⋯N interactions also occur.
Related literature
For a coordination polymer containing 3-bpmp, see: Martin et al. (2009). For the preparation of N,N-bis(3-pyridylmethyl)piperazine, see: Pocic et al. (2005). 3-bpmp and its derivatives are important heteroaromatic N-donor bridging ligands for the construction of coordination polymers, see: Farnum & LaDuca (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.
Supporting information
10.1107/S1600536811018721/zk2007sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811018721/zk2007Isup2.hkl
Zinc nitrate hexahydrate and pyromellitic acid were obtained commercially. 1,4-bis(3-pyridylmethyl)piperazine was prepared via a published procedure (Pocic, et al., 2005). A mixture of zinc nitrate hexahydrate (135 mg, 0.50 mmol), pyromellitic acid (62 mg, 0.25 mmol), 1,4-bis(3-pyridylmethyl)piperazine (33 mg, 0.12 mmol) and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr Acid Digestion bomb, which was then heated under autogenous pressure at 398 K for 72 h, then cooled to RT at a rate of 5 °c/h. The resulting yellowish crystals of the title compound were obtained. Elemental analysis (%) calcd for title compound: C, 45.57; H, 3.82; N, 8.18; found: 45.63; H, 3.87; N, 8.23.
All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.93Å (CH) or C—H = 0.95Å (CH2)), Uiso(H) = 1.2 times Ueq(C). The H atoms bound to water molecule O atoms were found in a difference Fourier map, restrained with O—H = 0.89 Å, and refined with Uiso(H)= 1.2 times Ueq(O).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.Fig. 1. ORTEP drawing of the title components with thermal ellipsoids at the 50% probability level. Symmetry codes: (i) 2 - x, -1/2 + y, 1.5 - z | |
Fig. 2. Face-on view of the (4,4)-grid layer motif in the title compound viewing along the c axis. | |
Fig. 3. A packing view of three-dimensional network of the title compound nearly viewing along the a axis. |
[Zn2(C10H2O8)(C16H20N4)(H2O)2] | F(000) = 700 |
Mr = 685.24 | Dx = 1.732 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.5630 (5) Å | Cell parameters from 2721 reflections |
b = 9.8747 (5) Å | θ = 3.7–24.2° |
c = 16.1808 (7) Å | µ = 1.89 mm−1 |
β = 120.673 (2)° | T = 293 K |
V = 1314.20 (11) Å3 | Block, yellow |
Z = 2 | 0.22 × 0.16 × 0.15 mm |
Bruker SMART APEXII CCD diffractometer | 3096 independent reflections |
Radiation source: fine-focus sealed tube | 2622 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 28.7°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −12→12 |
Tmin = 0.672, Tmax = 0.767 | k = −12→6 |
7908 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0309P)2 + 0.7095P] where P = (Fo2 + 2Fc2)/3 |
3096 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
[Zn2(C10H2O8)(C16H20N4)(H2O)2] | V = 1314.20 (11) Å3 |
Mr = 685.24 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.5630 (5) Å | µ = 1.89 mm−1 |
b = 9.8747 (5) Å | T = 293 K |
c = 16.1808 (7) Å | 0.22 × 0.16 × 0.15 mm |
β = 120.673 (2)° |
Bruker SMART APEXII CCD diffractometer | 3096 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2622 reflections with I > 2σ(I) |
Tmin = 0.672, Tmax = 0.767 | Rint = 0.027 |
7908 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.44 e Å−3 |
3096 reflections | Δρmin = −0.44 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.86004 (3) | 0.65356 (2) | 0.795439 (16) | 0.02201 (8) | |
O1 | 0.80856 (18) | 0.79217 (16) | 0.69580 (11) | 0.0338 (4) | |
O2 | 0.6272 (2) | 0.8500 (2) | 0.73459 (13) | 0.0557 (6) | |
O3 | 0.91934 (16) | 1.09247 (16) | 0.66965 (10) | 0.0286 (3) | |
O4 | 0.92729 (17) | 0.96053 (17) | 0.56165 (11) | 0.0324 (4) | |
O5 | 0.8690 (2) | 0.69929 (17) | 0.91493 (11) | 0.0420 (4) | |
H5A | 0.8933 | 0.6451 | 0.9611 | 0.063* | |
H5B | 0.8548 | 0.7783 | 0.9303 | 0.063* | |
N1 | 0.6991 (2) | 0.50031 (18) | 0.72410 (12) | 0.0259 (4) | |
N2 | 0.14900 (18) | 0.44565 (17) | 0.51164 (11) | 0.0216 (3) | |
C1 | 0.6825 (2) | 0.8567 (2) | 0.68146 (14) | 0.0258 (4) | |
C2 | 0.5924 (2) | 0.93592 (19) | 0.58884 (13) | 0.0188 (4) | |
C3 | 0.6703 (2) | 1.00226 (19) | 0.54740 (13) | 0.0185 (4) | |
C4 | 0.4233 (2) | 0.9353 (2) | 0.54138 (13) | 0.0209 (4) | |
H4 | 0.3718 | 0.8921 | 0.5697 | 0.025* | |
C5 | 0.8530 (2) | 1.0158 (2) | 0.59632 (14) | 0.0213 (4) | |
C6 | 0.7442 (3) | 0.3710 (2) | 0.74772 (17) | 0.0337 (5) | |
H6 | 0.8454 | 0.3527 | 0.8014 | 0.040* | |
C7 | 0.6469 (3) | 0.2646 (2) | 0.69576 (17) | 0.0372 (5) | |
H7 | 0.6810 | 0.1759 | 0.7146 | 0.045* | |
C8 | 0.4979 (3) | 0.2906 (2) | 0.61535 (16) | 0.0320 (5) | |
H8 | 0.4308 | 0.2194 | 0.5792 | 0.038* | |
C9 | 0.4484 (2) | 0.4234 (2) | 0.58848 (14) | 0.0240 (4) | |
C10 | 0.5518 (2) | 0.5241 (2) | 0.64550 (15) | 0.0255 (4) | |
H10 | 0.5188 | 0.6136 | 0.6292 | 0.031* | |
C11 | 0.2899 (2) | 0.4555 (2) | 0.49833 (14) | 0.0277 (5) | |
H11A | 0.2952 | 0.5465 | 0.4775 | 0.033* | |
H11B | 0.2747 | 0.3934 | 0.4479 | 0.033* | |
C12 | 0.1496 (2) | 0.5559 (2) | 0.57275 (14) | 0.0259 (4) | |
H12A | 0.1503 | 0.6424 | 0.5445 | 0.031* | |
H12B | 0.2473 | 0.5503 | 0.6356 | 0.031* | |
C13 | −0.0016 (2) | 0.4524 (2) | 0.41650 (14) | 0.0268 (4) | |
H13A | −0.0033 | 0.3782 | 0.3767 | 0.032* | |
H13B | −0.0039 | 0.5366 | 0.3850 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01665 (12) | 0.02323 (14) | 0.01964 (12) | 0.00100 (9) | 0.00455 (9) | 0.00333 (9) |
O1 | 0.0293 (8) | 0.0325 (9) | 0.0299 (8) | 0.0108 (7) | 0.0080 (7) | 0.0142 (7) |
O2 | 0.0492 (11) | 0.0897 (17) | 0.0311 (9) | 0.0197 (10) | 0.0226 (9) | 0.0280 (10) |
O3 | 0.0168 (7) | 0.0368 (9) | 0.0263 (7) | −0.0055 (6) | 0.0067 (6) | −0.0122 (6) |
O4 | 0.0217 (7) | 0.0422 (10) | 0.0313 (8) | −0.0014 (7) | 0.0122 (6) | −0.0115 (7) |
O5 | 0.0718 (13) | 0.0275 (9) | 0.0280 (8) | 0.0159 (8) | 0.0264 (9) | 0.0076 (7) |
N1 | 0.0180 (8) | 0.0266 (9) | 0.0271 (9) | −0.0008 (7) | 0.0072 (7) | 0.0006 (7) |
N2 | 0.0143 (7) | 0.0277 (9) | 0.0188 (8) | −0.0016 (7) | 0.0056 (6) | −0.0025 (7) |
C1 | 0.0219 (10) | 0.0233 (11) | 0.0195 (9) | −0.0036 (8) | 0.0013 (8) | 0.0034 (8) |
C2 | 0.0170 (9) | 0.0163 (9) | 0.0162 (8) | 0.0006 (7) | 0.0034 (7) | 0.0009 (7) |
C3 | 0.0137 (8) | 0.0167 (9) | 0.0184 (9) | −0.0015 (7) | 0.0033 (7) | −0.0032 (7) |
C4 | 0.0186 (9) | 0.0203 (10) | 0.0205 (9) | −0.0038 (7) | 0.0075 (8) | 0.0028 (7) |
C5 | 0.0156 (9) | 0.0222 (10) | 0.0205 (9) | −0.0010 (7) | 0.0052 (7) | 0.0013 (8) |
C6 | 0.0241 (11) | 0.0308 (12) | 0.0320 (12) | 0.0043 (9) | 0.0040 (9) | 0.0010 (9) |
C7 | 0.0348 (13) | 0.0230 (11) | 0.0425 (13) | 0.0040 (9) | 0.0116 (11) | −0.0022 (10) |
C8 | 0.0274 (11) | 0.0287 (12) | 0.0352 (12) | −0.0047 (9) | 0.0125 (10) | −0.0094 (9) |
C9 | 0.0167 (9) | 0.0315 (11) | 0.0242 (10) | −0.0006 (8) | 0.0105 (8) | −0.0016 (8) |
C10 | 0.0198 (10) | 0.0245 (11) | 0.0288 (10) | 0.0000 (8) | 0.0100 (8) | 0.0020 (8) |
C11 | 0.0176 (9) | 0.0394 (13) | 0.0238 (10) | −0.0038 (9) | 0.0089 (8) | −0.0019 (9) |
C12 | 0.0160 (9) | 0.0323 (12) | 0.0229 (10) | −0.0044 (8) | 0.0052 (8) | −0.0075 (8) |
C13 | 0.0189 (9) | 0.0361 (12) | 0.0189 (9) | −0.0002 (9) | 0.0049 (8) | −0.0057 (8) |
Zn1—O5 | 1.9442 (16) | C3—C5 | 1.512 (2) |
Zn1—O1 | 1.9762 (15) | C4—C3iii | 1.390 (3) |
Zn1—O3i | 1.9795 (14) | C4—H4 | 0.9300 |
Zn1—N1 | 2.0443 (18) | C6—C7 | 1.370 (3) |
O1—C1 | 1.276 (3) | C6—H6 | 0.9300 |
O2—C1 | 1.220 (3) | C7—C8 | 1.377 (3) |
O3—C5 | 1.271 (2) | C7—H7 | 0.9300 |
O3—Zn1ii | 1.9795 (14) | C8—C9 | 1.387 (3) |
O4—C5 | 1.235 (2) | C8—H8 | 0.9300 |
O5—H5A | 0.8501 | C9—C10 | 1.374 (3) |
O5—H5B | 0.8501 | C9—C11 | 1.507 (3) |
N1—C6 | 1.340 (3) | C10—H10 | 0.9300 |
N1—C10 | 1.352 (3) | C11—H11A | 0.9700 |
N2—C12 | 1.469 (3) | C11—H11B | 0.9700 |
N2—C11 | 1.472 (2) | C12—C13iv | 1.514 (3) |
N2—C13 | 1.479 (2) | C12—H12A | 0.9700 |
C1—C2 | 1.511 (3) | C12—H12B | 0.9700 |
C2—C4 | 1.392 (3) | C13—C12iv | 1.514 (3) |
C2—C3 | 1.394 (3) | C13—H13A | 0.9700 |
C3—C4iii | 1.390 (3) | C13—H13B | 0.9700 |
O5—Zn1—O1 | 121.11 (7) | N1—C6—H6 | 118.8 |
O5—Zn1—O3i | 106.68 (7) | C7—C6—H6 | 118.8 |
O1—Zn1—O3i | 103.27 (6) | C6—C7—C8 | 119.3 (2) |
O5—Zn1—N1 | 111.84 (8) | C6—C7—H7 | 120.4 |
O1—Zn1—N1 | 104.45 (7) | C8—C7—H7 | 120.4 |
O3i—Zn1—N1 | 108.74 (7) | C7—C8—C9 | 119.7 (2) |
C1—O1—Zn1 | 108.28 (14) | C7—C8—H8 | 120.2 |
C5—O3—Zn1ii | 113.58 (13) | C9—C8—H8 | 120.2 |
Zn1—O5—H5A | 125.6 | C10—C9—C8 | 117.44 (19) |
Zn1—O5—H5B | 124.8 | C10—C9—C11 | 121.47 (19) |
H5A—O5—H5B | 109.5 | C8—C9—C11 | 121.07 (19) |
C6—N1—C10 | 117.61 (18) | N1—C10—C9 | 123.6 (2) |
C6—N1—Zn1 | 120.29 (14) | N1—C10—H10 | 118.2 |
C10—N1—Zn1 | 121.67 (14) | C9—C10—H10 | 118.2 |
C12—N2—C11 | 111.10 (16) | N2—C11—C9 | 112.87 (16) |
C12—N2—C13 | 109.56 (15) | N2—C11—H11A | 109.0 |
C11—N2—C13 | 108.82 (15) | C9—C11—H11A | 109.0 |
O2—C1—O1 | 123.6 (2) | N2—C11—H11B | 109.0 |
O2—C1—C2 | 119.6 (2) | C9—C11—H11B | 109.0 |
O1—C1—C2 | 116.57 (19) | H11A—C11—H11B | 107.8 |
C4—C2—C3 | 119.48 (17) | N2—C12—C13iv | 110.75 (16) |
C4—C2—C1 | 117.36 (17) | N2—C12—H12A | 109.5 |
C3—C2—C1 | 123.07 (17) | C13iv—C12—H12A | 109.5 |
C4iii—C3—C2 | 119.02 (17) | N2—C12—H12B | 109.5 |
C4iii—C3—C5 | 117.67 (17) | C13iv—C12—H12B | 109.5 |
C2—C3—C5 | 123.24 (17) | H12A—C12—H12B | 108.1 |
C3iii—C4—C2 | 121.50 (18) | N2—C13—C12iv | 110.43 (16) |
C3iii—C4—H4 | 119.3 | N2—C13—H13A | 109.6 |
C2—C4—H4 | 119.3 | C12iv—C13—H13A | 109.6 |
O4—C5—O3 | 123.94 (18) | N2—C13—H13B | 109.6 |
O4—C5—C3 | 120.13 (17) | C12iv—C13—H13B | 109.6 |
O3—C5—C3 | 115.80 (17) | H13A—C13—H13B | 108.1 |
N1—C6—C7 | 122.4 (2) | ||
O5—Zn1—O1—C1 | −48.49 (17) | C4iii—C3—C5—O4 | −67.8 (3) |
O3i—Zn1—O1—C1 | −167.62 (14) | C2—C3—C5—O4 | 115.2 (2) |
N1—Zn1—O1—C1 | 78.70 (15) | C4iii—C3—C5—O3 | 108.3 (2) |
O5—Zn1—N1—C6 | −83.24 (18) | C2—C3—C5—O3 | −68.7 (3) |
O1—Zn1—N1—C6 | 144.06 (17) | C10—N1—C6—C7 | −0.3 (4) |
O3i—Zn1—N1—C6 | 34.32 (19) | Zn1—N1—C6—C7 | −173.04 (19) |
O5—Zn1—N1—C10 | 104.37 (17) | N1—C6—C7—C8 | 1.0 (4) |
O1—Zn1—N1—C10 | −28.33 (18) | C6—C7—C8—C9 | −0.3 (4) |
O3i—Zn1—N1—C10 | −138.07 (16) | C7—C8—C9—C10 | −1.0 (3) |
Zn1—O1—C1—O2 | 13.3 (3) | C7—C8—C9—C11 | 177.0 (2) |
Zn1—O1—C1—C2 | −161.64 (13) | C6—N1—C10—C9 | −1.0 (3) |
O2—C1—C2—C4 | −34.3 (3) | Zn1—N1—C10—C9 | 171.57 (16) |
O1—C1—C2—C4 | 140.9 (2) | C8—C9—C10—N1 | 1.7 (3) |
O2—C1—C2—C3 | 149.1 (2) | C11—C9—C10—N1 | −176.32 (19) |
O1—C1—C2—C3 | −35.7 (3) | C12—N2—C11—C9 | 70.1 (2) |
C4—C2—C3—C4iii | −0.9 (3) | C13—N2—C11—C9 | −169.16 (18) |
C1—C2—C3—C4iii | 175.55 (18) | C10—C9—C11—N2 | −100.7 (2) |
C4—C2—C3—C5 | 176.05 (18) | C8—C9—C11—N2 | 81.4 (2) |
C1—C2—C3—C5 | −7.5 (3) | C11—N2—C12—C13iv | 178.22 (17) |
C3—C2—C4—C3iii | 1.0 (3) | C13—N2—C12—C13iv | 57.9 (2) |
C1—C2—C4—C3iii | −175.72 (18) | C12—N2—C13—C12iv | −57.8 (2) |
Zn1ii—O3—C5—O4 | 14.7 (3) | C11—N2—C13—C12iv | −179.41 (18) |
Zn1ii—O3—C5—C3 | −161.19 (13) |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+1, −y+2, −z+1; (iv) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4v | 0.85 | 1.82 | 2.662 (2) | 173 |
O5—H5B···N2vi | 0.85 | 1.91 | 2.751 (2) | 169 |
Symmetry codes: (v) x, −y+3/2, z+1/2; (vi) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn2(C10H2O8)(C16H20N4)(H2O)2] |
Mr | 685.24 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.5630 (5), 9.8747 (5), 16.1808 (7) |
β (°) | 120.673 (2) |
V (Å3) | 1314.20 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.89 |
Crystal size (mm) | 0.22 × 0.16 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.672, 0.767 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7908, 3096, 2622 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.675 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.071, 1.03 |
No. of reflections | 3096 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.44 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008) and local programs.
Zn1—O5 | 1.9442 (16) | Zn1—O3i | 1.9795 (14) |
Zn1—O1 | 1.9762 (15) | Zn1—N1 | 2.0443 (18) |
O5—Zn1—O1 | 121.11 (7) | O5—Zn1—N1 | 111.84 (8) |
O5—Zn1—O3i | 106.68 (7) | O1—Zn1—N1 | 104.45 (7) |
O1—Zn1—O3i | 103.27 (6) | O3i—Zn1—N1 | 108.74 (7) |
Symmetry code: (i) −x+2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4ii | 0.85 | 1.82 | 2.662 (2) | 173 |
O5—H5B···N2iii | 0.85 | 1.91 | 2.751 (2) | 169 |
Symmetry codes: (ii) x, −y+3/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
This work was supported financially by the Education Committee of Jilin Province "12th Five-year Plan" Natural Science Foundation (No. 2011423).
References
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farnum, G. A. & LaDuca, R. L. (2010). Cryst. Growth Des. pp. 1897–1899. CrossRef Google Scholar
Martin, D., Knapp, W. R., Supkowski, R. M. & LaDuca, R. L. (2009). Inorg. Chim. Acta, pp. 1559–1562. Google Scholar
Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624–628. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,4-bis(3-pyridylmethyl)piperazine (3-bpmp) and its derivatives are important heteroaromatic N-donor bridging ligands for the construction of coordination polymers (Farnum & LaDuca, 2010). Whereas, only a handful of polymers based on 3-bpmp have been described (Martin et al., 2009). The title compound was prepared during an attempt to prepare a coordination polymer containing both pyromellitic acid and 3-bpmp ligands.
The asymmetric unit of the title compound (Fig. 1) contains a zincII ion, a half 3-bpmp ligand, a half pyromellitate anion on the crystallographic inversion centre, and one coordinated water molecule. the Zn1 atom is situated in a distorted tetrahedron center, coordinated by one N atoms (N1) from 3-bpmp, two O atoms (O1, O3i) from two carboxylate groups of pyromellitate and one water molecule (Table 1). The other two carboxylate O atoms (O2, O4i) are also close to the Zn1 center, however, the lengths of Zn1—O (2.730 (2) Å) and Zn1—O4i (2.884 (2) Å) are too long to be considered as bonding interactions, thus the ZnII center can be best described as four rather than six coordinated, which may be ascribed to the hydrogen bonds between the carboxylate groups and the adjacent water molecules (Table 1).
In the crystal structure, each pyromellitate ligand coordinates to four ZnII atoms in tetra-monodentate bridging mode, and each ZnII atom is linked to two pyromellitate ligands to construct waved (4,4)-grid [Zn2(pyromellitate)]n layers that are oriented parallel to the (1 0 1) crystal planes (Fig. 2). The two ZnII atoms between the adjacent layers are connected by 3-bpmp ligand thus a (3,4)-connected infinite three-dimensional framework are formed (Fig. 3). Withal, there are intralayer hydrogen bonding between the water molecule ligands and unligated pyromellitate O atoms provides additional stabilization of the layer motifs.