metal-organic compounds
Diaquabis(2-oxo-2H-chromene-3-carboxylato)copper(II)
aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn
In the title compound, [Cu(C10H5O4)2(H2O)2], the CuII atom lies on a crystallographic inversion center and exhibits an octahedral coordination defined by two O atoms from water molecules in the axial positions and by four O atoms from two deprotonated coumarin-3-carboxylic acid ligands in the equatorial positions. The angles around the CuII atom vary between 85.32 (6) and 94.68 (6)°. The Cu—O bond distances between the CuII atom and the O atoms vary between 1.9424 (14) and 2.3229 (15) Å. The layers interdigitate via face-to-face aromatic interactions [3.6490 (8) Å] between coumarin moieties such that the interlayer separation is 10.460 (2) Å, i.e. the length of the c axis. O—H⋯O hydrogen bonds between the H atoms of coordinated water molecules and the O atoms of carboxylate groups link the complex molecules into layers parallel to the ab plane.
Related literature
For background to topological networks, see: Lazarou et al. (2011). For applications of copper(II) complexes, see: Eddaoudi et al. (2001); Kirillov et al. (2010); Konidaris et al. (2009). For related structures, see: Wang et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811018708/zk2008sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811018708/zk2008Isup2.hkl
The title complex was synthesized by carefully layering a solution of Cu(NO3)2.3H2O (24.2 mg, 0.1 mmol) in ethanol (10 ml) on top of a solution of coumarin-3-carboxylic acid (19.0 mg, 0.1 mmol) and LiOH (8.4 mg, 0.2 mmol) in H2O (10 ml) in a test-tube. After about one month at room temperature, green block-shaped single crystals suitable for X-ray investigation appeared at the boundary between the ethanol solution and the water layer with a yield of 25% (12.1 mg). FT—IR (KBr, cm-1): 788, 1028, 1183, 1285, 1388, 1457, 1560, 1697, 3180.
Carbon H atoms were placed geometrically (C—H = 0.93 Å) and treated as riding with Uiso(H) = 1.2Ueq(C). Water H atoms were located in calculated positions and treated in the subsequent
as riding atoms, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).[Cu(C10H5O4)2(H2O)2] | Z = 1 |
Mr = 477.86 | F(000) = 243 |
Triclinic, P1 | Dx = 1.860 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5884 (13) Å | Cell parameters from 2273 reflections |
b = 6.8296 (14) Å | θ = 3.3–28.3° |
c = 10.460 (2) Å | µ = 1.35 mm−1 |
α = 85.98 (3)° | T = 293 K |
β = 89.79 (3)° | Block, green |
γ = 65.38 (3)° | 0.20 × 0.15 × 0.15 mm |
V = 426.65 (15) Å3 |
Bruker APEXII CCD diffractometer | 1954 independent reflections |
Radiation source: fine-focus sealed tube | 1926 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ϕ and ω scans | θmax = 28.3°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −8→8 |
Tmin = 0.785, Tmax = 0.817 | k = −6→8 |
2696 measured reflections | l = −12→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0426P)2 + 0.4127P] where P = (Fo2 + 2Fc2)/3 |
1954 reflections | (Δ/σ)max < 0.001 |
146 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
[Cu(C10H5O4)2(H2O)2] | γ = 65.38 (3)° |
Mr = 477.86 | V = 426.65 (15) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.5884 (13) Å | Mo Kα radiation |
b = 6.8296 (14) Å | µ = 1.35 mm−1 |
c = 10.460 (2) Å | T = 293 K |
α = 85.98 (3)° | 0.20 × 0.15 × 0.15 mm |
β = 89.79 (3)° |
Bruker APEXII CCD diffractometer | 1954 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 1926 reflections with I > 2σ(I) |
Tmin = 0.785, Tmax = 0.817 | Rint = 0.014 |
2696 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.080 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.47 e Å−3 |
1954 reflections | Δρmin = −0.59 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.0000 | 0.5000 | 0.00966 (11) | |
O1 | 0.4519 (2) | 0.1657 (2) | 0.69122 (12) | 0.0146 (3) | |
O1W | 0.4903 (2) | −0.2639 (2) | 0.59038 (12) | 0.0126 (3) | |
H1WA | 0.3929 | −0.2900 | 0.5568 | 0.019* | |
O3 | 0.1764 (2) | 0.1397 (2) | 0.48277 (12) | 0.0124 (3) | |
O4 | −0.1736 (2) | 0.3644 (2) | 0.51356 (12) | 0.0127 (3) | |
O2 | 0.3051 (2) | 0.1949 (2) | 0.88105 (12) | 0.0122 (3) | |
C1 | −0.2504 (3) | 0.2859 (3) | 1.00004 (18) | 0.0135 (3) | |
H1A | −0.3904 | 0.3043 | 0.9699 | 0.016* | |
C2 | −0.2116 (3) | 0.2857 (3) | 1.13001 (18) | 0.0155 (4) | |
H2A | −0.3264 | 0.3068 | 1.1869 | 0.019* | |
C3 | −0.0782 (3) | 0.2581 (3) | 0.91346 (17) | 0.0112 (3) | |
C4 | 0.1306 (3) | 0.2267 (3) | 0.96207 (17) | 0.0113 (3) | |
C5 | 0.1731 (3) | 0.2237 (3) | 1.09260 (17) | 0.0139 (3) | |
H5A | 0.3138 | 0.2019 | 1.1231 | 0.017* | |
C6 | 0.0000 (3) | 0.2539 (3) | 1.17600 (17) | 0.0154 (4) | |
H6A | 0.0249 | 0.2530 | 1.2635 | 0.019* | |
C7 | −0.1071 (3) | 0.2648 (3) | 0.77726 (17) | 0.0111 (3) | |
H7A | −0.2457 | 0.2871 | 0.7429 | 0.013* | |
C8 | 0.2831 (3) | 0.1975 (3) | 0.75042 (17) | 0.0110 (3) | |
C9 | 0.0633 (3) | 0.2392 (3) | 0.69730 (17) | 0.0103 (3) | |
C10 | 0.0214 (3) | 0.2495 (3) | 0.55452 (17) | 0.0103 (3) | |
H1WB | 0.614 (5) | −0.377 (5) | 0.577 (3) | 0.035 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.00616 (16) | 0.01127 (16) | 0.00921 (16) | −0.00141 (11) | 0.00012 (10) | −0.00028 (11) |
O1 | 0.0097 (6) | 0.0224 (7) | 0.0120 (6) | −0.0065 (5) | 0.0005 (5) | −0.0029 (5) |
O1W | 0.0094 (6) | 0.0135 (6) | 0.0130 (6) | −0.0029 (5) | −0.0002 (5) | −0.0003 (5) |
O3 | 0.0089 (6) | 0.0157 (6) | 0.0103 (6) | −0.0025 (5) | −0.0001 (5) | −0.0018 (5) |
O4 | 0.0086 (6) | 0.0143 (6) | 0.0127 (6) | −0.0022 (5) | −0.0018 (5) | −0.0006 (5) |
O2 | 0.0096 (6) | 0.0166 (6) | 0.0098 (6) | −0.0050 (5) | −0.0007 (5) | −0.0010 (5) |
C1 | 0.0118 (8) | 0.0129 (8) | 0.0143 (8) | −0.0039 (6) | 0.0025 (7) | −0.0001 (6) |
C2 | 0.0183 (9) | 0.0130 (8) | 0.0132 (8) | −0.0046 (7) | 0.0052 (7) | −0.0004 (6) |
C3 | 0.0112 (8) | 0.0095 (7) | 0.0113 (8) | −0.0029 (6) | 0.0010 (6) | −0.0004 (6) |
C4 | 0.0121 (8) | 0.0096 (7) | 0.0106 (8) | −0.0030 (6) | 0.0017 (6) | −0.0007 (6) |
C5 | 0.0157 (9) | 0.0124 (8) | 0.0120 (8) | −0.0044 (7) | −0.0032 (7) | 0.0000 (6) |
C6 | 0.0221 (10) | 0.0123 (8) | 0.0097 (8) | −0.0050 (7) | 0.0005 (7) | −0.0005 (6) |
C7 | 0.0094 (8) | 0.0104 (8) | 0.0122 (8) | −0.0031 (6) | −0.0005 (6) | −0.0003 (6) |
C8 | 0.0113 (8) | 0.0102 (7) | 0.0103 (8) | −0.0033 (6) | −0.0012 (6) | −0.0006 (6) |
C9 | 0.0091 (8) | 0.0100 (7) | 0.0107 (8) | −0.0030 (6) | −0.0009 (6) | −0.0005 (6) |
C10 | 0.0092 (8) | 0.0099 (7) | 0.0117 (8) | −0.0039 (6) | 0.0007 (6) | −0.0001 (6) |
Cu1—O3i | 1.9424 (14) | C1—C3 | 1.408 (2) |
Cu1—O3 | 1.9424 (14) | C1—H1A | 0.9300 |
Cu1—O1Wi | 2.0007 (14) | C2—C6 | 1.400 (3) |
Cu1—O1W | 2.0007 (14) | C2—H2A | 0.9300 |
Cu1—O1 | 2.3229 (15) | C3—C4 | 1.393 (3) |
Cu1—O1i | 2.3229 (15) | C3—C7 | 1.433 (2) |
O1—C8 | 1.216 (2) | C4—C5 | 1.392 (2) |
O1W—H1WA | 0.8200 | C5—C6 | 1.388 (3) |
O1W—H1WB | 0.88 (3) | C5—H5A | 0.9300 |
O3—C10 | 1.266 (2) | C6—H6A | 0.9300 |
O4—C10 | 1.251 (2) | C7—C9 | 1.357 (2) |
O2—C8 | 1.373 (2) | C7—H7A | 0.9300 |
O2—C4 | 1.377 (2) | C8—C9 | 1.459 (2) |
C1—C2 | 1.384 (3) | C9—C10 | 1.511 (2) |
O3i—Cu1—O3 | 180.0 | C6—C2—H2A | 119.9 |
O3i—Cu1—O1Wi | 91.47 (6) | C4—C3—C1 | 118.49 (16) |
O3—Cu1—O1Wi | 88.53 (6) | C4—C3—C7 | 118.02 (16) |
O3i—Cu1—O1W | 88.53 (6) | C1—C3—C7 | 123.47 (17) |
O3—Cu1—O1W | 91.47 (6) | O2—C4—C5 | 117.36 (16) |
O1Wi—Cu1—O1W | 180.0 | O2—C4—C3 | 120.44 (16) |
O3i—Cu1—O1 | 94.68 (6) | C5—C4—C3 | 122.19 (17) |
O3—Cu1—O1 | 85.32 (6) | C6—C5—C4 | 118.29 (18) |
O1Wi—Cu1—O1 | 88.76 (6) | C6—C5—H5A | 120.9 |
O1W—Cu1—O1 | 91.24 (6) | C4—C5—H5A | 120.9 |
O3i—Cu1—O1i | 85.32 (6) | C5—C6—C2 | 120.83 (17) |
O3—Cu1—O1i | 94.68 (6) | C5—C6—H6A | 119.6 |
O1Wi—Cu1—O1i | 91.24 (6) | C2—C6—H6A | 119.6 |
O1W—Cu1—O1i | 88.76 (6) | C9—C7—C3 | 121.45 (17) |
O1—Cu1—O1i | 180.0 | C9—C7—H7A | 119.3 |
C8—O1—Cu1 | 118.65 (12) | C3—C7—H7A | 119.3 |
Cu1—O1W—H1WA | 109.5 | O1—C8—O2 | 115.47 (16) |
Cu1—O1W—H1WB | 110 (2) | O1—C8—C9 | 127.02 (16) |
H1WA—O1W—H1WB | 103.7 | O2—C8—C9 | 117.51 (15) |
C10—O3—Cu1 | 134.40 (12) | C7—C9—C8 | 119.69 (16) |
C8—O2—C4 | 122.81 (14) | C7—C9—C10 | 118.84 (16) |
C2—C1—C3 | 120.02 (18) | C8—C9—C10 | 121.45 (15) |
C2—C1—H1A | 120.0 | O4—C10—O3 | 122.88 (16) |
C3—C1—H1A | 120.0 | O4—C10—C9 | 116.53 (15) |
C1—C2—C6 | 120.16 (17) | O3—C10—C9 | 120.53 (16) |
C1—C2—H2A | 119.9 | ||
O3i—Cu1—O1—C8 | −149.14 (14) | C1—C2—C6—C5 | 0.5 (3) |
O3—Cu1—O1—C8 | 30.86 (14) | C4—C3—C7—C9 | 0.7 (3) |
O1Wi—Cu1—O1—C8 | 119.49 (14) | C1—C3—C7—C9 | 179.37 (17) |
O1W—Cu1—O1—C8 | −60.51 (14) | Cu1—O1—C8—O2 | 149.88 (11) |
O1Wi—Cu1—O3—C10 | −95.25 (17) | Cu1—O1—C8—C9 | −30.6 (2) |
O1W—Cu1—O3—C10 | 84.75 (17) | C4—O2—C8—O1 | −179.60 (15) |
O1—Cu1—O3—C10 | −6.37 (17) | C4—O2—C8—C9 | 0.9 (2) |
O1i—Cu1—O3—C10 | 173.63 (17) | C3—C7—C9—C8 | 1.8 (3) |
C3—C1—C2—C6 | −1.2 (3) | C3—C7—C9—C10 | −179.55 (15) |
C2—C1—C3—C4 | 1.2 (3) | O1—C8—C9—C7 | 177.91 (18) |
C2—C1—C3—C7 | −177.46 (16) | O2—C8—C9—C7 | −2.6 (2) |
C8—O2—C4—C5 | −179.00 (15) | O1—C8—C9—C10 | −0.7 (3) |
C8—O2—C4—C3 | 1.7 (3) | O2—C8—C9—C10 | 178.83 (15) |
C1—C3—C4—O2 | 178.78 (15) | Cu1—O3—C10—O4 | 163.62 (13) |
C7—C3—C4—O2 | −2.5 (3) | Cu1—O3—C10—C9 | −19.1 (3) |
C1—C3—C4—C5 | −0.5 (3) | C7—C9—C10—O4 | 28.9 (2) |
C7—C3—C4—C5 | 178.26 (16) | C8—C9—C10—O4 | −152.53 (17) |
O2—C4—C5—C6 | −179.54 (16) | C7—C9—C10—O3 | −148.55 (17) |
C3—C4—C5—C6 | −0.2 (3) | C8—C9—C10—O3 | 30.0 (2) |
C4—C5—C6—C2 | 0.3 (3) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O4ii | 0.82 | 1.89 | 2.706 (2) | 177 |
O1W—H1WB···O4iii | 0.88 (3) | 1.90 (3) | 2.753 (2) | 163 (3) |
Symmetry codes: (ii) −x, −y, −z+1; (iii) x+1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C10H5O4)2(H2O)2] |
Mr | 477.86 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.5884 (13), 6.8296 (14), 10.460 (2) |
α, β, γ (°) | 85.98 (3), 89.79 (3), 65.38 (3) |
V (Å3) | 426.65 (15) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.35 |
Crystal size (mm) | 0.20 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.785, 0.817 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2696, 1954, 1926 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.080, 1.10 |
No. of reflections | 1954 |
No. of parameters | 146 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.47, −0.59 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O4i | 0.82 | 1.89 | 2.706 (2) | 177 |
O1W—H1WB···O4ii | 0.88 (3) | 1.90 (3) | 2.753 (2) | 163 (3) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x+1, y−1, z. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 21075114), the Special Environmental Protection Fund for Public Welfare project (201009015) and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the jurisdiction of the Beijing Municipality (PHR 201107104).
References
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Eddaoudi, M., Kim, J., Wachter, J. B., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 4368–4369. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kirillov, A. M., Coelho, J. A. S., Kirillov, M. V., Guedes da Silva, M. F. C., Nesterov, D. S., Gruenwald, K. R., Haukka, M. & Pombeiro, A. J. L. (2010). Inorg. Chem. 49, 6390–6392. Web of Science CrossRef CAS PubMed Google Scholar
Konidaris, K. F., Papaefstathiou, G. S., Aromi, G., Teat, S. J., Manessi-Zoupa, E., Escuer, A. & Perlepes, S. P. (2009). Polyhedron, 28, 1646–1651. CrossRef CAS Google Scholar
Lazarou, K. N., Psycharis, V., Terzis, A. & Raptopoulou, C. P. (2011). Polyhedron, 30, 963–970. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X. L., Lin, H. Y., Mu, B., Tian, A. X., Liu, G. C. & Hu, N. H. (2011). CrystEngComm, 13, 1990–1997. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past decades, numerous papers dealing with copper(II) complexes have been published due to their fascinating structural diversity (Lazarou et al., 2011) and potential applications in the areas of catalysis (Kirillov et al., 2010), gas addsorption (Eddaoudi et al., 2001), magnetism (Konidaris et al., 2009) and so on. Herein, we report the synthesis and crystal structure of a new mononuclear copper complex coordinated by coumarin-3-carboxylic acid.
In the title compound, [Cu(C10H5O4)2(H2O)2], copper(II) atom lies on a crystallographic inversion center and exhibits octahedral geometry with the coordination of two O atoms from water molecules in the axial positions and four O atoms from two deprotonated coumarin-3-carboxylic acid ligands in the equatorial positions. Angles around the CuII atom vary between 85.32 (6)° and 94.68 (6)°. The Cu—O bond distances between the CuII atom and the O atoms vary between 1.9424 (14) and 2.3229 (15) Å, all of which are comparable to those reported for other copper-oxygen donor complexes (e.g., Wang et al., 2011). The (C2C1C3C4C5C6) ring and the (C4C3C7C9C8O2) ring are almost coplanar, and the dihedral angles is 1.568 (57)°. The layers interdigitate via face to face aromatic interactions (distance 3.6490 (8) Å) between coumarin moieties such that the interlayer separation is 10.46 Å, length of c axis. O—H···O hydrogen bonds between the hydrogen atoms of coordinated water molecules and the O atoms of carboxylate groups joins the complexes into two-dimensional layers parallel the ab plane (Table 1 and Fig. 2).