metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(2,2′-bi­pyridine-κ2N,N′)di­chlorido­iron(III) perchlorate

aSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, People's Republic of China
*Correspondence e-mail: zhifang889@126.com

(Received 11 April 2011; accepted 27 April 2011; online 7 May 2011)

In the crystal structure of the title compound, [FeCl2(C10H8N2)2]ClO4, the coordination around the FeIII atom is approximately octa­hedral. The equatorial positions are occupied by two N atoms from two 2,2′-bipyridyl ligands [Fe—N = 2.121 (5) and 2.147 (5) Å] and two Cl atoms [Fe—Cl = 2.220 (2) and 2.2074 (18) Å]. Weak inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds and C—H⋯π inter­actions consolidate the crystal packing.

Related literature

For the use of bipyridine and analogous ligands in the formation of transition metal complexes, see: Constable (1989[Constable, E. C. (1989). Adv. Inorg. Chem. 34, 1-63.]). For applications of related compounds, see: Constable & Steel (1989[Constable, E. C. & Steel, P. J. (1989). Coord. Chem. Rev. 93, 205-223.]); Steel et al. (1990[Steel, P. J. (1990). Coord. Chem. Rev. 106, 227-265.]). For related structures, see: Amani et al. (2007[Amani, V., Safari, N. & Khavasi, H. R. (2007). Polyhedron, 26, 4257-4262.]); Figgis et al. (1983[Figgis, B. N., Reynolds, P. A. & Lehner, N. (1983). Acta Cryst. B39, 711-717.]).

[Scheme 1]

Experimental

Crystal data
  • [FeCl2(C10H8N2)2]ClO4

  • Mr = 538.57

  • Orthorhombic, P 21 21 21

  • a = 10.891 (2) Å

  • b = 11.522 (2) Å

  • c = 16.990 (3) Å

  • V = 2132.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 295 K

  • 0.34 × 0.29 × 0.24 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.702, Tmax = 0.775

  • 5914 measured reflections

  • 3534 independent reflections

  • 2810 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.125

  • S = 1.08

  • 3534 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1419 Friedel pairs

  • Flack parameter: 0.05 (3)

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the N2,C6–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2 0.93 2.52 3.140 (11) 124
C7—H7⋯O3i 0.93 2.55 3.239 (9) 131
C8—H8⋯O2ii 0.93 2.30 3.152 (9) 152
C13—H13⋯O2iii 0.93 2.54 3.423 (10) 158
C18—H18⋯O4iv 0.93 2.51 3.387 (10) 158
C10—H10⋯Cl3 0.93 2.71 3.308 (7) 122
C20—H20⋯Cl2 0.93 2.79 3.382 (7) 123
C11—H11⋯Cg4 0.93 2.90 3.705 (8) 146
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bipyridine and analogous ligands such as phenanthroline are commonly used in the formation of different complexes with a general variety of transition metals (Constable, 1989). Studies of these transition metal complexes are important in understanding electron transfer processes, mixed valence complexes, magnetic coupling and magnetic transitions (Constable et al., 1989; Steel et al., 1990). Although bipyridine coordination to iron has been widely investigated, most complexes are iron(II) complexes, little attention has been paid to bipyridine iron(III) complexes. In order to expand this field, the title compound has been synthesized, and its crystal structure is reported herein.

The molecular structure of the title compound (I) is shown in Fig. 1. The crystal is composed of cis-[FeIII(bipy)2C12]+ cations and [C1O4]- anions. The FeIII atom is coordinated by two Cl anions and four N atoms from two 2,2'-bipyridyl ligands within a distorted octahedral geometry. The six-coordinate molecule is the cis-cis isomer considering the positions of the chlorine and pyridyl nitrogen atoms. The four Fe—N bond lengths [2.087 (4)–2.147 (5) Å] were similar and consistent with those reported earlier (Amani et al., 2007; Figgis et al., 1983). The distortion from a perfect octahedral geometry was primarily a consequence of the small bite-angle of the chelating ligands, which led to acute N1—Fe—N2 and N3—Fe—N4 angles of 75.96 (19)° and 75.4 (2)°, respectively.

Intermolecular C—H···O, C—H···Cl hydrogen bonds and C—H···π interactions stabilize the crystal structure (Table 1).

Related literature top

For the use of bipyridine and analogous ligands in the formation of transition metal complexes, see: Constable (1989). For applications of related compounds, see: Constable & Steel (1989); Steel et al. (1990). For related structures, see: Amani et al. (2007); Figgis et al. (1983).

Experimental top

All reagents were obtained from commercial sources and used without further purification. 2,2'-Bipyridine (0.312 g, 2.0 mmol) and NaClO4 (0.122 g,1.0 mmol) were added to a solution of FeCl3.6H2O (0.270 g, 1.0 mmol) in methanol (30 ml), and the solution was stirred at 60–65 oC for 3 h. A red-brown precipitate was obtained. After filtration, the red-brown filtrate was allowed to stand at room temperature for two weeks to give red-brown block-shaped crystals suitable for X-ray analysis. Elemental analysis for C20H16Cl3FeN4O4: C 44.60, H 2.99, N 10.40 %; found: C 44.52, H 3.03, N 10.39 %.

Refinement top

All C-bound H atoms were positioned geometrically and treated as riding, with C—H = 0.93Å and Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing thermal ellipsoids at the 30% probability level.
cis-Bis(2,2'-bipyridine-κ2N,N')dichloridoiron(III) perchlorate top
Crystal data top
[FeCl2(C10H8N2)2]ClO4F(000) = 1092
Mr = 538.57Dx = 1.678 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1783 reflections
a = 10.891 (2) Åθ = 2.4–25.9°
b = 11.522 (2) ŵ = 1.12 mm1
c = 16.990 (3) ÅT = 295 K
V = 2132.1 (7) Å3Block, red-brown
Z = 40.34 × 0.29 × 0.24 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3534 independent reflections
Radiation source: fine-focus sealed tube2810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 712
Tmin = 0.702, Tmax = 0.775k = 1213
5914 measured reflectionsl = 2017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.043P)2 + 0.4377P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3534 reflectionsΔρmax = 0.75 e Å3
289 parametersΔρmin = 0.42 e Å3
0 restraintsAbsolute structure: Flack (1983), 1419 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
[FeCl2(C10H8N2)2]ClO4V = 2132.1 (7) Å3
Mr = 538.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.891 (2) ŵ = 1.12 mm1
b = 11.522 (2) ÅT = 295 K
c = 16.990 (3) Å0.34 × 0.29 × 0.24 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3534 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2810 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.775Rint = 0.038
5914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.125Δρmax = 0.75 e Å3
S = 1.08Δρmin = 0.42 e Å3
3534 reflectionsAbsolute structure: Flack (1983), 1419 Friedel pairs
289 parametersAbsolute structure parameter: 0.05 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.97563 (9)0.23098 (7)0.13357 (5)0.0557 (3)
Cl10.4647 (2)0.80918 (14)0.13791 (10)0.0674 (5)
Cl20.79726 (18)0.13772 (13)0.13412 (11)0.0693 (5)
Cl31.10061 (18)0.08017 (14)0.13284 (11)0.0722 (5)
O10.5403 (7)0.8608 (5)0.0835 (3)0.111 (2)
O20.5221 (7)0.7174 (5)0.1726 (3)0.127 (2)
O30.4321 (8)0.8861 (5)0.1958 (3)0.139 (3)
O40.3639 (7)0.7708 (8)0.0978 (4)0.164 (3)
N10.8727 (5)0.3863 (4)0.1221 (3)0.0511 (13)
N20.9729 (5)0.2621 (4)0.0126 (3)0.0499 (12)
N31.1301 (5)0.3461 (4)0.1420 (3)0.0551 (13)
N40.9974 (5)0.2596 (4)0.2546 (3)0.0529 (13)
C10.8236 (7)0.4446 (6)0.1798 (4)0.067 (2)
H10.83940.42090.23110.080*
C20.7503 (8)0.5385 (6)0.1681 (5)0.079 (3)
H20.71260.57620.21010.095*
C30.7341 (8)0.5753 (6)0.0926 (5)0.076 (2)
H30.68660.64060.08230.092*
C40.7870 (8)0.5169 (6)0.0333 (4)0.065 (2)
H40.77620.54190.01830.078*
C50.8558 (6)0.4220 (5)0.0484 (4)0.0481 (15)
C60.9143 (6)0.3543 (5)0.0115 (3)0.0475 (15)
C70.9110 (8)0.3798 (6)0.0911 (4)0.067 (2)
H70.86740.44420.10860.081*
C80.9698 (7)0.3129 (7)0.1431 (4)0.073 (2)
H80.97020.33210.19630.087*
C91.0269 (7)0.2198 (6)0.1181 (4)0.0691 (19)
H91.06610.17100.15380.083*
C101.0287 (7)0.1949 (5)0.0396 (4)0.0604 (17)
H101.07010.12910.02230.072*
C111.1910 (7)0.3941 (6)0.0843 (4)0.0658 (19)
H111.16590.37750.03330.079*
C121.2875 (9)0.4658 (6)0.0934 (5)0.079 (2)
H121.32550.50060.05040.094*
C131.3264 (8)0.4850 (6)0.1671 (5)0.079 (2)
H131.39350.53310.17620.095*
C141.2681 (8)0.4344 (6)0.2280 (4)0.070 (2)
H141.29650.44580.27900.084*
C151.1680 (7)0.3669 (5)0.2151 (4)0.0533 (16)
C161.0945 (7)0.3178 (5)0.2775 (4)0.0564 (18)
C171.1226 (8)0.3310 (5)0.3553 (4)0.072 (2)
H171.19220.37220.37030.087*
C181.0481 (10)0.2833 (7)0.4102 (4)0.085 (3)
H181.06700.29040.46330.102*
C190.9466 (9)0.2257 (7)0.3879 (4)0.086 (3)
H190.89320.19470.42510.104*
C200.9236 (8)0.2136 (6)0.3085 (4)0.078 (2)
H200.85480.17220.29230.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0563 (6)0.0609 (5)0.0499 (5)0.0006 (5)0.0004 (5)0.0042 (4)
Cl10.0817 (14)0.0688 (9)0.0518 (9)0.0106 (10)0.0023 (11)0.0058 (9)
Cl20.0587 (11)0.0678 (9)0.0814 (11)0.0092 (8)0.0010 (11)0.0118 (10)
Cl30.0703 (13)0.0697 (9)0.0765 (11)0.0135 (9)0.0031 (11)0.0088 (10)
O10.126 (6)0.117 (4)0.089 (3)0.022 (4)0.033 (4)0.012 (3)
O20.152 (7)0.112 (4)0.117 (4)0.065 (5)0.009 (4)0.036 (3)
O30.215 (9)0.108 (4)0.093 (4)0.054 (5)0.044 (5)0.004 (3)
O40.128 (7)0.259 (9)0.104 (4)0.074 (7)0.041 (5)0.035 (5)
N10.054 (4)0.054 (3)0.045 (3)0.005 (2)0.001 (3)0.006 (3)
N20.047 (3)0.056 (3)0.047 (3)0.004 (3)0.005 (3)0.001 (2)
N30.051 (3)0.056 (3)0.058 (3)0.007 (3)0.003 (3)0.009 (3)
N40.043 (3)0.067 (3)0.049 (3)0.006 (3)0.001 (2)0.009 (2)
C10.065 (6)0.077 (4)0.058 (4)0.002 (4)0.002 (4)0.004 (4)
C20.092 (7)0.064 (4)0.081 (5)0.014 (5)0.005 (5)0.025 (4)
C30.076 (7)0.055 (4)0.099 (6)0.010 (4)0.010 (5)0.011 (5)
C40.067 (6)0.057 (4)0.071 (4)0.002 (4)0.004 (4)0.008 (4)
C50.044 (4)0.038 (3)0.062 (4)0.003 (3)0.007 (3)0.002 (3)
C60.043 (4)0.050 (3)0.049 (3)0.005 (3)0.003 (3)0.005 (3)
C70.077 (6)0.068 (4)0.058 (4)0.015 (4)0.008 (4)0.010 (4)
C80.070 (5)0.101 (5)0.047 (4)0.003 (5)0.001 (4)0.006 (4)
C90.061 (5)0.091 (5)0.055 (4)0.013 (5)0.008 (4)0.012 (4)
C100.056 (5)0.064 (4)0.060 (4)0.001 (4)0.001 (4)0.008 (3)
C110.054 (5)0.068 (4)0.075 (5)0.000 (4)0.002 (4)0.001 (4)
C120.080 (7)0.062 (4)0.094 (6)0.015 (4)0.017 (5)0.007 (5)
C130.068 (6)0.067 (4)0.102 (6)0.008 (4)0.014 (5)0.023 (5)
C140.068 (6)0.067 (4)0.075 (5)0.001 (4)0.002 (4)0.019 (4)
C150.048 (5)0.051 (3)0.062 (4)0.002 (3)0.009 (3)0.009 (3)
C160.066 (5)0.051 (4)0.051 (4)0.016 (4)0.017 (4)0.003 (3)
C170.088 (6)0.066 (4)0.063 (4)0.004 (4)0.018 (5)0.012 (4)
C180.122 (9)0.084 (5)0.049 (4)0.002 (6)0.008 (5)0.005 (4)
C190.115 (8)0.096 (6)0.048 (4)0.006 (6)0.011 (4)0.017 (4)
C200.079 (6)0.097 (5)0.060 (4)0.008 (5)0.007 (4)0.014 (4)
Geometric parameters (Å, º) top
Fe1—N22.087 (4)C5—C61.432 (8)
Fe1—N42.096 (5)C6—C71.385 (8)
Fe1—N12.121 (5)C7—C81.336 (9)
Fe1—N32.147 (5)C7—H70.9300
Fe1—Cl32.2074 (18)C8—C91.310 (9)
Fe1—Cl22.220 (2)C8—H80.9300
Cl1—O21.363 (5)C9—C101.366 (8)
Cl1—O41.366 (7)C9—H90.9300
Cl1—O31.371 (5)C10—H100.9300
Cl1—O11.373 (6)C11—C121.346 (11)
N1—C11.302 (8)C11—H110.9300
N1—C51.332 (7)C12—C131.340 (11)
N2—C61.306 (7)C12—H120.9300
N2—C101.324 (7)C13—C141.346 (9)
N3—C111.306 (8)C13—H130.9300
N3—C151.330 (7)C14—C151.358 (9)
N4—C161.311 (8)C14—H140.9300
N4—C201.329 (8)C15—C161.444 (9)
C1—C21.360 (10)C16—C171.365 (8)
C1—H10.9300C17—C181.353 (10)
C2—C31.362 (10)C17—H170.9300
C2—H20.9300C18—C191.344 (11)
C3—C41.342 (9)C18—H180.9300
C3—H30.9300C19—C201.378 (9)
C4—C51.350 (9)C19—H190.9300
C4—H40.9300C20—H200.9300
N2—Fe1—N4160.23 (18)C4—C5—C6123.6 (6)
N2—Fe1—N175.96 (19)N2—C6—C7119.5 (6)
N4—Fe1—N190.98 (18)N2—C6—C5116.0 (5)
N2—Fe1—N388.34 (19)C7—C6—C5124.5 (6)
N4—Fe1—N375.4 (2)C8—C7—C6120.7 (7)
N1—Fe1—N384.2 (2)C8—C7—H7119.6
N2—Fe1—Cl397.95 (16)C6—C7—H7119.6
N4—Fe1—Cl393.40 (14)C9—C8—C7119.1 (7)
N1—Fe1—Cl3171.80 (16)C9—C8—H8120.5
N3—Fe1—Cl390.20 (15)C7—C8—H8120.5
N2—Fe1—Cl294.29 (15)C8—C9—C10119.7 (7)
N4—Fe1—Cl299.84 (16)C8—C9—H9120.1
N1—Fe1—Cl286.93 (15)C10—C9—H9120.1
N3—Fe1—Cl2169.85 (15)N2—C10—C9121.6 (6)
Cl3—Fe1—Cl299.13 (8)N2—C10—H10119.2
O2—Cl1—O4109.4 (5)C9—C10—H10119.2
O2—Cl1—O3108.0 (4)N3—C11—C12124.8 (7)
O4—Cl1—O3111.0 (6)N3—C11—H11117.6
O2—Cl1—O1110.7 (4)C12—C11—H11117.6
O4—Cl1—O1106.7 (4)C13—C12—C11117.1 (8)
O3—Cl1—O1111.0 (4)C13—C12—H12121.4
C1—N1—C5119.5 (6)C11—C12—H12121.4
C1—N1—Fe1125.7 (4)C12—C13—C14119.8 (8)
C5—N1—Fe1114.8 (4)C12—C13—H13120.1
C6—N2—C10119.3 (5)C14—C13—H13120.1
C6—N2—Fe1117.1 (4)C13—C14—C15120.2 (7)
C10—N2—Fe1123.5 (4)C13—C14—H14119.9
C11—N3—C15117.8 (6)C15—C14—H14119.9
C11—N3—Fe1127.5 (5)N3—C15—C14120.2 (7)
C15—N3—Fe1114.6 (4)N3—C15—C16116.3 (6)
C16—N4—C20119.2 (6)C14—C15—C16123.5 (6)
C16—N4—Fe1117.6 (4)N4—C16—C17121.7 (7)
C20—N4—Fe1123.0 (5)N4—C16—C15115.4 (5)
N1—C1—C2122.8 (7)C17—C16—C15122.9 (7)
N1—C1—H1118.6C18—C17—C16119.2 (7)
C2—C1—H1118.6C18—C17—H17120.4
C1—C2—C3117.5 (7)C16—C17—H17120.4
C1—C2—H2121.3C19—C18—C17120.0 (7)
C3—C2—H2121.3C19—C18—H18120.0
C4—C3—C2119.7 (7)C17—C18—H18120.0
C4—C3—H3120.1C18—C19—C20118.4 (8)
C2—C3—H3120.1C18—C19—H19120.8
C3—C4—C5120.1 (7)C20—C19—H19120.8
C3—C4—H4119.9N4—C20—C19121.6 (8)
C5—C4—H4119.9N4—C20—H20119.2
N1—C5—C4120.3 (6)C19—C20—H20119.2
N1—C5—C6116.1 (5)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the N2,C6–C10 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O20.932.523.140 (11)124
C7—H7···O3i0.932.553.239 (9)131
C8—H8···O2ii0.932.303.152 (9)152
C13—H13···O2iii0.932.543.423 (10)158
C18—H18···O4iv0.932.513.387 (10)158
C10—H10···Cl30.932.713.308 (7)122
C20—H20···Cl20.932.793.382 (7)123
C11—H11···Cg40.932.903.705 (8)146
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+3/2, y+1, z1/2; (iii) x+1, y, z; (iv) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[FeCl2(C10H8N2)2]ClO4
Mr538.57
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)10.891 (2), 11.522 (2), 16.990 (3)
V3)2132.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.34 × 0.29 × 0.24
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.702, 0.775
No. of measured, independent and
observed [I > 2σ(I)] reflections
5914, 3534, 2810
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.125, 1.08
No. of reflections3534
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.42
Absolute structureFlack (1983), 1419 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the N2,C6–C10 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O20.932.523.140 (11)124
C7—H7···O3i0.932.553.239 (9)131
C8—H8···O2ii0.932.303.152 (9)152
C13—H13···O2iii0.932.543.423 (10)158
C18—H18···O4iv0.932.513.387 (10)158
C10—H10···Cl30.932.713.308 (7)122
C20—H20···Cl20.932.793.382 (7)123
C11—H11···Cg40.932.903.705 (8)146
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+3/2, y+1, z1/2; (iii) x+1, y, z; (iv) x+3/2, y+1, z+1/2.
 

Acknowledgements

The author gratefully acknowledges financial support from the Natural Science Foundation of the Education Department of Shaanxi Provincial Government (09 J K844) and is grateful for support provided by the key industry problem plan of Yulin (gygg200807) and the special research projects of Yulin University (08YK17).

References

First citationAmani, V., Safari, N. & Khavasi, H. R. (2007). Polyhedron, 26, 4257–4262.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C. (1989). Adv. Inorg. Chem. 34, 1–63.  CrossRef CAS Google Scholar
First citationConstable, E. C. & Steel, P. J. (1989). Coord. Chem. Rev. 93, 205–223.  CAS Google Scholar
First citationFiggis, B. N., Reynolds, P. A. & Lehner, N. (1983). Acta Cryst. B39, 711–717.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteel, P. J. (1990). Coord. Chem. Rev. 106, 227–265.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds