organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-Benzyl 3-(4-hy­dr­oxy­phen­yl)-2-(trityl­amino)­propano­ate

aCollege of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108 Fujian, People's Republic of China
*Correspondence e-mail: mei_tcm@163.com

(Received 24 April 2011; accepted 8 May 2011; online 14 May 2011)

The title compound, C35H31NO3, was obtained by the reaction of (S)-benzyl 2-amino-3-(4-hy­droxy­phen­yl)propano­ate and (chloro­methane­tri­yl)tribenzene. The enanti­omer has been assigned by reference to an unchanging chiral centre in the synthetic procedure. In the crystal, mol­ecules are linked into chains running along the a axis by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the synthesis and the physiological role of isodityrosine, see: Skaff et al. (2005[Skaff, O., Jolliffe, K. A. & Hutton, C. A. (2005). J. Org. Chem. 70, 7353-7363.]). For the structure of the NH2 analogue of the title compound, (S)-benzyl 2-amino-3-(4-hydroxyphenyl)propanoate, see: Luo et al. (2009[Luo, S.-N., Chen, L., Gao, Y.-X., Xu, P.-X. & Zhao, Y.-F. (2009). Acta Cryst. E65, o270.]).

[Scheme 1]

Experimental

Crystal data
  • C35H31NO3

  • Mr = 513.61

  • Orthorhombic, P 21 21 21

  • a = 9.1188 (18) Å

  • b = 15.774 (3) Å

  • c = 19.393 (4) Å

  • V = 2789.4 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.32 × 0.25 × 0.11 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.976, Tmax = 0.991

  • 24111 measured reflections

  • 3097 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.093

  • S = 1.09

  • 3097 reflections

  • 356 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.82 1.95 2.772 (3) 175
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Coporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important intermediate in the synthesis of isodityrosine, which occurs in plant cell wall proteins and presumably conveys a strengthening and/or defensive role to the proteins (Skaff et al., 2005). The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles in the compound are comparable to those reported for a similar compound (Luo et al., 2009). The dihedral angle between the C18-phenyl and C24-phenyl, C18-phenyl and C30-phenyl, C24-phenyl and C30-phenyl planes are 80.2 (1), 61.9 (1) and 65.4 (1)°, respectively. The crystal packing is stabilized by strong O—H···O intermolecular hydrogen-bonding interactions involving the hydroxyl group which link the molecules into a chain running along the a axis (Table 1).

Related literature top

For the synthesis and the physiological role of isodityrosine, see: Skaff et al. (2005). For the structure of the NH2 analogue of the title compound, see: Luo et al. (2009).

Experimental top

To a solution of (S)-benzyl 2-amino-3-(4-hydroxyphenyl)propanoate (0.68 g, 2.5 mmol), and (chloromethanetriyl)tribenzene (0.70 g, 2.5 mmol) in acetonitrile (8 ml) at 273 K was added dropwise triethylamine (0.40 g, 4 mmol). The cooling bath was removed and the mixture warmed to ambient temperature for 2 h. The solvent was removed and the crude product was purified by column chromatography (petroleum ether-ethyl acetate, 4:1) to give the title compound (I) as a white solid in 85% yield. Single crystals of (I) were obtained by slow evaporation of a petroleum ether/ethyl acetate solution (6:1 v/v).

Refinement top

The NH hydrogen atom was located in a difference Fourier map and freely refined. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.97 Å (methylene), 0.98 Å (methine), O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration of (I) was assigned assuming that the absolute configuration of the starting materials was retained during the synthesis.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
(S)-Benzyl 3-(4-hydroxyphenyl)-2-[(triphenylmethyl)amino]propanoate top
Crystal data top
C35H31NO3F(000) = 1088
Mr = 513.61Dx = 1.223 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1875 reflections
a = 9.1188 (18) Åθ = 3.3–27.5°
b = 15.774 (3) ŵ = 0.08 mm1
c = 19.393 (4) ÅT = 293 K
V = 2789.4 (10) Å3Plate, colourless
Z = 40.32 × 0.25 × 0.11 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3097 independent reflections
Radiation source: sealed tube2200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 911
Tmin = 0.976, Tmax = 0.991k = 1919
24111 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
3097 reflections(Δ/σ)max < 0.001
356 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C35H31NO3V = 2789.4 (10) Å3
Mr = 513.61Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1188 (18) ŵ = 0.08 mm1
b = 15.774 (3) ÅT = 293 K
c = 19.393 (4) Å0.32 × 0.25 × 0.11 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3097 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2200 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.991Rint = 0.053
24111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.10 e Å3
3097 reflectionsΔρmin = 0.14 e Å3
356 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8415 (2)0.39107 (11)0.11380 (10)0.0635 (5)
O20.88195 (19)0.52988 (11)0.09751 (11)0.0642 (5)
O30.5931 (3)0.20753 (13)0.11146 (12)0.0932 (7)
H3A0.51620.18060.11050.140*
N10.5558 (2)0.42813 (13)0.16568 (11)0.0470 (5)
H1A0.580 (3)0.3773 (16)0.1508 (14)0.055 (7)*
C10.7971 (3)0.46331 (15)0.11394 (14)0.0523 (6)
C20.6402 (3)0.48944 (14)0.12606 (13)0.0476 (6)
H2A0.64010.54340.15110.057*
C30.5679 (3)0.50374 (15)0.05462 (14)0.0587 (7)
H3B0.61940.54900.03100.070*
H3C0.46740.52190.06140.070*
C40.5684 (3)0.42608 (16)0.00941 (13)0.0553 (6)
C50.6842 (3)0.41039 (18)0.03513 (14)0.0650 (8)
H5A0.75930.45010.03840.078*
C60.6923 (3)0.33742 (18)0.07511 (15)0.0680 (8)
H6A0.77190.32830.10410.082*
C70.5796 (3)0.27833 (18)0.07110 (16)0.0650 (8)
C80.4624 (3)0.29330 (18)0.02834 (16)0.0668 (8)
H8A0.38590.25440.02630.080*
C90.4573 (3)0.36602 (17)0.01186 (16)0.0628 (7)
H9A0.37780.37470.04110.075*
C101.0349 (3)0.5109 (2)0.0818 (2)0.0829 (10)
H10A1.08410.49030.12290.099*
H10B1.04020.46710.04680.099*
C111.1086 (3)0.58942 (19)0.05648 (16)0.0632 (7)
C121.0872 (3)0.6677 (2)0.08728 (17)0.0738 (8)
H12A1.02090.67260.12350.089*
C131.1629 (4)0.7384 (2)0.06509 (19)0.0823 (10)
H13A1.14610.79080.08560.099*
C141.2625 (4)0.7310 (3)0.0128 (2)0.0860 (10)
H14A1.31610.77810.00110.103*
C151.2837 (4)0.6554 (2)0.01881 (19)0.0864 (10)
H15A1.35040.65110.05490.104*
C161.2062 (3)0.5841 (2)0.00253 (17)0.0767 (9)
H16A1.22040.53260.01980.092*
C170.5633 (2)0.43267 (14)0.24205 (12)0.0435 (5)
C180.4822 (3)0.35431 (13)0.26981 (14)0.0460 (6)
C190.3684 (3)0.31829 (14)0.23272 (15)0.0537 (7)
H19A0.34520.33970.18940.064*
C200.2885 (3)0.25094 (14)0.25893 (17)0.0605 (8)
H20A0.21280.22730.23310.073*
C210.3209 (3)0.21891 (16)0.32313 (18)0.0653 (8)
H21A0.26660.17420.34100.078*
C220.4340 (3)0.25330 (16)0.36070 (17)0.0675 (8)
H22A0.45690.23130.40390.081*
C230.5139 (3)0.32054 (16)0.33443 (15)0.0576 (7)
H23A0.58990.34350.36040.069*
C240.4747 (2)0.50967 (13)0.26782 (14)0.0453 (6)
C250.3816 (3)0.55510 (14)0.22560 (15)0.0538 (6)
H25A0.37300.54030.17940.065*
C260.3005 (3)0.62277 (16)0.25129 (18)0.0659 (8)
H26A0.23900.65280.22190.079*
C270.3097 (3)0.64575 (17)0.31902 (19)0.0709 (9)
H27A0.25550.69130.33570.085*
C280.4008 (3)0.60035 (17)0.36234 (17)0.0719 (9)
H28A0.40740.61500.40870.086*
C290.4819 (3)0.53335 (16)0.33723 (16)0.0612 (7)
H29A0.54260.50330.36700.073*
C300.7246 (2)0.43698 (14)0.26576 (13)0.0465 (6)
C310.7951 (3)0.51343 (16)0.27810 (15)0.0604 (7)
H31A0.74140.56350.27660.072*
C320.9434 (3)0.5167 (2)0.29257 (18)0.0796 (9)
H32A0.98750.56870.30140.095*
C331.0252 (3)0.4450 (2)0.29411 (18)0.0837 (10)
H33A1.12520.44770.30320.100*
C340.9585 (3)0.3682 (2)0.28198 (18)0.0754 (9)
H34A1.01360.31860.28330.090*
C350.8094 (3)0.36430 (17)0.26780 (15)0.0586 (7)
H35A0.76580.31200.25950.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0675 (12)0.0552 (10)0.0677 (14)0.0113 (9)0.0054 (10)0.0029 (9)
O20.0479 (10)0.0620 (10)0.0828 (15)0.0012 (9)0.0103 (9)0.0059 (10)
O30.0862 (15)0.0956 (14)0.0977 (18)0.0321 (12)0.0211 (13)0.0388 (13)
N10.0494 (11)0.0434 (10)0.0481 (13)0.0039 (10)0.0001 (10)0.0030 (10)
C10.0549 (14)0.0506 (14)0.0514 (17)0.0020 (12)0.0001 (13)0.0030 (12)
C20.0488 (13)0.0433 (11)0.0509 (16)0.0012 (11)0.0009 (12)0.0007 (11)
C30.0599 (16)0.0560 (14)0.0602 (18)0.0017 (13)0.0048 (14)0.0093 (13)
C40.0582 (15)0.0619 (15)0.0457 (15)0.0090 (14)0.0059 (13)0.0086 (13)
C50.0701 (19)0.0780 (18)0.0470 (17)0.0272 (15)0.0035 (14)0.0034 (14)
C60.0656 (18)0.0870 (19)0.0514 (18)0.0230 (15)0.0126 (15)0.0098 (15)
C70.0656 (18)0.0720 (17)0.057 (2)0.0152 (15)0.0003 (16)0.0074 (15)
C80.0600 (17)0.0761 (18)0.064 (2)0.0204 (15)0.0011 (16)0.0005 (15)
C90.0527 (15)0.0773 (17)0.0584 (19)0.0086 (15)0.0012 (14)0.0024 (15)
C100.0475 (14)0.088 (2)0.114 (3)0.0076 (16)0.0153 (18)0.015 (2)
C110.0413 (14)0.0848 (19)0.0636 (19)0.0012 (14)0.0009 (14)0.0096 (16)
C120.0581 (17)0.100 (2)0.063 (2)0.0097 (17)0.0019 (16)0.0024 (17)
C130.074 (2)0.095 (2)0.079 (3)0.0201 (18)0.012 (2)0.0012 (19)
C140.070 (2)0.108 (3)0.079 (3)0.023 (2)0.006 (2)0.020 (2)
C150.0677 (19)0.121 (3)0.071 (2)0.005 (2)0.0142 (18)0.027 (2)
C160.0615 (17)0.095 (2)0.074 (2)0.0083 (18)0.0020 (17)0.0060 (18)
C170.0428 (12)0.0409 (11)0.0468 (15)0.0003 (11)0.0020 (11)0.0019 (11)
C180.0412 (12)0.0405 (12)0.0561 (17)0.0037 (10)0.0022 (12)0.0015 (12)
C190.0519 (15)0.0465 (12)0.0629 (18)0.0011 (12)0.0019 (14)0.0002 (13)
C200.0518 (15)0.0443 (13)0.085 (2)0.0030 (12)0.0055 (16)0.0022 (14)
C210.0544 (16)0.0441 (13)0.097 (3)0.0032 (13)0.0180 (17)0.0079 (15)
C220.0648 (18)0.0657 (16)0.072 (2)0.0100 (15)0.0140 (17)0.0205 (15)
C230.0525 (15)0.0582 (14)0.0620 (19)0.0007 (13)0.0019 (14)0.0059 (14)
C240.0403 (12)0.0420 (12)0.0537 (16)0.0010 (10)0.0005 (12)0.0016 (11)
C250.0480 (14)0.0526 (14)0.0607 (17)0.0049 (12)0.0015 (13)0.0011 (13)
C260.0576 (16)0.0586 (15)0.082 (2)0.0164 (13)0.0025 (16)0.0059 (15)
C270.0674 (19)0.0568 (16)0.089 (3)0.0153 (15)0.0183 (18)0.0065 (16)
C280.086 (2)0.0665 (16)0.063 (2)0.0143 (17)0.0089 (18)0.0134 (15)
C290.0652 (17)0.0611 (14)0.0572 (19)0.0122 (13)0.0035 (14)0.0084 (13)
C300.0421 (12)0.0490 (12)0.0483 (15)0.0031 (12)0.0008 (11)0.0003 (12)
C310.0500 (14)0.0579 (15)0.073 (2)0.0059 (13)0.0068 (14)0.0077 (14)
C320.0519 (17)0.087 (2)0.100 (3)0.0137 (17)0.0099 (18)0.0042 (18)
C330.0400 (14)0.120 (3)0.091 (3)0.0061 (19)0.0043 (16)0.009 (2)
C340.0491 (16)0.094 (2)0.083 (2)0.0195 (17)0.0048 (17)0.0150 (18)
C350.0493 (14)0.0590 (14)0.0674 (19)0.0051 (13)0.0006 (14)0.0028 (14)
Geometric parameters (Å, º) top
O1—C11.209 (3)C16—H16A0.9300
O2—C11.342 (3)C17—C181.538 (3)
O2—C101.459 (3)C17—C301.542 (3)
O3—C71.369 (3)C17—C241.542 (3)
O3—H3A0.8200C18—C191.385 (3)
N1—C21.455 (3)C18—C231.392 (4)
N1—C171.484 (3)C19—C201.385 (3)
N1—H1A0.88 (2)C19—H19A0.9300
C1—C21.508 (3)C20—C211.376 (4)
C2—C31.551 (4)C20—H20A0.9300
C2—H2A0.9800C21—C221.374 (4)
C3—C41.506 (4)C21—H21A0.9300
C3—H3B0.9700C22—C231.384 (4)
C3—H3C0.9700C22—H22A0.9300
C4—C51.387 (4)C23—H23A0.9300
C4—C91.388 (4)C24—C251.380 (3)
C5—C61.390 (4)C24—C291.398 (4)
C5—H5A0.9300C25—C261.391 (3)
C6—C71.389 (4)C25—H25A0.9300
C6—H6A0.9300C26—C271.365 (4)
C7—C81.373 (4)C26—H26A0.9300
C8—C91.388 (4)C27—C281.381 (4)
C8—H8A0.9300C27—H27A0.9300
C9—H9A0.9300C28—C291.379 (4)
C10—C111.492 (4)C28—H28A0.9300
C10—H10A0.9700C29—H29A0.9300
C10—H10B0.9700C30—C351.383 (3)
C11—C161.376 (4)C30—C311.387 (3)
C11—C121.385 (4)C31—C321.382 (4)
C12—C131.381 (4)C31—H31A0.9300
C12—H12A0.9300C32—C331.355 (4)
C13—C141.366 (5)C32—H32A0.9300
C13—H13A0.9300C33—C341.376 (4)
C14—C151.355 (5)C33—H33A0.9300
C14—H14A0.9300C34—C351.388 (4)
C15—C161.391 (4)C34—H34A0.9300
C15—H15A0.9300C35—H35A0.9300
C1—O2—C10116.1 (2)C15—C16—H16A119.8
C7—O3—H3A109.5N1—C17—C18106.75 (19)
C2—N1—C17118.05 (19)N1—C17—C30110.11 (19)
C2—N1—H1A107.5 (17)C18—C17—C30112.93 (19)
C17—N1—H1A111.0 (17)N1—C17—C24109.69 (19)
O1—C1—O2123.0 (2)C18—C17—C24105.51 (17)
O1—C1—C2125.1 (2)C30—C17—C24111.62 (19)
O2—C1—C2111.7 (2)C19—C18—C23117.8 (2)
N1—C2—C1113.7 (2)C19—C18—C17120.6 (2)
N1—C2—C3110.09 (19)C23—C18—C17121.5 (2)
C1—C2—C3107.7 (2)C18—C19—C20121.2 (3)
N1—C2—H2A108.4C18—C19—H19A119.4
C1—C2—H2A108.4C20—C19—H19A119.4
C3—C2—H2A108.4C21—C20—C19120.0 (3)
C4—C3—C2113.6 (2)C21—C20—H20A120.0
C4—C3—H3B108.8C19—C20—H20A120.0
C2—C3—H3B108.8C22—C21—C20119.8 (3)
C4—C3—H3C108.8C22—C21—H21A120.1
C2—C3—H3C108.8C20—C21—H21A120.1
H3B—C3—H3C107.7C21—C22—C23120.1 (3)
C5—C4—C9117.1 (2)C21—C22—H22A119.9
C5—C4—C3120.6 (2)C23—C22—H22A119.9
C9—C4—C3122.2 (3)C22—C23—C18121.0 (3)
C4—C5—C6122.4 (3)C22—C23—H23A119.5
C4—C5—H5A118.8C18—C23—H23A119.5
C6—C5—H5A118.8C25—C24—C29117.5 (2)
C7—C6—C5119.0 (3)C25—C24—C17122.6 (2)
C7—C6—H6A120.5C29—C24—C17119.8 (2)
C5—C6—H6A120.5C24—C25—C26120.9 (3)
O3—C7—C8123.7 (3)C24—C25—H25A119.6
O3—C7—C6116.7 (3)C26—C25—H25A119.6
C8—C7—C6119.6 (3)C27—C26—C25121.0 (3)
C7—C8—C9120.5 (3)C27—C26—H26A119.5
C7—C8—H8A119.7C25—C26—H26A119.5
C9—C8—H8A119.7C26—C27—C28119.0 (3)
C8—C9—C4121.4 (3)C26—C27—H27A120.5
C8—C9—H9A119.3C28—C27—H27A120.5
C4—C9—H9A119.3C27—C28—C29120.3 (3)
O2—C10—C11109.2 (2)C27—C28—H28A119.8
O2—C10—H10A109.8C29—C28—H28A119.8
C11—C10—H10A109.8C28—C29—C24121.3 (3)
O2—C10—H10B109.8C28—C29—H29A119.4
C11—C10—H10B109.8C24—C29—H29A119.4
H10A—C10—H10B108.3C35—C30—C31117.2 (2)
C16—C11—C12118.2 (3)C35—C30—C17120.3 (2)
C16—C11—C10119.4 (3)C31—C30—C17122.1 (2)
C12—C11—C10122.3 (3)C32—C31—C30121.4 (3)
C13—C12—C11121.0 (3)C32—C31—H31A119.3
C13—C12—H12A119.5C30—C31—H31A119.3
C11—C12—H12A119.5C33—C32—C31120.8 (3)
C14—C13—C12119.6 (3)C33—C32—H32A119.6
C14—C13—H13A120.2C31—C32—H32A119.6
C12—C13—H13A120.2C32—C33—C34119.2 (3)
C15—C14—C13120.4 (3)C32—C33—H33A120.4
C15—C14—H14A119.8C34—C33—H33A120.4
C13—C14—H14A119.8C33—C34—C35120.4 (3)
C14—C15—C16120.3 (3)C33—C34—H34A119.8
C14—C15—H15A119.9C35—C34—H34A119.8
C16—C15—H15A119.9C30—C35—C34121.1 (3)
C11—C16—C15120.4 (3)C30—C35—H35A119.5
C11—C16—H16A119.8C34—C35—H35A119.5
C10—O2—C1—O12.4 (4)N1—C17—C18—C23154.8 (2)
C10—O2—C1—C2177.4 (3)C30—C17—C18—C2333.7 (3)
C17—N1—C2—C185.4 (3)C24—C17—C18—C2388.5 (3)
C17—N1—C2—C3153.6 (2)C23—C18—C19—C200.1 (4)
O1—C1—C2—N124.8 (4)C17—C18—C19—C20176.0 (2)
O2—C1—C2—N1160.3 (2)C18—C19—C20—C210.4 (4)
O1—C1—C2—C397.5 (3)C19—C20—C21—C220.8 (4)
O2—C1—C2—C377.4 (2)C20—C21—C22—C230.8 (4)
N1—C2—C3—C464.6 (3)C21—C22—C23—C180.3 (4)
C1—C2—C3—C459.9 (3)C19—C18—C23—C220.1 (4)
C2—C3—C4—C590.2 (3)C17—C18—C23—C22175.9 (2)
C2—C3—C4—C987.6 (3)N1—C17—C24—C2511.5 (3)
C9—C4—C5—C61.1 (4)C18—C17—C24—C25103.2 (2)
C3—C4—C5—C6176.7 (3)C30—C17—C24—C25133.8 (2)
C4—C5—C6—C70.8 (5)N1—C17—C24—C29171.5 (2)
C5—C6—C7—O3179.9 (3)C18—C17—C24—C2973.8 (3)
C5—C6—C7—C80.5 (5)C30—C17—C24—C2949.2 (3)
O3—C7—C8—C9179.1 (3)C29—C24—C25—C261.1 (4)
C6—C7—C8—C91.4 (5)C17—C24—C25—C26178.2 (2)
C7—C8—C9—C41.0 (5)C24—C25—C26—C270.5 (4)
C5—C4—C9—C80.3 (4)C25—C26—C27—C280.3 (5)
C3—C4—C9—C8177.6 (3)C26—C27—C28—C290.5 (5)
C1—O2—C10—C11173.2 (3)C27—C28—C29—C240.1 (4)
O2—C10—C11—C16139.8 (3)C25—C24—C29—C280.9 (4)
O2—C10—C11—C1243.0 (4)C17—C24—C29—C28178.1 (2)
C16—C11—C12—C130.7 (5)N1—C17—C30—C3578.7 (3)
C10—C11—C12—C13176.5 (3)C18—C17—C30—C3540.5 (3)
C11—C12—C13—C141.3 (5)C24—C17—C30—C35159.2 (2)
C12—C13—C14—C152.3 (5)N1—C17—C30—C3193.8 (3)
C13—C14—C15—C161.3 (5)C18—C17—C30—C31147.0 (2)
C12—C11—C16—C151.8 (5)C24—C17—C30—C3128.3 (3)
C10—C11—C16—C15175.6 (3)C35—C30—C31—C320.7 (4)
C14—C15—C16—C110.8 (5)C17—C30—C31—C32173.4 (3)
C2—N1—C17—C18172.46 (18)C30—C31—C32—C331.0 (5)
C2—N1—C17—C3049.5 (3)C31—C32—C33—C340.9 (5)
C2—N1—C17—C2473.7 (2)C32—C33—C34—C350.5 (5)
N1—C17—C18—C1929.2 (3)C31—C30—C35—C340.3 (4)
C30—C17—C18—C19150.4 (2)C17—C30—C35—C34173.2 (3)
C24—C17—C18—C1987.4 (3)C33—C34—C35—C300.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.821.952.772 (3)175
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC35H31NO3
Mr513.61
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.1188 (18), 15.774 (3), 19.393 (4)
V3)2789.4 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.25 × 0.11
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.976, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
24111, 3097, 2200
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.093, 1.09
No. of reflections3097
No. of parameters356
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.10, 0.14

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.821.952.772 (3)175
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

We gratefully acknowledge financial support by the Fujian Provincial Department of Education project (JA09130) and the Fujian Provincial Health Department Special Project (wzzsj0901).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLuo, S.-N., Chen, L., Gao, Y.-X., Xu, P.-X. & Zhao, Y.-F. (2009). Acta Cryst. E65, o270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Coporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkaff, O., Jolliffe, K. A. & Hutton, C. A. (2005). J. Org. Chem. 70, 7353–7363.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds