metal-organic compounds
trans-Dichloridobis[(6-nicotinoyl-2-pyridyl-κN6)(3-pyridyl-κN)methanone]copper(II)
aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: qiang-hong@163.com
In the title complex, [CuCl2(C17H11N3O2)2], the CuII ion is located on an inversion center. It exhibits a distorted octahedral coordination geometry defined by two chloride anions at trans sites and four 3-pyridyl N atoms at equatorial sites from two (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone ligands. The (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone ligand can be viewed as having two pendant 3-pyridyl rings attached to a central pyridyl skeleton via separate carbonyl bridges, acting in a κ2N,N′-chelating mode with its 3-pyridyl N atoms bound to the CuII ion. The pendant 3-pyridyl rings make a dihedral angle of 80.76 (5)°. In the crystal, molecules are linked through intermolecular C—H⋯π and C—H⋯O interactions, forming a three-dimentional framework.
Related literature
For transition metal complexes with di-pyrid-2-yl ketone, see: Papaefstathiou & Perlepes (2002); Efthymiou et al. (2006). For the of an analogous CuII complex, see: Wan et al. (2008). For C—H⋯π interactions, see: Umezawa et al. (1998).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811017685/zq2102sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811017685/zq2102Isup2.hkl
The (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone ligand was obtained following the reaction procedure as reported in literature (Wan et al., 2008). Reaction of (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone (29 mg, 0.1 mmol) with CuCl2 (7 mg, 0.05 mmol) in acetonitrile formed trans-[Cu(C17H11N3O2)2Cl2] as a blue solution, which was left stand in air for four days to obtain block-like crystals (yield 13.1mg, 61%).
The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker 2007); cell
APEX2 and SAINT (Bruker 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[CuCl2(C17H11N3O2)2] | Z = 4 |
Mr = 713.02 | F(000) = 1452 |
Monoclinic, C2/c | Dx = 1.494 Mg m−3 |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 18.728 (3) Å | µ = 0.91 mm−1 |
b = 11.8971 (18) Å | T = 293 K |
c = 16.695 (3) Å | Block, blue |
β = 121.522 (3)° | 0.40 × 0.30 × 0.30 mm |
V = 3170.9 (8) Å3 |
Bruker APEXII CCD area-detector diffractometer | 3937 independent reflections |
Radiation source: fine-focus sealed tube | 3361 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 28.3°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −24→24 |
Tmin = 0.848, Tmax = 1.000 | k = −15→15 |
11215 measured reflections | l = −19→22 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0423P)2 + 2.1803P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3937 reflections | Δρmax = 0.25 e Å−3 |
215 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00079 (17) |
[CuCl2(C17H11N3O2)2] | V = 3170.9 (8) Å3 |
Mr = 713.02 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 18.728 (3) Å | µ = 0.91 mm−1 |
b = 11.8971 (18) Å | T = 293 K |
c = 16.695 (3) Å | 0.40 × 0.30 × 0.30 mm |
β = 121.522 (3)° |
Bruker APEXII CCD area-detector diffractometer | 3937 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 3361 reflections with I > 2σ(I) |
Tmin = 0.848, Tmax = 1.000 | Rint = 0.020 |
11215 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.25 e Å−3 |
3937 reflections | Δρmin = −0.21 e Å−3 |
215 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.7500 | 0.2500 | 0.5000 | 0.03142 (9) | |
Cl1 | 0.69747 (3) | 0.11938 (3) | 0.38011 (3) | 0.03905 (11) | |
O2 | 0.77486 (11) | 0.74717 (10) | 0.35782 (15) | 0.0670 (5) | |
C12 | 0.73237 (11) | 0.67642 (13) | 0.36615 (13) | 0.0423 (4) | |
C1 | 0.45389 (14) | 0.2790 (2) | 0.33217 (19) | 0.0666 (6) | |
H1A | 0.4120 | 0.2267 | 0.2971 | 0.080* | |
C2 | 0.43565 (12) | 0.39132 (18) | 0.32729 (16) | 0.0588 (5) | |
H2A | 0.3811 | 0.4166 | 0.2878 | 0.071* | |
C3 | 0.49909 (10) | 0.46676 (15) | 0.38157 (12) | 0.0404 (4) | |
C4 | 0.57867 (10) | 0.42349 (14) | 0.44252 (12) | 0.0386 (3) | |
H4A | 0.6207 | 0.4729 | 0.4830 | 0.046* | |
N1 | 0.59789 (9) | 0.31499 (12) | 0.44589 (11) | 0.0464 (3) | |
C5 | 0.53567 (13) | 0.24547 (15) | 0.39018 (18) | 0.0571 (5) | |
H5A | 0.5483 | 0.1698 | 0.3905 | 0.069* | |
C6 | 0.47982 (11) | 0.58898 (16) | 0.37172 (13) | 0.0453 (4) | |
O1 | 0.41059 (9) | 0.62239 (13) | 0.35012 (13) | 0.0676 (4) | |
C7 | 0.54433 (11) | 0.67304 (14) | 0.38234 (13) | 0.0432 (4) | |
C8 | 0.53320 (14) | 0.78598 (18) | 0.39550 (17) | 0.0602 (5) | |
H8A | 0.4891 | 0.8084 | 0.4023 | 0.072* | |
C9 | 0.58907 (15) | 0.86377 (16) | 0.39825 (18) | 0.0657 (6) | |
H9A | 0.5826 | 0.9397 | 0.4062 | 0.079* | |
C10 | 0.65408 (13) | 0.82833 (15) | 0.38923 (14) | 0.0520 (5) | |
H10A | 0.6924 | 0.8795 | 0.3908 | 0.062* | |
C11 | 0.66154 (11) | 0.71359 (13) | 0.37759 (12) | 0.0394 (4) | |
N2 | 0.60753 (9) | 0.63678 (11) | 0.37358 (10) | 0.0378 (3) | |
N3 | 0.76337 (8) | 0.36519 (10) | 0.41813 (9) | 0.0300 (3) | |
C14 | 0.74131 (10) | 0.47290 (12) | 0.41611 (11) | 0.0314 (3) | |
H14A | 0.7177 | 0.4935 | 0.4510 | 0.038* | |
C15 | 0.75214 (10) | 0.55503 (12) | 0.36437 (11) | 0.0338 (3) | |
C16 | 0.78887 (11) | 0.52392 (15) | 0.31374 (12) | 0.0419 (4) | |
H16A | 0.7983 | 0.5770 | 0.2794 | 0.050* | |
C17 | 0.81099 (11) | 0.41376 (15) | 0.31523 (13) | 0.0431 (4) | |
H17A | 0.8353 | 0.3914 | 0.2815 | 0.052* | |
C13 | 0.79703 (10) | 0.33587 (14) | 0.36711 (11) | 0.0368 (3) | |
H13A | 0.8113 | 0.2611 | 0.3667 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.04854 (17) | 0.01975 (13) | 0.03224 (15) | −0.00100 (10) | 0.02548 (13) | 0.00062 (9) |
Cl1 | 0.0554 (2) | 0.02824 (18) | 0.0347 (2) | −0.00295 (15) | 0.02439 (18) | −0.00262 (14) |
O2 | 0.0755 (10) | 0.0343 (7) | 0.1049 (14) | −0.0040 (6) | 0.0566 (10) | 0.0174 (7) |
C12 | 0.0487 (9) | 0.0296 (7) | 0.0459 (9) | −0.0008 (7) | 0.0230 (8) | 0.0109 (7) |
C1 | 0.0446 (11) | 0.0549 (12) | 0.0815 (16) | −0.0138 (9) | 0.0198 (11) | −0.0136 (11) |
C2 | 0.0344 (9) | 0.0595 (12) | 0.0661 (13) | 0.0007 (8) | 0.0149 (9) | −0.0019 (10) |
C3 | 0.0366 (8) | 0.0426 (9) | 0.0436 (9) | 0.0033 (7) | 0.0221 (7) | 0.0027 (7) |
C4 | 0.0371 (8) | 0.0365 (8) | 0.0390 (8) | −0.0007 (6) | 0.0177 (7) | 0.0016 (6) |
N1 | 0.0412 (8) | 0.0358 (7) | 0.0534 (9) | 0.0007 (6) | 0.0186 (7) | 0.0041 (6) |
C5 | 0.0498 (11) | 0.0376 (10) | 0.0752 (15) | −0.0054 (8) | 0.0266 (11) | −0.0042 (9) |
C6 | 0.0433 (9) | 0.0466 (9) | 0.0468 (10) | 0.0112 (8) | 0.0242 (8) | 0.0031 (8) |
O1 | 0.0517 (8) | 0.0637 (9) | 0.0945 (12) | 0.0184 (7) | 0.0432 (9) | 0.0034 (8) |
C7 | 0.0444 (9) | 0.0361 (8) | 0.0428 (9) | 0.0093 (7) | 0.0185 (8) | 0.0022 (7) |
C8 | 0.0609 (13) | 0.0440 (10) | 0.0716 (14) | 0.0169 (9) | 0.0318 (11) | −0.0033 (10) |
C9 | 0.0750 (15) | 0.0305 (9) | 0.0796 (15) | 0.0102 (9) | 0.0320 (13) | −0.0070 (9) |
C10 | 0.0630 (12) | 0.0273 (8) | 0.0548 (11) | −0.0004 (8) | 0.0233 (10) | 0.0011 (7) |
C11 | 0.0489 (9) | 0.0264 (7) | 0.0365 (8) | 0.0033 (6) | 0.0178 (7) | 0.0052 (6) |
N2 | 0.0430 (7) | 0.0279 (6) | 0.0397 (7) | 0.0055 (5) | 0.0196 (6) | 0.0041 (5) |
N3 | 0.0373 (7) | 0.0248 (5) | 0.0326 (6) | 0.0011 (5) | 0.0214 (6) | 0.0023 (5) |
C14 | 0.0374 (7) | 0.0264 (7) | 0.0343 (7) | 0.0021 (6) | 0.0213 (6) | 0.0036 (6) |
C15 | 0.0366 (8) | 0.0284 (7) | 0.0352 (8) | −0.0024 (6) | 0.0179 (6) | 0.0052 (6) |
C16 | 0.0462 (9) | 0.0437 (9) | 0.0407 (9) | −0.0072 (7) | 0.0262 (8) | 0.0073 (7) |
C17 | 0.0491 (10) | 0.0495 (9) | 0.0438 (9) | −0.0021 (8) | 0.0335 (8) | −0.0011 (7) |
C13 | 0.0428 (9) | 0.0332 (7) | 0.0394 (8) | 0.0019 (6) | 0.0251 (7) | −0.0011 (6) |
Cu1—N3 | 2.0412 (12) | C7—N2 | 1.338 (2) |
Cu1—N3i | 2.0412 (12) | C7—C8 | 1.395 (3) |
Cu1—Cl1 | 2.3087 (4) | C8—C9 | 1.380 (3) |
Cu1—Cl1i | 2.3087 (4) | C8—H8A | 0.9300 |
O2—C12 | 1.215 (2) | C9—C10 | 1.369 (3) |
C12—C15 | 1.495 (2) | C9—H9A | 0.9300 |
C12—C11 | 1.502 (3) | C10—C11 | 1.396 (2) |
C1—C2 | 1.371 (3) | C10—H10A | 0.9300 |
C1—C5 | 1.376 (3) | C11—N2 | 1.339 (2) |
C1—H1A | 0.9300 | N3—C14 | 1.3415 (18) |
C2—C3 | 1.383 (3) | N3—C13 | 1.3438 (19) |
C2—H2A | 0.9300 | C14—C15 | 1.3875 (19) |
C3—C4 | 1.391 (2) | C14—H14A | 0.9300 |
C3—C6 | 1.487 (2) | C15—C16 | 1.390 (2) |
C4—N1 | 1.333 (2) | C16—C17 | 1.371 (2) |
C4—H4A | 0.9300 | C16—H16A | 0.9300 |
N1—C5 | 1.332 (2) | C17—C13 | 1.383 (2) |
C5—H5A | 0.9300 | C17—H17A | 0.9300 |
C6—O1 | 1.217 (2) | C13—H13A | 0.9300 |
C6—C7 | 1.506 (3) | ||
N3—Cu1—N3i | 180.0 | C9—C8—C7 | 118.57 (19) |
N3—Cu1—Cl1 | 90.99 (4) | C9—C8—H8A | 120.7 |
N3i—Cu1—Cl1 | 89.01 (4) | C7—C8—H8A | 120.7 |
N3—Cu1—Cl1i | 89.01 (4) | C10—C9—C8 | 119.50 (18) |
N3i—Cu1—Cl1i | 90.99 (4) | C10—C9—H9A | 120.2 |
Cl1—Cu1—Cl1i | 180.0 | C8—C9—H9A | 120.2 |
O2—C12—C15 | 118.88 (17) | C9—C10—C11 | 118.42 (19) |
O2—C12—C11 | 119.02 (16) | C9—C10—H10A | 120.8 |
C15—C12—C11 | 122.10 (14) | C11—C10—H10A | 120.8 |
C2—C1—C5 | 118.40 (19) | N2—C11—C10 | 123.12 (17) |
C2—C1—H1A | 120.8 | N2—C11—C12 | 119.14 (14) |
C5—C1—H1A | 120.8 | C10—C11—C12 | 117.71 (16) |
C1—C2—C3 | 119.45 (18) | C7—N2—C11 | 117.58 (14) |
C1—C2—H2A | 120.3 | C14—N3—C13 | 118.19 (13) |
C3—C2—H2A | 120.3 | C14—N3—Cu1 | 120.94 (10) |
C2—C3—C4 | 117.64 (17) | C13—N3—Cu1 | 120.84 (10) |
C2—C3—C6 | 119.12 (16) | N3—C14—C15 | 123.02 (14) |
C4—C3—C6 | 123.23 (16) | N3—C14—H14A | 118.5 |
N1—C4—C3 | 123.46 (16) | C15—C14—H14A | 118.5 |
N1—C4—H4A | 118.3 | C14—C15—C16 | 118.09 (14) |
C3—C4—H4A | 118.3 | C14—C15—C12 | 123.33 (14) |
C5—N1—C4 | 116.97 (16) | C16—C15—C12 | 118.41 (14) |
N1—C5—C1 | 123.86 (18) | C17—C16—C15 | 118.97 (14) |
N1—C5—H5A | 118.1 | C17—C16—H16A | 120.5 |
C1—C5—H5A | 118.1 | C15—C16—H16A | 120.5 |
O1—C6—C3 | 120.78 (18) | C16—C17—C13 | 119.84 (15) |
O1—C6—C7 | 118.89 (17) | C16—C17—H17A | 120.1 |
C3—C6—C7 | 120.22 (15) | C13—C17—H17A | 120.1 |
N2—C7—C8 | 122.80 (18) | N3—C13—C17 | 121.86 (15) |
N2—C7—C6 | 118.31 (15) | N3—C13—H13A | 119.1 |
C8—C7—C6 | 118.79 (17) | C17—C13—H13A | 119.1 |
C5—C1—C2—C3 | −1.2 (4) | O2—C12—C11—C10 | −7.4 (3) |
C1—C2—C3—C4 | −2.9 (3) | C15—C12—C11—C10 | 172.79 (16) |
C1—C2—C3—C6 | 176.4 (2) | C8—C7—N2—C11 | −0.2 (3) |
C2—C3—C4—N1 | 5.2 (3) | C6—C7—N2—C11 | 176.08 (15) |
C6—C3—C4—N1 | −174.07 (17) | C10—C11—N2—C7 | −0.8 (3) |
C3—C4—N1—C5 | −3.0 (3) | C12—C11—N2—C7 | −178.81 (15) |
C4—N1—C5—C1 | −1.6 (3) | Cl1—Cu1—N3—C14 | 136.92 (12) |
C2—C1—C5—N1 | 3.7 (4) | Cl1i—Cu1—N3—C14 | −43.08 (12) |
C2—C3—C6—O1 | 30.2 (3) | Cl1—Cu1—N3—C13 | −45.23 (12) |
C4—C3—C6—O1 | −150.5 (2) | Cl1i—Cu1—N3—C13 | 134.77 (12) |
C2—C3—C6—C7 | −145.85 (19) | C13—N3—C14—C15 | −0.4 (2) |
C4—C3—C6—C7 | 33.5 (3) | Cu1—N3—C14—C15 | 177.50 (11) |
O1—C6—C7—N2 | −157.20 (19) | N3—C14—C15—C16 | −1.1 (2) |
C3—C6—C7—N2 | 18.9 (3) | N3—C14—C15—C12 | −176.31 (15) |
O1—C6—C7—C8 | 19.2 (3) | O2—C12—C15—C14 | 146.67 (19) |
C3—C6—C7—C8 | −164.64 (18) | C11—C12—C15—C14 | −33.5 (2) |
N2—C7—C8—C9 | 1.0 (3) | O2—C12—C15—C16 | −28.5 (3) |
C6—C7—C8—C9 | −175.3 (2) | C11—C12—C15—C16 | 151.27 (16) |
C7—C8—C9—C10 | −0.8 (4) | C14—C15—C16—C17 | 1.5 (2) |
C8—C9—C10—C11 | −0.1 (3) | C12—C15—C16—C17 | 176.90 (16) |
C9—C10—C11—N2 | 0.9 (3) | C15—C16—C17—C13 | −0.4 (3) |
C9—C10—C11—C12 | 178.98 (19) | C14—N3—C13—C17 | 1.6 (2) |
O2—C12—C11—N2 | 170.73 (18) | Cu1—N3—C13—C17 | −176.35 (13) |
C15—C12—C11—N2 | −9.1 (2) | C16—C17—C13—N3 | −1.2 (3) |
Symmetry code: (i) −x+3/2, −y+1/2, −z+1. |
Cg1 is the centroid of the C13–C17,N3 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13A···O1ii | 0.93 | 2.61 | 3.418 (2) | 146 |
C2—H2A···Cg1iii | 0.93 | 2.73 | 3.621 (3) | 162 |
Symmetry codes: (ii) x+1/2, y−1/2, z; (iii) −x+1, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [CuCl2(C17H11N3O2)2] |
Mr | 713.02 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 18.728 (3), 11.8971 (18), 16.695 (3) |
β (°) | 121.522 (3) |
V (Å3) | 3170.9 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.91 |
Crystal size (mm) | 0.40 × 0.30 × 0.30 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.848, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11215, 3937, 3361 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.084, 1.04 |
No. of reflections | 3937 |
No. of parameters | 215 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.21 |
Computer programs: APEX2 (Bruker 2007), APEX2 and SAINT (Bruker 2007), SAINT (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 is the centroid of the C13–C17,N3 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13A···O1i | 0.93 | 2.61 | 3.418 (2) | 146 |
C2—H2A···Cg1ii | 0.93 | 2.73 | 3.621 (3) | 162 |
Symmetry codes: (i) x+1/2, y−1/2, z; (ii) −x+1, y, −z+1/2. |
Acknowledgements
The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.
References
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Efthymiou, C. G., Raptopoulou, C. P., Terzis, A., Boca, R., Korabic, M., Mrozinski, J., Perlepes, S. P. & Bakalbassis, E. G. (2006). Eur. J. Inorg. Chem. 11, 2236–2252. CrossRef Google Scholar
Papaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem. 23, 249–274. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1202–1213. Web of Science CrossRef Google Scholar
Wan, C. Q., Chen, X. D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475–478. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Di-pyridin-2-yl-methanone (di-pyrid-2-yl ketone, DPK), (C5H4N)2CO, is an extraordinarily versatile ligand among the thousands of basic building blocks that have been used in coordination chemistry and materials science (Papaefstathiou & Perlepes, 2002; Efthymiou et al., 2006). Herein, we report the mononuclear CuII complex with the oligo-pyridyl ketone ligand (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone (abbreviated as L), a member of the pyridinylmethanone family.
In the crystal structure of the title complex, the center CuII adopts an octahedral coordination geometry with two chlorido depositing in trans to each other, and two 2,6-pyridinediylbis(3-pyridinyl)methanone ligands bound to the ion by four 3-pyridyl N atoms (Fig. 1). The Cu1—N3 and Cu1—Cl1 bond lengths equal 2.0412 (12) Å and 2.3087 (4) Å, respectively, while the Cu-N1 exhibits weak bonding with the Cu-N1 distance of 2.615 (1) Å. The latter Cu—N bonds are remarkably longer than that (about 2.03 Å) in the similar complex Cu(L)2(BF4)2 (Wan et al. 2008). The pendant 3-pyridyl rings exhibit a dihedral angle of 80.76 (5)°. The mononuclear complex units link each other through the intermolecular C2—H2A···π and C13—H13A···O1ii interactions to form a three-dimentional framework, as shown in Fig. 2. For the C—H···π interaction (Umezawa et al. 1998), the C2···Cg1 distance (where Cg1 is the centroid of the ring containing N3i; i: -x+1, -y, 0.5-z) is 3.621 (3) Å, and the C2—H2A···Cg1 angle is 161.8° . For the C—H···O interaction, the C13···O1ii distance is 3.418 (2) Å, and the C13—H13A···O1ii angle is 146.2° (ii: x+0.5, y-0.5, z).