metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chloridobis[(6-nicotinoyl-2-pyridyl-κN6)(3-pyridyl-κN)methanone]copper(II)

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: qiang-hong@163.com

(Received 6 May 2011; accepted 10 May 2011; online 14 May 2011)

In the title complex, [CuCl2(C17H11N3O2)2], the CuII ion is located on an inversion center. It exhibits a distorted octa­hedral coordination geometry defined by two chloride anions at trans sites and four 3-pyridyl N atoms at equatorial sites from two (6-nicotinoyl-2-pyrid­yl)(3-pyrid­yl)methanone ligands. The (6-nicotinoyl-2-pyrid­yl)(3-pyrid­yl)methanone ligand can be viewed as having two pendant 3-pyridyl rings attached to a central pyridyl skeleton via separate carbonyl bridges, acting in a κ2N,N′-chelating mode with its 3-pyridyl N atoms bound to the CuII ion. The pendant 3-pyridyl rings make a dihedral angle of 80.76 (5)°. In the crystal, mol­ecules are linked through inter­molecular C—H⋯π and C—H⋯O inter­actions, forming a three-dimentional framework.

Related literature

For transition metal complexes with di-pyrid-2-yl ketone, see: Papaefstathiou & Perlepes (2002[Papaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem. 23, 249-274.]); Efthymiou et al. (2006[Efthymiou, C. G., Raptopoulou, C. P., Terzis, A., Boca, R., Korabic, M., Mrozinski, J., Perlepes, S. P. & Bakalbassis, E. G. (2006). Eur. J. Inorg. Chem. 11, 2236-2252.]). For the crystal structure of an analogous CuII complex, see: Wan et al. (2008[Wan, C. Q., Chen, X. D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475-478.]). For C—H⋯π inter­actions, see: Umezawa et al. (1998[Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1202-1213.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C17H11N3O2)2]

  • Mr = 713.02

  • Monoclinic, C 2/c

  • a = 18.728 (3) Å

  • b = 11.8971 (18) Å

  • c = 16.695 (3) Å

  • β = 121.522 (3)°

  • V = 3170.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.848, Tmax = 1.000

  • 11215 measured reflections

  • 3937 independent reflections

  • 3361 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.084

  • S = 1.04

  • 3937 reflections

  • 215 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C17,N3 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.93 2.61 3.418 (2) 146
C2—H2ACg1ii 0.93 2.73 3.621 (3) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Di-pyridin-2-yl-methanone (di-pyrid-2-yl ketone, DPK), (C5H4N)2CO, is an extraordinarily versatile ligand among the thousands of basic building blocks that have been used in coordination chemistry and materials science (Papaefstathiou & Perlepes, 2002; Efthymiou et al., 2006). Herein, we report the mononuclear CuII complex with the oligo-pyridyl ketone ligand (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone (abbreviated as L), a member of the pyridinylmethanone family.

In the crystal structure of the title complex, the center CuII adopts an octahedral coordination geometry with two chlorido depositing in trans to each other, and two 2,6-pyridinediylbis(3-pyridinyl)methanone ligands bound to the ion by four 3-pyridyl N atoms (Fig. 1). The Cu1—N3 and Cu1—Cl1 bond lengths equal 2.0412 (12) Å and 2.3087 (4) Å, respectively, while the Cu-N1 exhibits weak bonding with the Cu-N1 distance of 2.615 (1) Å. The latter Cu—N bonds are remarkably longer than that (about 2.03 Å) in the similar complex Cu(L)2(BF4)2 (Wan et al. 2008). The pendant 3-pyridyl rings exhibit a dihedral angle of 80.76 (5)°. The mononuclear complex units link each other through the intermolecular C2—H2A···π and C13—H13A···O1ii interactions to form a three-dimentional framework, as shown in Fig. 2. For the C—H···π interaction (Umezawa et al. 1998), the C2···Cg1 distance (where Cg1 is the centroid of the ring containing N3i; i: -x+1, -y, 0.5-z) is 3.621 (3) Å, and the C2—H2A···Cg1 angle is 161.8° . For the C—H···O interaction, the C13···O1ii distance is 3.418 (2) Å, and the C13—H13A···O1ii angle is 146.2° (ii: x+0.5, y-0.5, z).

Related literature top

For transition metal complexes with di-pyrid-2-yl ketone, see: Papaefstathiou & Perlepes (2002); Efthymiou et al. (2006). For the crystal structure of an analogous CuII complex, see: Wan et al. (2008). For C—H···π interactions, see: Umezawa et al.(1998).

Experimental top

The (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone ligand was obtained following the reaction procedure as reported in literature (Wan et al., 2008). Reaction of (6-nicotinoyl-2-pyridyl)(3-pyridyl)methanone (29 mg, 0.1 mmol) with CuCl2 (7 mg, 0.05 mmol) in acetonitrile formed trans-[Cu(C17H11N3O2)2Cl2] as a blue solution, which was left stand in air for four days to obtain block-like crystals (yield 13.1mg, 61%).

Refinement top

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker 2007); cell refinement: APEX2 and SAINT (Bruker 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title complex (symmetry code: (i) -x+1.5, -y+0.5, -z+1.5) with red-dashed lines indicating weak Cu1-N1 bonding. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. View of the crystal packing of the title compound.
trans-Dichloridobis[(6-nicotinoyl-2-pyridyl-κN6)(3-pyridyl- κN)methanone]copper(II) top
Crystal data top
[CuCl2(C17H11N3O2)2]Z = 4
Mr = 713.02F(000) = 1452
Monoclinic, C2/cDx = 1.494 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 18.728 (3) ŵ = 0.91 mm1
b = 11.8971 (18) ÅT = 293 K
c = 16.695 (3) ÅBlock, blue
β = 121.522 (3)°0.40 × 0.30 × 0.30 mm
V = 3170.9 (8) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3937 independent reflections
Radiation source: fine-focus sealed tube3361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2424
Tmin = 0.848, Tmax = 1.000k = 1515
11215 measured reflectionsl = 1922
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0423P)2 + 2.1803P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3937 reflectionsΔρmax = 0.25 e Å3
215 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00079 (17)
Crystal data top
[CuCl2(C17H11N3O2)2]V = 3170.9 (8) Å3
Mr = 713.02Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.728 (3) ŵ = 0.91 mm1
b = 11.8971 (18) ÅT = 293 K
c = 16.695 (3) Å0.40 × 0.30 × 0.30 mm
β = 121.522 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3937 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3361 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 1.000Rint = 0.020
11215 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
3937 reflectionsΔρmin = 0.21 e Å3
215 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.75000.25000.50000.03142 (9)
Cl10.69747 (3)0.11938 (3)0.38011 (3)0.03905 (11)
O20.77486 (11)0.74717 (10)0.35782 (15)0.0670 (5)
C120.73237 (11)0.67642 (13)0.36615 (13)0.0423 (4)
C10.45389 (14)0.2790 (2)0.33217 (19)0.0666 (6)
H1A0.41200.22670.29710.080*
C20.43565 (12)0.39132 (18)0.32729 (16)0.0588 (5)
H2A0.38110.41660.28780.071*
C30.49909 (10)0.46676 (15)0.38157 (12)0.0404 (4)
C40.57867 (10)0.42349 (14)0.44252 (12)0.0386 (3)
H4A0.62070.47290.48300.046*
N10.59789 (9)0.31499 (12)0.44589 (11)0.0464 (3)
C50.53567 (13)0.24547 (15)0.39018 (18)0.0571 (5)
H5A0.54830.16980.39050.069*
C60.47982 (11)0.58898 (16)0.37172 (13)0.0453 (4)
O10.41059 (9)0.62239 (13)0.35012 (13)0.0676 (4)
C70.54433 (11)0.67304 (14)0.38234 (13)0.0432 (4)
C80.53320 (14)0.78598 (18)0.39550 (17)0.0602 (5)
H8A0.48910.80840.40230.072*
C90.58907 (15)0.86377 (16)0.39825 (18)0.0657 (6)
H9A0.58260.93970.40620.079*
C100.65408 (13)0.82833 (15)0.38923 (14)0.0520 (5)
H10A0.69240.87950.39080.062*
C110.66154 (11)0.71359 (13)0.37759 (12)0.0394 (4)
N20.60753 (9)0.63678 (11)0.37358 (10)0.0378 (3)
N30.76337 (8)0.36519 (10)0.41813 (9)0.0300 (3)
C140.74131 (10)0.47290 (12)0.41611 (11)0.0314 (3)
H14A0.71770.49350.45100.038*
C150.75214 (10)0.55503 (12)0.36437 (11)0.0338 (3)
C160.78887 (11)0.52392 (15)0.31374 (12)0.0419 (4)
H16A0.79830.57700.27940.050*
C170.81099 (11)0.41376 (15)0.31523 (13)0.0431 (4)
H17A0.83530.39140.28150.052*
C130.79703 (10)0.33587 (14)0.36711 (11)0.0368 (3)
H13A0.81130.26110.36670.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04854 (17)0.01975 (13)0.03224 (15)0.00100 (10)0.02548 (13)0.00062 (9)
Cl10.0554 (2)0.02824 (18)0.0347 (2)0.00295 (15)0.02439 (18)0.00262 (14)
O20.0755 (10)0.0343 (7)0.1049 (14)0.0040 (6)0.0566 (10)0.0174 (7)
C120.0487 (9)0.0296 (7)0.0459 (9)0.0008 (7)0.0230 (8)0.0109 (7)
C10.0446 (11)0.0549 (12)0.0815 (16)0.0138 (9)0.0198 (11)0.0136 (11)
C20.0344 (9)0.0595 (12)0.0661 (13)0.0007 (8)0.0149 (9)0.0019 (10)
C30.0366 (8)0.0426 (9)0.0436 (9)0.0033 (7)0.0221 (7)0.0027 (7)
C40.0371 (8)0.0365 (8)0.0390 (8)0.0007 (6)0.0177 (7)0.0016 (6)
N10.0412 (8)0.0358 (7)0.0534 (9)0.0007 (6)0.0186 (7)0.0041 (6)
C50.0498 (11)0.0376 (10)0.0752 (15)0.0054 (8)0.0266 (11)0.0042 (9)
C60.0433 (9)0.0466 (9)0.0468 (10)0.0112 (8)0.0242 (8)0.0031 (8)
O10.0517 (8)0.0637 (9)0.0945 (12)0.0184 (7)0.0432 (9)0.0034 (8)
C70.0444 (9)0.0361 (8)0.0428 (9)0.0093 (7)0.0185 (8)0.0022 (7)
C80.0609 (13)0.0440 (10)0.0716 (14)0.0169 (9)0.0318 (11)0.0033 (10)
C90.0750 (15)0.0305 (9)0.0796 (15)0.0102 (9)0.0320 (13)0.0070 (9)
C100.0630 (12)0.0273 (8)0.0548 (11)0.0004 (8)0.0233 (10)0.0011 (7)
C110.0489 (9)0.0264 (7)0.0365 (8)0.0033 (6)0.0178 (7)0.0052 (6)
N20.0430 (7)0.0279 (6)0.0397 (7)0.0055 (5)0.0196 (6)0.0041 (5)
N30.0373 (7)0.0248 (5)0.0326 (6)0.0011 (5)0.0214 (6)0.0023 (5)
C140.0374 (7)0.0264 (7)0.0343 (7)0.0021 (6)0.0213 (6)0.0036 (6)
C150.0366 (8)0.0284 (7)0.0352 (8)0.0024 (6)0.0179 (6)0.0052 (6)
C160.0462 (9)0.0437 (9)0.0407 (9)0.0072 (7)0.0262 (8)0.0073 (7)
C170.0491 (10)0.0495 (9)0.0438 (9)0.0021 (8)0.0335 (8)0.0011 (7)
C130.0428 (9)0.0332 (7)0.0394 (8)0.0019 (6)0.0251 (7)0.0011 (6)
Geometric parameters (Å, º) top
Cu1—N32.0412 (12)C7—N21.338 (2)
Cu1—N3i2.0412 (12)C7—C81.395 (3)
Cu1—Cl12.3087 (4)C8—C91.380 (3)
Cu1—Cl1i2.3087 (4)C8—H8A0.9300
O2—C121.215 (2)C9—C101.369 (3)
C12—C151.495 (2)C9—H9A0.9300
C12—C111.502 (3)C10—C111.396 (2)
C1—C21.371 (3)C10—H10A0.9300
C1—C51.376 (3)C11—N21.339 (2)
C1—H1A0.9300N3—C141.3415 (18)
C2—C31.383 (3)N3—C131.3438 (19)
C2—H2A0.9300C14—C151.3875 (19)
C3—C41.391 (2)C14—H14A0.9300
C3—C61.487 (2)C15—C161.390 (2)
C4—N11.333 (2)C16—C171.371 (2)
C4—H4A0.9300C16—H16A0.9300
N1—C51.332 (2)C17—C131.383 (2)
C5—H5A0.9300C17—H17A0.9300
C6—O11.217 (2)C13—H13A0.9300
C6—C71.506 (3)
N3—Cu1—N3i180.0C9—C8—C7118.57 (19)
N3—Cu1—Cl190.99 (4)C9—C8—H8A120.7
N3i—Cu1—Cl189.01 (4)C7—C8—H8A120.7
N3—Cu1—Cl1i89.01 (4)C10—C9—C8119.50 (18)
N3i—Cu1—Cl1i90.99 (4)C10—C9—H9A120.2
Cl1—Cu1—Cl1i180.0C8—C9—H9A120.2
O2—C12—C15118.88 (17)C9—C10—C11118.42 (19)
O2—C12—C11119.02 (16)C9—C10—H10A120.8
C15—C12—C11122.10 (14)C11—C10—H10A120.8
C2—C1—C5118.40 (19)N2—C11—C10123.12 (17)
C2—C1—H1A120.8N2—C11—C12119.14 (14)
C5—C1—H1A120.8C10—C11—C12117.71 (16)
C1—C2—C3119.45 (18)C7—N2—C11117.58 (14)
C1—C2—H2A120.3C14—N3—C13118.19 (13)
C3—C2—H2A120.3C14—N3—Cu1120.94 (10)
C2—C3—C4117.64 (17)C13—N3—Cu1120.84 (10)
C2—C3—C6119.12 (16)N3—C14—C15123.02 (14)
C4—C3—C6123.23 (16)N3—C14—H14A118.5
N1—C4—C3123.46 (16)C15—C14—H14A118.5
N1—C4—H4A118.3C14—C15—C16118.09 (14)
C3—C4—H4A118.3C14—C15—C12123.33 (14)
C5—N1—C4116.97 (16)C16—C15—C12118.41 (14)
N1—C5—C1123.86 (18)C17—C16—C15118.97 (14)
N1—C5—H5A118.1C17—C16—H16A120.5
C1—C5—H5A118.1C15—C16—H16A120.5
O1—C6—C3120.78 (18)C16—C17—C13119.84 (15)
O1—C6—C7118.89 (17)C16—C17—H17A120.1
C3—C6—C7120.22 (15)C13—C17—H17A120.1
N2—C7—C8122.80 (18)N3—C13—C17121.86 (15)
N2—C7—C6118.31 (15)N3—C13—H13A119.1
C8—C7—C6118.79 (17)C17—C13—H13A119.1
C5—C1—C2—C31.2 (4)O2—C12—C11—C107.4 (3)
C1—C2—C3—C42.9 (3)C15—C12—C11—C10172.79 (16)
C1—C2—C3—C6176.4 (2)C8—C7—N2—C110.2 (3)
C2—C3—C4—N15.2 (3)C6—C7—N2—C11176.08 (15)
C6—C3—C4—N1174.07 (17)C10—C11—N2—C70.8 (3)
C3—C4—N1—C53.0 (3)C12—C11—N2—C7178.81 (15)
C4—N1—C5—C11.6 (3)Cl1—Cu1—N3—C14136.92 (12)
C2—C1—C5—N13.7 (4)Cl1i—Cu1—N3—C1443.08 (12)
C2—C3—C6—O130.2 (3)Cl1—Cu1—N3—C1345.23 (12)
C4—C3—C6—O1150.5 (2)Cl1i—Cu1—N3—C13134.77 (12)
C2—C3—C6—C7145.85 (19)C13—N3—C14—C150.4 (2)
C4—C3—C6—C733.5 (3)Cu1—N3—C14—C15177.50 (11)
O1—C6—C7—N2157.20 (19)N3—C14—C15—C161.1 (2)
C3—C6—C7—N218.9 (3)N3—C14—C15—C12176.31 (15)
O1—C6—C7—C819.2 (3)O2—C12—C15—C14146.67 (19)
C3—C6—C7—C8164.64 (18)C11—C12—C15—C1433.5 (2)
N2—C7—C8—C91.0 (3)O2—C12—C15—C1628.5 (3)
C6—C7—C8—C9175.3 (2)C11—C12—C15—C16151.27 (16)
C7—C8—C9—C100.8 (4)C14—C15—C16—C171.5 (2)
C8—C9—C10—C110.1 (3)C12—C15—C16—C17176.90 (16)
C9—C10—C11—N20.9 (3)C15—C16—C17—C130.4 (3)
C9—C10—C11—C12178.98 (19)C14—N3—C13—C171.6 (2)
O2—C12—C11—N2170.73 (18)Cu1—N3—C13—C17176.35 (13)
C15—C12—C11—N29.1 (2)C16—C17—C13—N31.2 (3)
Symmetry code: (i) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C17,N3 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1ii0.932.613.418 (2)146
C2—H2A···Cg1iii0.932.733.621 (3)162
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[CuCl2(C17H11N3O2)2]
Mr713.02
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.728 (3), 11.8971 (18), 16.695 (3)
β (°) 121.522 (3)
V3)3170.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.848, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11215, 3937, 3361
Rint0.020
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.084, 1.04
No. of reflections3937
No. of parameters215
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: APEX2 (Bruker 2007), APEX2 and SAINT (Bruker 2007), SAINT (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C17,N3 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.932.613.418 (2)146
C2—H2A···Cg1ii0.932.733.621 (3)162
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEfthymiou, C. G., Raptopoulou, C. P., Terzis, A., Boca, R., Korabic, M., Mrozinski, J., Perlepes, S. P. & Bakalbassis, E. G. (2006). Eur. J. Inorg. Chem. 11, 2236–2252.  CrossRef Google Scholar
First citationPapaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem. 23, 249–274.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUmezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1202–1213.  Web of Science CrossRef Google Scholar
First citationWan, C. Q., Chen, X. D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475–478.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds