organic compounds
Adamantane-1-ammonium acetate
aMolecular Science Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa
*Correspondence e-mail: ejc.devries@gmail.com
In the title compound, C10H18N+·C2H3O2−, the ammonium H atoms of the cation are linked to three acetate anions via N—H⋯O hydrogen bonds, forming a chain structure extending along the b axis.
Related literature
For related structures, see: Mullica et al. (1999); He & Wen (2006). For their applications in virology, see: Hoffmann (1973); Dolin et al. (1982); Bright et al. (2005); Betakova (2007). For graph-set analysis, see: Bernstein et al. (1995). For Csp3—O bond lengths, see: Orpen et al. (1989).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-NT (Bruker, 2005); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED.
Supporting information
10.1107/S1600536811012670/zs2106sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811012670/zs2106Isup2.hkl
Adamantadine hydrochloride (10 mg) was dissolved in three drops of glacial acetic acid and deionized water. The solution was allowed to undergo slow evaporation. Single crystals of (I) suitable for X-ray diffraction anlaysis precipitated after a few days.
The ammonium H atoms were placed according to the observed electron density and allowed to refine freely. A distance constraint was placed on one of the N—H bonds [N1–H1C, 0.95 (2) Å]. The remaining H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 0.99 (aromatic CH) 1.00 (methine CH), 0.99 (methylene CH2) and 0.98 Å (methyl CH3), and with Uiso(H) = 1.2 or 1.5 times Ueq(C).
Data collection: APEX2 (Bruker, 2005); cell
SAINT-NT (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED (Barbour, 2001; Atwood & Barbour, 2003).C10H18N+·C2H3O2− | F(000) = 928 |
Mr = 211.30 | Dx = 1.215 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1706 reflections |
a = 25.7625 (12) Å | θ = 3.0–25.1° |
b = 6.4852 (3) Å | µ = 0.08 mm−1 |
c = 17.3970 (9) Å | T = 296 K |
β = 127.377 (2)° | Needle, colourless |
V = 2309.8 (2) Å3 | 0.40 × 0.07 × 0.05 mm |
Z = 8 |
Bruker APEXII CCD diffractometer | 1471 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.077 |
Graphite monochromator | θmax = 26.0°, θmin = 2.0° |
ϕ and ω scans | h = −31→31 |
15067 measured reflections | k = −8→8 |
2261 independent reflections | l = −21→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0546P)2 + 1.9569P] where P = (Fo2 + 2Fc2)/3 |
2261 reflections | (Δ/σ)max < 0.001 |
149 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C10H18N+·C2H3O2− | V = 2309.8 (2) Å3 |
Mr = 211.30 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 25.7625 (12) Å | µ = 0.08 mm−1 |
b = 6.4852 (3) Å | T = 296 K |
c = 17.3970 (9) Å | 0.40 × 0.07 × 0.05 mm |
β = 127.377 (2)° |
Bruker APEXII CCD diffractometer | 1471 reflections with I > 2σ(I) |
15067 measured reflections | Rint = 0.077 |
2261 independent reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.23 e Å−3 |
2261 reflections | Δρmin = −0.21 e Å−3 |
149 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.32323 (7) | 0.4743 (2) | 0.78287 (11) | 0.0299 (4) | |
N1 | 0.19171 (10) | 0.5670 (3) | 0.68283 (14) | 0.0240 (5) | |
C1 | 0.16138 (10) | 0.5443 (3) | 0.57747 (15) | 0.0218 (5) | |
O2 | 0.36698 (8) | 0.7678 (2) | 0.78092 (12) | 0.0347 (4) | |
C2 | 0.17908 (11) | 0.3319 (3) | 0.56130 (15) | 0.0252 (5) | |
H2B | 0.2271 | 0.3184 | 0.6007 | 0.030* | |
H2A | 0.1628 | 0.2229 | 0.5815 | 0.030* | |
C3 | 0.14826 (10) | 0.3069 (3) | 0.45404 (15) | 0.0264 (5) | |
H3A | 0.1595 | 0.1679 | 0.4430 | 0.032* | |
C4 | 0.07403 (11) | 0.3266 (4) | 0.39419 (17) | 0.0327 (6) | |
H4A | 0.0570 | 0.2184 | 0.4137 | 0.039* | |
H4B | 0.0537 | 0.3075 | 0.3248 | 0.039* | |
C5 | 0.05648 (11) | 0.5400 (4) | 0.41012 (17) | 0.0299 (6) | |
H5A | 0.0079 | 0.5534 | 0.3705 | 0.036* | |
C6 | 0.08313 (11) | 0.7061 (4) | 0.38012 (17) | 0.0315 (6) | |
H6A | 0.0715 | 0.8443 | 0.3896 | 0.038* | |
H6B | 0.0633 | 0.6903 | 0.3107 | 0.038* | |
C7 | 0.15743 (11) | 0.6867 (3) | 0.44084 (16) | 0.0270 (5) | |
H7A | 0.1746 | 0.7962 | 0.4213 | 0.032* | |
C8 | 0.18804 (10) | 0.7119 (3) | 0.54849 (15) | 0.0243 (5) | |
H8A | 0.2362 | 0.7003 | 0.5881 | 0.029* | |
H8B | 0.1773 | 0.8496 | 0.5598 | 0.029* | |
C9 | 0.08731 (10) | 0.5654 (4) | 0.51785 (16) | 0.0267 (5) | |
H9A | 0.0761 | 0.7024 | 0.5291 | 0.032* | |
H9B | 0.0701 | 0.4585 | 0.5376 | 0.032* | |
C10 | 0.17474 (11) | 0.4742 (3) | 0.42404 (17) | 0.0287 (6) | |
H10A | 0.2227 | 0.4608 | 0.4626 | 0.034* | |
H10B | 0.1554 | 0.4578 | 0.3549 | 0.034* | |
C11 | 0.36787 (11) | 0.5780 (3) | 0.79083 (16) | 0.0251 (5) | |
C12 | 0.42684 (13) | 0.4608 (4) | 0.8153 (2) | 0.0465 (7) | |
H12A | 0.4638 | 0.4855 | 0.8832 | 0.070* | |
H12B | 0.4381 | 0.5079 | 0.7736 | 0.070* | |
H12C | 0.4169 | 0.3130 | 0.8052 | 0.070* | |
H1A | 0.2392 (15) | 0.544 (4) | 0.723 (2) | 0.055 (8)* | |
H1B | 0.1765 (12) | 0.461 (4) | 0.7010 (17) | 0.037 (7)* | |
H1C | 0.1835 (11) | 0.704 (3) | 0.6961 (17) | 0.043 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0225 (9) | 0.0286 (9) | 0.0383 (10) | 0.0000 (7) | 0.0183 (8) | 0.0033 (7) |
N1 | 0.0244 (11) | 0.0242 (11) | 0.0265 (10) | 0.0001 (9) | 0.0170 (10) | 0.0004 (9) |
C1 | 0.0183 (11) | 0.0227 (11) | 0.0218 (11) | −0.0014 (9) | 0.0109 (10) | 0.0002 (9) |
O2 | 0.0440 (11) | 0.0258 (9) | 0.0491 (11) | 0.0017 (8) | 0.0360 (9) | 0.0018 (8) |
C2 | 0.0240 (12) | 0.0228 (11) | 0.0282 (12) | 0.0003 (10) | 0.0155 (11) | 0.0017 (10) |
C3 | 0.0261 (13) | 0.0210 (12) | 0.0313 (13) | 0.0004 (10) | 0.0170 (11) | −0.0029 (10) |
C4 | 0.0267 (13) | 0.0352 (13) | 0.0307 (13) | −0.0096 (11) | 0.0145 (11) | −0.0073 (11) |
C5 | 0.0171 (12) | 0.0380 (14) | 0.0286 (12) | −0.0004 (10) | 0.0108 (10) | 0.0007 (11) |
C6 | 0.0287 (14) | 0.0342 (14) | 0.0277 (12) | 0.0070 (11) | 0.0151 (11) | 0.0067 (11) |
C7 | 0.0289 (13) | 0.0265 (12) | 0.0307 (13) | −0.0009 (10) | 0.0208 (11) | 0.0036 (10) |
C8 | 0.0228 (12) | 0.0206 (11) | 0.0312 (12) | −0.0017 (9) | 0.0173 (11) | −0.0015 (9) |
C9 | 0.0218 (12) | 0.0295 (13) | 0.0326 (13) | 0.0001 (10) | 0.0185 (11) | 0.0009 (10) |
C10 | 0.0260 (13) | 0.0354 (14) | 0.0269 (12) | −0.0003 (10) | 0.0171 (11) | −0.0038 (10) |
C11 | 0.0258 (13) | 0.0276 (12) | 0.0255 (12) | 0.0022 (10) | 0.0174 (11) | 0.0001 (10) |
C12 | 0.0401 (16) | 0.0417 (16) | 0.072 (2) | 0.0117 (13) | 0.0416 (16) | 0.0143 (14) |
O1—C11 | 1.265 (3) | C5—C9 | 1.537 (3) |
N1—C1 | 1.501 (3) | C5—H5A | 1.0000 |
N1—H1A | 0.98 (3) | C6—C7 | 1.530 (3) |
N1—H1B | 0.94 (3) | C6—H6A | 0.9900 |
N1—H1C | 0.976 (17) | C6—H6B | 0.9900 |
C1—C8 | 1.526 (3) | C7—C10 | 1.530 (3) |
C1—C9 | 1.527 (3) | C7—C8 | 1.537 (3) |
C1—C2 | 1.530 (3) | C7—H7A | 1.0000 |
O2—C11 | 1.241 (3) | C8—H8A | 0.9900 |
C2—C3 | 1.530 (3) | C8—H8B | 0.9900 |
C2—H2B | 0.9900 | C9—H9A | 0.9900 |
C2—H2A | 0.9900 | C9—H9B | 0.9900 |
C3—C4 | 1.530 (3) | C10—H10A | 0.9900 |
C3—C10 | 1.532 (3) | C10—H10B | 0.9900 |
C3—H3A | 1.0000 | C11—C12 | 1.510 (3) |
C4—C5 | 1.533 (3) | C12—H12A | 0.9800 |
C4—H4A | 0.9900 | C12—H12B | 0.9800 |
C4—H4B | 0.9900 | C12—H12C | 0.9800 |
C5—C6 | 1.529 (3) | ||
C1—N1—H1A | 110.6 (16) | C7—C6—H6A | 109.7 |
C1—N1—H1B | 109.1 (15) | C5—C6—H6B | 109.7 |
H1A—N1—H1B | 104 (2) | C7—C6—H6B | 109.7 |
C1—N1—H1C | 110.6 (14) | H6A—C6—H6B | 108.2 |
H1A—N1—H1C | 109 (2) | C6—C7—C10 | 109.25 (18) |
H1B—N1—H1C | 113 (2) | C6—C7—C8 | 109.50 (18) |
N1—C1—C8 | 109.19 (17) | C10—C7—C8 | 109.58 (18) |
N1—C1—C9 | 109.28 (17) | C6—C7—H7A | 109.5 |
C8—C1—C9 | 109.84 (17) | C10—C7—H7A | 109.5 |
N1—C1—C2 | 108.69 (17) | C8—C7—H7A | 109.5 |
C8—C1—C2 | 109.66 (17) | C1—C8—C7 | 109.02 (17) |
C9—C1—C2 | 110.15 (17) | C1—C8—H8A | 109.9 |
C3—C2—C1 | 109.15 (17) | C7—C8—H8A | 109.9 |
C3—C2—H2B | 109.9 | C1—C8—H8B | 109.9 |
C1—C2—H2B | 109.9 | C7—C8—H8B | 109.9 |
C3—C2—H2A | 109.9 | H8A—C8—H8B | 108.3 |
C1—C2—H2A | 109.9 | C1—C9—C5 | 109.05 (18) |
H2B—C2—H2A | 108.3 | C1—C9—H9A | 109.9 |
C2—C3—C4 | 109.27 (19) | C5—C9—H9A | 109.9 |
C2—C3—C10 | 109.36 (18) | C1—C9—H9B | 109.9 |
C4—C3—C10 | 109.87 (19) | C5—C9—H9B | 109.9 |
C2—C3—H3A | 109.4 | H9A—C9—H9B | 108.3 |
C4—C3—H3A | 109.4 | C7—C10—C3 | 109.35 (18) |
C10—C3—H3A | 109.4 | C7—C10—H10A | 109.8 |
C3—C4—C5 | 109.68 (18) | C3—C10—H10A | 109.8 |
C3—C4—H4A | 109.7 | C7—C10—H10B | 109.8 |
C5—C4—H4A | 109.7 | C3—C10—H10B | 109.8 |
C3—C4—H4B | 109.7 | H10A—C10—H10B | 108.3 |
C5—C4—H4B | 109.7 | O2—C11—O1 | 125.0 (2) |
H4A—C4—H4B | 108.2 | O2—C11—C12 | 118.0 (2) |
C6—C5—C4 | 109.34 (19) | O1—C11—C12 | 117.1 (2) |
C6—C5—C9 | 109.52 (18) | C11—C12—H12A | 109.5 |
C4—C5—C9 | 109.03 (18) | C11—C12—H12B | 109.5 |
C6—C5—H5A | 109.6 | H12A—C12—H12B | 109.5 |
C4—C5—H5A | 109.6 | C11—C12—H12C | 109.5 |
C9—C5—H5A | 109.6 | H12A—C12—H12C | 109.5 |
C5—C6—C7 | 109.83 (18) | H12B—C12—H12C | 109.5 |
C5—C6—H6A | 109.7 | ||
N1—C1—C2—C3 | 179.86 (18) | C9—C1—C8—C7 | −60.8 (2) |
C8—C1—C2—C3 | −60.8 (2) | C2—C1—C8—C7 | 60.4 (2) |
C9—C1—C2—C3 | 60.2 (2) | C6—C7—C8—C1 | 59.8 (2) |
C1—C2—C3—C4 | −59.9 (2) | C10—C7—C8—C1 | −60.0 (2) |
C1—C2—C3—C10 | 60.4 (2) | N1—C1—C9—C5 | −179.49 (17) |
C2—C3—C4—C5 | 60.6 (2) | C8—C1—C9—C5 | 60.7 (2) |
C10—C3—C4—C5 | −59.4 (2) | C2—C1—C9—C5 | −60.1 (2) |
C3—C4—C5—C6 | 59.2 (2) | C6—C5—C9—C1 | −59.7 (2) |
C3—C4—C5—C9 | −60.5 (2) | C4—C5—C9—C1 | 59.9 (2) |
C4—C5—C6—C7 | −59.9 (2) | C6—C7—C10—C3 | −60.0 (2) |
C9—C5—C6—C7 | 59.5 (2) | C8—C7—C10—C3 | 59.9 (2) |
C5—C6—C7—C10 | 60.5 (2) | C2—C3—C10—C7 | −60.2 (2) |
C5—C6—C7—C8 | −59.5 (2) | C4—C3—C10—C7 | 59.8 (2) |
N1—C1—C8—C7 | 179.39 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1 | 0.99 (4) | 1.80 (4) | 2.777 (3) | 171 (3) |
N1—H1B···O2i | 0.94 (3) | 1.83 (3) | 2.758 (3) | 170 (3) |
N1—H1C···O1ii | 0.97 (2) | 1.82 (2) | 2.786 (2) | 171 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C10H18N+·C2H3O2− |
Mr | 211.30 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 25.7625 (12), 6.4852 (3), 17.3970 (9) |
β (°) | 127.377 (2) |
V (Å3) | 2309.8 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.40 × 0.07 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15067, 2261, 1471 |
Rint | 0.077 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.134, 1.01 |
No. of reflections | 2261 |
No. of parameters | 149 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.23, −0.21 |
Computer programs: APEX2 (Bruker, 2005), SAINT-NT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1 | 0.99 (4) | 1.80 (4) | 2.777 (3) | 171 (3) |
N1—H1B···O2i | 0.94 (3) | 1.83 (3) | 2.758 (3) | 170 (3) |
N1—H1C···O1ii | 0.97 (2) | 1.82 (2) | 2.786 (2) | 171 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
The authors thans the National Research Foundation of South Africa and the University of the Witwatersrand for financial support.
References
Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8. Web of Science CrossRef CAS Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 35, 1555–1573. CrossRef Web of Science Google Scholar
Betakova, T. (2007). Curr. Pharm. Des. 13, 3231–3235. Web of Science CrossRef PubMed CAS Google Scholar
Bright, R. A., Medina, M. J., Xu, X. Y., Gilda, P. O., Wallis, T. R., Davis, X. H. M., Povinelli, L., Cox, N. J. & Klimov, A. I. (2005). Lancet, 366, 1175–1181. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolin, R., Reichman, R. C., Madore, H. P., Maynard, R., Lindon, P. M. & Weber-Jones, J. (1982). N. Engl. J. Med. 307, 580–584. CrossRef CAS PubMed Web of Science Google Scholar
He, Y.-H. & Wen, Y.-H. (2006). Acta Cryst. E62, o1312–o1313. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hoffmann, C. E. (1973). Selective Inhibitors of Viral Functions, edited by W. A. Carter, p. 199. Cleveland, USA: CRC Press. Google Scholar
Mullica, D. F., Scott, T. G., Farmer, J. M. & Kautz, J. A. (1999). J. Chem. Crystallogr. 29, 845–848. Web of Science CSD CrossRef CAS Google Scholar
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It is well established that 1-aminoadamantane hydrochloride (amantadine hydrochloride: trade name Symmetrel) is effective in the prevention and treatment of the influenza (A) virus (Hoffmann, 1973; Dolin et al., 1982; Bright et al., 2005). However recent studies suggest that the virus is becoming increasingly resistant to this anti-influenza drug (Betakova, 2007). The investigation of new derivatives of this compound is still important. Here we report the crystal structure of adamantane-1-ammonium acetate (I), illustrated in Fig. 1.
The asymmetric unit of (I) contains an adamantane-1-ammonium cation and an acetate anion. In the cation, the exocyclic C—N bond is 1.500 (3) Å. The C—C bonds of the adamantane skeleton range from 1.527 (3) to 1.537 (3) Å, with a mean value of 1.531 Å. The C—C—C bond angles range from 109.05 (18) to 110.10 (18) °, with a mean value of 109.5 °, which is in good agreement with the value for a tetrahedral angle. In the anion, the C(sp3)-O distances of 1.266 (3) and 1.240 (3) Å are in the range of values given in the literature (Orpen et al., 1989).
The crystal structure is stabilized by a network of intermolecular charge assisted carbonyl-to-amine hydrogen bonds. All ammonium hydrogen atoms are involved in hydrogen bonding with the oxygen atoms of the acetate anion (Table 1). The hydrogen-bonding scheme can be described as a nine membered ring motif with graph-set notation R34(10) (Bernstein et al., 1995). This results in the formation of a one-dimensional chain structure parallel to the b axis of the unit cell (Fig. 2).