organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1-(Bi­phenyl-2,2′-diyldi­­oxy)-3,3,5,5-tetra­kis­(4-bromo­methyl­phen­­oxy)cyclo­triphosphazene

aPhosphorus Chemical Engineering Research Center of Henan Province, Department of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: yeyong@zzu.edu.cn

(Received 6 April 2011; accepted 27 April 2011; online 7 May 2011)

In the title compound, C40H32Br4N3O6P3, the cyclo­triphos­phazene ring adopts a planar conformation, with an r.m.s. deviation of 0.0247 Å. In the crystal, there is a weak inter­molecular C—H⋯O hydrogen bond as well as short inter­molecular Br⋯Br contacts [3.3352 (12) Å].

Related literature

For general background to cyclo­triphosphazenes, see: Manners (1996)[Manners, I. (1996). Angew. Chem. Int. Ed. Engl. 35, 1602-1607.]. For the applications of cyclo­triphosphazene derivatives as flame retardants, see: Allcock (1977[Allcock, H. R. (1977). Angew. Chem. Int. Ed. Engl. 16, 147-150.]); as elastomers, see: Allcock (2000[Allcock, H. R. (2000). Polym. Prep. 14, 553-558.]); as biomaterials, see: Trollsa & Hedrick (1998[Trollsa, M. & Hedrick, J. L. (1998). J. Am. Chem. Soc. 120, 4644-4648.]); as artificial nucleases, see: Wang, Ye, Zhong et al. (2009[Wang, L., Ye, Y., Zhong, S., Zhang, D. & Zhao, Y. F. (2009). Chem. J. Chin. Univ. 30, 493-496]); Wang, Ye, Ju et al. (2009[Wang, L., Ye, Y., Ju, Z., Zhong, S. & Zhao, Y. F. (2009). Phosphorus Sulfur, 184, 1958-1963.]).

[Scheme 1]

Experimental

Crystal data
  • C40H32Br4N3O6P3

  • Mr = 1063.24

  • Monoclinic, P 21 /n

  • a = 10.991 (2) Å

  • b = 28.417 (6) Å

  • c = 14.008 (3) Å

  • β = 105.47 (3)°

  • V = 4216.7 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.98 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker P4 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). XSCANS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.392, Tmax = 0.520

  • 52073 measured reflections

  • 9978 independent reflections

  • 6049 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.192

  • S = 1.11

  • 9978 reflections

  • 505 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33A⋯O1i 0.97 2.60 3.525 (8) 160
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: XSCANS (Bruker, 2008[Bruker (2008). XSCANS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cyclotriphosphazenes are of considerable interest not only because of their wide spectrum of chemical and physical properties, but also their importance in synthetic chemistry (Manners, 1996). Different side-group substituents affect the chemical and physical properties of the ring systems in high polymers based on a phosphazene skeleton. Various cyclotriphosphazenes have been successfully developed for a variety of applications, such as flame retardants (Allcock, 1977), elastomers (Allcock, 2000) and biomaterials (Trollsa & Hedrick, 1998), achieved by varying the nature of the substituent side group. Recently, some polydentate cyclotriphosphazene ligands were reported, which showed good nuclease activity with hydrolytic cleavage ability (Wang, Ye, Zhong et al., 2009; Wang, Ye, Ju et al., 2009). To obtain more insight into the selective recognization and efficient cleavage of DNA by different metal complexes of cyclotriphosphazene, the title compound, C40H32Br4N3O6P3 (I), was synthesized and its crystal structure is reported here.

In the crystal structure of (I) (Fig. 1), the part of cyclotriphosphazene ring adopts a planar conformation with an r.m.s. deviation of 0.0247 Å. There are short intermolecular Br···Br contacts: Br1···Br2ii [3.3352 (12) Å] and Br3···Br4iii [3.5868 (15) Å] [for symmetry codes: (ii) -x - 1/2, y - 1/2, -z + 1/2; (iii) -x + 1/2, y - 1/2, -z + 1/2]. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bond (Table 1).

Related literature top

For general background to cyclotriphosphazenes, see: Manners (1996). For the applications of cyclotriphosphazene derivatives as flame retardants, see: Allcock (1977); as elastomers, see: Allcock (2000); as biomaterials, see: Trollsa & Hedrick (1998); as artificial nucleases, see: Wang, Ye, Zhong et al. (2009); Wang, Ye, Ju et al. (2009).

Experimental top

To 30 ml of THF 2,2'-biphenyldioxy-3,3,5,5-tetrakis(4-hydroxymethylphenoxy)- cyclotriphosphazene (1.622 g, 2 mmol) was added under argon. Then, 1.1 ml of phosphorus tribromide in 10 ml of THF was added dropwise and the mixture was stirred for 5 h. The organic solvent was removed under reduced pressure and the residue was dissolved in CHCl3. The residue washed with aq. K2CO3 and extracted with CHCl3, the organic layer was dried over Na2SO4 and then evaporated under reduced pressure. The remaining residue was purified by silica gel column chromatography (CH2Cl2/PE) to provide title compound which was recrystallized from CH2Cl2 and single crystals of (I) were obtained by slow evaporation.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C). There is a single reflection which is considered to be affected by the beamstop.

Computing details top

Data collection: XSCANS (Bruker, 2008); cell refinement: XSCANS (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for (I), with displacement ellipsoids drawn at the 20% probability level.
1,1-(Biphenyl-2,2'-diyldioxy)-3,3,5,5-tetrakis(4- bromomethylphenoxy)cyclotriphosphazene top
Crystal data top
C40H32Br4N3O6P3F(000) = 2104
Mr = 1063.24Dx = 1.675 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7462 reflections
a = 10.991 (2) Åθ = 2.1–27.9°
b = 28.417 (6) ŵ = 3.98 mm1
c = 14.008 (3) ÅT = 293 K
β = 105.47 (3)°Prism, colorless
V = 4216.7 (15) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker P4 CCD
diffractometer
9978 independent reflections
Radiation source: fine-focus sealed tube6049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.392, Tmax = 0.520k = 3737
52073 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0761P)2]
where P = (Fo2 + 2Fc2)/3
9978 reflections(Δ/σ)max = 0.001
505 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C40H32Br4N3O6P3V = 4216.7 (15) Å3
Mr = 1063.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.991 (2) ŵ = 3.98 mm1
b = 28.417 (6) ÅT = 293 K
c = 14.008 (3) Å0.24 × 0.20 × 0.18 mm
β = 105.47 (3)°
Data collection top
Bruker P4 CCD
diffractometer
9978 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6049 reflections with I > 2σ(I)
Tmin = 0.392, Tmax = 0.520Rint = 0.075
52073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.11Δρmax = 0.82 e Å3
9978 reflectionsΔρmin = 0.71 e Å3
505 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.08346 (6)0.09289 (3)0.36653 (6)0.0732 (3)
Br20.10180 (6)0.59356 (3)0.19304 (6)0.0773 (3)
Br30.41308 (8)0.13542 (3)0.06958 (6)0.0843 (3)
Br40.24692 (10)0.53274 (3)0.55072 (7)0.0985 (3)
C10.1461 (5)0.3971 (2)0.2173 (4)0.0397 (12)
C20.1438 (5)0.4452 (2)0.2072 (4)0.0478 (14)
H20.06830.46170.22830.057*
C30.2555 (6)0.4686 (2)0.1653 (5)0.0596 (17)
H30.25470.50100.15580.072*
C40.3689 (6)0.4443 (2)0.1372 (5)0.0605 (17)
H40.44420.46040.11140.073*
C50.3695 (5)0.3956 (2)0.1477 (4)0.0505 (15)
H50.44570.37940.12840.061*
C60.2570 (5)0.37038 (19)0.1869 (4)0.0405 (13)
C70.2574 (5)0.3188 (2)0.1952 (4)0.0397 (12)
C80.3569 (5)0.2945 (2)0.2200 (4)0.0531 (15)
H80.42320.31140.23290.064*
C90.3574 (6)0.2458 (2)0.2256 (5)0.0616 (17)
H90.42430.23040.24100.074*
C100.2592 (6)0.2202 (2)0.2083 (5)0.0599 (17)
H100.25930.18760.21340.072*
C110.1597 (5)0.2428 (2)0.1833 (4)0.0514 (15)
H110.09360.22550.17130.062*
C120.1602 (5)0.2911 (2)0.1766 (4)0.0408 (13)
C130.2596 (5)0.21640 (18)0.3066 (4)0.0394 (12)
C140.1915 (6)0.1900 (2)0.2275 (4)0.0555 (16)
H140.18550.19970.16300.067*
C150.1329 (6)0.1493 (2)0.2442 (5)0.0600 (17)
H150.08450.13220.19100.072*
C160.1454 (5)0.13370 (19)0.3407 (5)0.0506 (15)
C170.2122 (6)0.1612 (2)0.4168 (5)0.0582 (16)
H170.21820.15180.48150.070*
C180.2703 (6)0.2019 (2)0.4018 (4)0.0551 (16)
H180.31630.21950.45520.066*
C190.0912 (6)0.0870 (2)0.3589 (6)0.069 (2)
H19A0.14240.07390.42040.082*
H19B0.09420.06550.30580.082*
C200.2409 (5)0.46520 (19)0.1584 (4)0.0443 (14)
C210.2325 (6)0.4852 (2)0.2471 (5)0.0619 (17)
H210.26680.46990.30690.074*
C220.1733 (6)0.5276 (2)0.2451 (5)0.0606 (17)
H220.17000.54150.30440.073*
C230.1184 (5)0.5500 (2)0.1571 (6)0.0575 (17)
C240.1274 (5)0.5302 (2)0.0719 (5)0.0545 (16)
H240.09150.54550.01230.065*
C250.1886 (5)0.4877 (2)0.0705 (4)0.0505 (15)
H250.19430.47470.01090.061*
C260.0582 (6)0.5975 (2)0.1576 (7)0.086 (3)
H26A0.04360.61160.09240.104*
H26B0.11560.61780.20450.104*
C270.2824 (5)0.3118 (2)0.0172 (4)0.0453 (13)
C280.1792 (6)0.2826 (2)0.0044 (4)0.0545 (15)
H280.10280.29370.01200.065*
C290.1932 (6)0.2355 (2)0.0206 (4)0.0580 (16)
H290.12460.21530.02990.070*
C300.3068 (6)0.2184 (2)0.0318 (4)0.0518 (15)
C310.4050 (6)0.2488 (2)0.0236 (5)0.0591 (16)
H310.47970.23800.03510.071*
C320.3950 (5)0.2958 (2)0.0020 (4)0.0538 (15)
H320.46300.31620.00880.065*
C330.3209 (7)0.1675 (2)0.0525 (5)0.0693 (19)
H33A0.36660.16410.10250.083*
H33B0.23830.15330.07750.083*
C340.3556 (5)0.3579 (2)0.4642 (4)0.0453 (14)
C350.4494 (6)0.3902 (2)0.4700 (5)0.0605 (17)
H350.51280.38460.43880.073*
C360.4494 (7)0.4315 (2)0.5229 (5)0.0670 (18)
H360.51310.45360.52740.080*
C370.3557 (8)0.4398 (3)0.5684 (5)0.073 (2)
C380.2603 (8)0.4073 (3)0.5598 (5)0.081 (2)
H380.19580.41340.58960.097*
C390.2586 (6)0.3658 (2)0.5074 (5)0.0678 (19)
H390.19390.34400.50170.081*
C400.3541 (10)0.4844 (3)0.6263 (6)0.104 (3)
H40A0.43950.49640.64900.125*
H40B0.32530.47710.68430.125*
N10.1362 (4)0.31181 (15)0.2933 (3)0.0398 (10)
N20.3402 (4)0.34123 (15)0.2342 (3)0.0408 (10)
N30.1042 (4)0.37315 (15)0.1405 (3)0.0410 (11)
O10.0320 (3)0.37457 (12)0.2693 (3)0.0400 (9)
O20.0652 (3)0.31282 (12)0.1399 (2)0.0386 (8)
O30.3244 (3)0.25632 (12)0.2862 (3)0.0473 (9)
O40.3618 (3)0.31523 (13)0.4151 (3)0.0467 (9)
O50.3091 (4)0.42359 (13)0.1597 (4)0.0642 (12)
O60.2786 (4)0.35924 (13)0.0467 (3)0.0504 (10)
P10.04465 (12)0.34309 (5)0.21146 (10)0.0365 (3)
P20.28306 (12)0.30824 (5)0.30222 (11)0.0394 (3)
P30.25256 (13)0.37218 (5)0.14930 (11)0.0419 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0496 (4)0.0666 (5)0.1086 (6)0.0111 (3)0.0299 (4)0.0175 (4)
Br20.0483 (4)0.0767 (5)0.1062 (6)0.0045 (3)0.0193 (4)0.0218 (4)
Br30.1166 (7)0.0600 (5)0.0737 (5)0.0086 (4)0.0206 (5)0.0056 (4)
Br40.1407 (8)0.0686 (5)0.0916 (6)0.0241 (5)0.0405 (6)0.0054 (4)
C10.037 (3)0.048 (3)0.038 (3)0.001 (2)0.015 (2)0.009 (2)
C20.047 (3)0.043 (3)0.060 (4)0.004 (3)0.026 (3)0.008 (3)
C30.081 (5)0.044 (4)0.063 (4)0.013 (3)0.034 (4)0.001 (3)
C40.051 (4)0.063 (4)0.068 (4)0.020 (3)0.016 (3)0.001 (3)
C50.045 (3)0.052 (4)0.055 (4)0.005 (3)0.014 (3)0.008 (3)
C60.039 (3)0.046 (3)0.038 (3)0.005 (2)0.011 (2)0.004 (2)
C70.032 (3)0.047 (3)0.040 (3)0.003 (2)0.011 (2)0.001 (2)
C80.044 (3)0.069 (4)0.048 (4)0.008 (3)0.015 (3)0.001 (3)
C90.060 (4)0.065 (4)0.064 (4)0.031 (4)0.024 (3)0.002 (3)
C100.080 (5)0.039 (3)0.060 (4)0.018 (3)0.018 (3)0.001 (3)
C110.051 (3)0.039 (3)0.061 (4)0.004 (3)0.011 (3)0.005 (3)
C120.031 (3)0.049 (3)0.041 (3)0.004 (2)0.007 (2)0.000 (2)
C130.035 (3)0.036 (3)0.049 (3)0.004 (2)0.014 (2)0.002 (2)
C140.073 (4)0.048 (4)0.041 (4)0.001 (3)0.008 (3)0.004 (3)
C150.063 (4)0.052 (4)0.056 (4)0.007 (3)0.001 (3)0.012 (3)
C160.039 (3)0.036 (3)0.079 (5)0.003 (3)0.020 (3)0.000 (3)
C170.075 (4)0.057 (4)0.045 (4)0.013 (3)0.020 (3)0.005 (3)
C180.066 (4)0.056 (4)0.039 (4)0.013 (3)0.007 (3)0.001 (3)
C190.063 (4)0.048 (4)0.107 (6)0.003 (3)0.045 (4)0.001 (4)
C200.038 (3)0.032 (3)0.066 (4)0.001 (2)0.020 (3)0.004 (3)
C210.075 (4)0.063 (4)0.050 (4)0.001 (4)0.019 (3)0.011 (3)
C220.064 (4)0.054 (4)0.067 (4)0.001 (3)0.023 (3)0.019 (3)
C230.044 (3)0.043 (3)0.089 (5)0.004 (3)0.024 (3)0.008 (4)
C240.050 (4)0.044 (3)0.062 (4)0.007 (3)0.001 (3)0.013 (3)
C250.056 (4)0.052 (4)0.045 (4)0.008 (3)0.016 (3)0.009 (3)
C260.061 (4)0.047 (4)0.161 (8)0.000 (3)0.046 (5)0.000 (5)
C270.052 (3)0.047 (3)0.038 (3)0.002 (3)0.015 (3)0.006 (2)
C280.051 (4)0.064 (4)0.052 (4)0.003 (3)0.020 (3)0.001 (3)
C290.059 (4)0.066 (4)0.049 (4)0.014 (3)0.014 (3)0.000 (3)
C300.062 (4)0.049 (4)0.041 (3)0.006 (3)0.008 (3)0.005 (3)
C310.065 (4)0.058 (4)0.057 (4)0.012 (3)0.022 (3)0.006 (3)
C320.041 (3)0.062 (4)0.057 (4)0.001 (3)0.013 (3)0.003 (3)
C330.101 (5)0.049 (4)0.054 (4)0.008 (4)0.014 (4)0.006 (3)
C340.047 (3)0.047 (3)0.040 (3)0.005 (3)0.008 (3)0.005 (3)
C350.059 (4)0.059 (4)0.063 (4)0.004 (3)0.015 (3)0.002 (3)
C360.076 (5)0.051 (4)0.070 (5)0.004 (4)0.012 (4)0.007 (3)
C370.099 (6)0.056 (4)0.059 (4)0.006 (4)0.012 (4)0.005 (3)
C380.103 (6)0.088 (6)0.065 (5)0.017 (5)0.046 (4)0.016 (4)
C390.069 (4)0.068 (5)0.076 (5)0.013 (4)0.035 (4)0.012 (4)
C400.181 (9)0.056 (5)0.068 (5)0.022 (5)0.022 (5)0.005 (4)
N10.033 (2)0.042 (3)0.047 (3)0.0026 (19)0.016 (2)0.004 (2)
N20.031 (2)0.035 (2)0.059 (3)0.0023 (19)0.018 (2)0.002 (2)
N30.034 (2)0.037 (2)0.053 (3)0.0041 (19)0.014 (2)0.010 (2)
O10.0313 (19)0.043 (2)0.047 (2)0.0017 (16)0.0130 (16)0.0061 (17)
O20.0345 (18)0.043 (2)0.042 (2)0.0042 (16)0.0176 (16)0.0089 (16)
O30.048 (2)0.032 (2)0.067 (3)0.0024 (17)0.0243 (19)0.0022 (18)
O40.041 (2)0.043 (2)0.052 (2)0.0017 (17)0.0053 (18)0.0025 (18)
O50.045 (2)0.032 (2)0.125 (4)0.0020 (18)0.040 (2)0.004 (2)
O60.062 (2)0.044 (2)0.057 (2)0.0070 (19)0.036 (2)0.0122 (19)
P10.0320 (7)0.0372 (7)0.0431 (8)0.0004 (6)0.0148 (6)0.0016 (6)
P20.0346 (7)0.0346 (7)0.0494 (9)0.0015 (6)0.0117 (6)0.0005 (6)
P30.0394 (8)0.0330 (7)0.0592 (10)0.0005 (6)0.0236 (7)0.0036 (6)
Geometric parameters (Å, º) top
Br1—C191.958 (6)C23—C241.347 (9)
Br2—C261.953 (7)C23—C261.503 (8)
Br3—C331.963 (6)C24—C251.385 (8)
Br4—C401.932 (8)C24—H240.9300
C1—C21.374 (7)C25—H250.9300
C1—C61.403 (7)C26—H26A0.9700
C1—O11.423 (6)C26—H26B0.9700
C2—C31.382 (8)C27—C281.379 (8)
C2—H20.9300C27—C321.387 (8)
C3—C41.388 (9)C27—O61.413 (7)
C3—H30.9300C28—C291.401 (9)
C4—C51.392 (8)C28—H280.9300
C4—H40.9300C29—C301.387 (8)
C5—C61.407 (7)C29—H290.9300
C5—H50.9300C30—C311.363 (8)
C6—C71.470 (7)C30—C331.492 (8)
C7—C121.407 (7)C31—C321.397 (8)
C7—C81.414 (7)C31—H310.9300
C8—C91.385 (8)C32—H320.9300
C8—H80.9300C33—H33A0.9700
C9—C101.375 (9)C33—H33B0.9700
C9—H90.9300C34—C351.367 (8)
C10—C111.391 (8)C34—C391.378 (8)
C10—H100.9300C34—O41.405 (6)
C11—C121.374 (7)C35—C361.389 (9)
C11—H110.9300C35—H350.9300
C12—O21.422 (6)C36—C371.368 (10)
C13—C181.370 (8)C36—H360.9300
C13—C141.382 (7)C37—C381.377 (10)
C13—O31.409 (6)C37—C401.507 (10)
C14—C151.373 (8)C38—C391.386 (9)
C14—H140.9300C38—H380.9300
C15—C161.393 (9)C39—H390.9300
C15—H150.9300C40—H40A0.9700
C16—C171.368 (8)C40—H40B0.9700
C16—C191.503 (8)N1—P11.581 (4)
C17—C181.364 (8)N1—P21.589 (4)
C17—H170.9300N2—P21.581 (4)
C18—H180.9300N2—P31.583 (4)
C19—H19A0.9700N3—P11.579 (4)
C19—H19B0.9700N3—P31.602 (4)
C20—C251.371 (8)O1—P11.591 (4)
C20—C211.390 (8)O2—P11.599 (4)
C20—O51.398 (6)O3—P21.577 (4)
C21—C221.366 (9)O4—P21.600 (4)
C21—H210.9300O5—P31.579 (4)
C22—C231.377 (9)O6—P31.582 (4)
C22—H220.9300
C2—C1—C6123.1 (5)Br2—C26—H26A109.5
C2—C1—O1117.6 (5)C23—C26—H26B109.5
C6—C1—O1119.1 (5)Br2—C26—H26B109.5
C1—C2—C3118.9 (5)H26A—C26—H26B108.5
C1—C2—H2120.0C28—C27—C32121.3 (6)
C3—C2—H2120.0C28—C27—O6121.7 (5)
C2—C3—C4120.6 (6)C32—C27—O6117.0 (5)
C4—C3—H3120.0C27—C28—C29117.8 (6)
C2—C3—H3120.0C27—C28—H28120.0
C3—C4—C5119.7 (6)C29—C28—H28120.0
C3—C4—H4120.0C30—C29—C28121.7 (6)
C5—C4—H4120.0C30—C29—H29120.0
C4—C5—C6121.2 (5)C28—C29—H29120.0
C4—C5—H5120.0C31—C30—C29119.0 (6)
C6—C5—H5120.0C31—C30—C33120.6 (6)
C1—C6—C5116.4 (5)C29—C30—C33120.4 (6)
C1—C6—C7122.5 (4)C30—C31—C32120.8 (6)
C5—C6—C7121.1 (5)C30—C31—H31120.0
C12—C7—C8116.5 (5)C32—C31—H31120.0
C12—C7—C6121.7 (5)C27—C32—C31119.2 (6)
C8—C7—C6121.8 (5)C27—C32—H32120.0
C9—C8—C7121.1 (6)C31—C32—H32120.0
C9—C8—H8120.0C30—C33—Br3109.7 (4)
C7—C8—H8120.0C30—C33—H33A109.5
C10—C9—C8120.2 (6)Br3—C33—H33A109.5
C10—C9—H9120.0C30—C33—H33B109.5
C8—C9—H9120.0Br3—C33—H33B109.5
C9—C10—C11120.4 (6)H33A—C33—H33B108.5
C9—C10—H10120.0C35—C34—C39121.6 (6)
C11—C10—H10120.0C35—C34—O4118.3 (5)
C12—C11—C10119.3 (6)C39—C34—O4120.1 (5)
C12—C11—H11120.0C34—C35—C36119.5 (6)
C10—C11—H11120.0C34—C35—H35120.0
C11—C12—C7122.4 (5)C36—C35—H35120.0
C11—C12—O2117.9 (5)C37—C36—C35120.1 (7)
C7—C12—O2119.4 (5)C37—C36—H36120.0
C18—C13—C14120.3 (5)C35—C36—H36120.0
C18—C13—O3121.5 (5)C36—C37—C38119.6 (7)
C14—C13—O3118.0 (5)C36—C37—C40120.9 (8)
C15—C14—C13119.9 (6)C38—C37—C40119.5 (8)
C15—C14—H14120.0C37—C38—C39121.2 (7)
C13—C14—H14120.0C37—C38—H38120.0
C14—C15—C16120.3 (6)C39—C38—H38120.0
C14—C15—H15120.0C34—C39—C38118.0 (7)
C16—C15—H15120.0C34—C39—H39120.0
C17—C16—C15117.9 (5)C38—C39—H39120.0
C17—C16—C19121.8 (6)C37—C40—Br4113.3 (5)
C15—C16—C19120.3 (6)C37—C40—H40A109.5
C18—C17—C16122.7 (6)Br4—C40—H40A109.5
C16—C17—H17120.0C37—C40—H40B109.5
C18—C17—H17120.0Br4—C40—H40B109.5
C17—C18—C13118.9 (5)H40A—C40—H40B108.5
C13—C18—H18120.0P1—N1—P2122.0 (3)
C17—C18—H18120.0P2—N2—P3121.5 (2)
C16—C19—Br1111.9 (4)P1—N3—P3121.8 (3)
C16—C19—H19A109.5C1—O1—P1120.4 (3)
Br1—C19—H19A109.5C12—O2—P1120.8 (3)
C16—C19—H19B109.5C13—O3—P2123.0 (3)
Br1—C19—H19B109.5C34—O4—P2120.5 (3)
H19A—C19—H19B108.5C20—O5—P3125.8 (3)
C25—C20—C21120.0 (5)C27—O6—P3120.9 (3)
C25—C20—O5120.1 (5)N3—P1—N1118.0 (2)
C21—C20—O5119.8 (5)N3—P1—O1112.4 (2)
C22—C21—C20119.1 (6)N1—P1—O1105.5 (2)
C22—C21—H21120.0N3—P1—O2105.5 (2)
C20—C21—H21120.0N1—P1—O2112.3 (2)
C21—C22—C23121.3 (6)O1—P1—O2101.99 (18)
C21—C22—H22120.0O3—P2—N2107.0 (2)
C23—C22—H22120.0O3—P2—N1111.9 (2)
C24—C23—C22118.8 (6)N2—P2—N1118.2 (2)
C24—C23—C26121.0 (7)O3—P2—O499.0 (2)
C22—C23—C26120.0 (7)N2—P2—O4108.9 (2)
C23—C24—C25121.8 (6)N1—P2—O4109.9 (2)
C23—C24—H24120.0O5—P3—O697.9 (2)
C25—C24—H24120.0O5—P3—N2107.4 (2)
C20—C25—C24118.9 (6)O6—P3—N2109.4 (2)
C20—C25—H25120.0O5—P3—N3111.0 (2)
C24—C25—H25120.0O6—P3—N3111.2 (2)
C23—C26—Br2112.2 (5)N2—P3—N3118.1 (2)
C23—C26—H26A109.5
O2—P1—O1—C144.8 (4)C5—C6—C7—C836.7 (8)
N1—P1—O1—C1162.3 (4)C1—C6—C7—C8143.2 (6)
N3—P1—O1—C167.8 (4)C6—C7—C12—O26.0 (8)
O1—P1—O2—C1245.8 (4)C12—C7—C8—C90.1 (8)
N1—P1—O2—C1266.8 (4)C8—C7—C12—C110.9 (8)
N3—P1—O2—C12163.4 (4)C6—C7—C12—C11179.5 (5)
N3—P1—N1—P22.8 (4)C8—C7—C12—O2172.6 (5)
N1—P1—N3—P30.5 (4)C6—C7—C8—C9178.7 (5)
O1—P1—N3—P3123.7 (3)C7—C8—C9—C100.9 (9)
O2—P1—N3—P3126.0 (3)C8—C9—C10—C111.2 (10)
O1—P1—N1—P2129.4 (3)C9—C10—C11—C120.4 (9)
O2—P1—N1—P2120.2 (3)C10—C11—C12—C70.7 (9)
N1—P2—O3—C1326.9 (5)C10—C11—C12—O2172.9 (5)
O4—P2—O3—C1388.9 (4)O3—C13—C14—C15176.3 (5)
O3—P2—N1—P1118.6 (3)C18—C13—C14—C150.8 (9)
N2—P2—O3—C13158.0 (4)O3—C13—C18—C17175.6 (5)
O3—P2—O4—C34179.8 (4)C14—C13—C18—C170.3 (9)
N1—P2—O4—C3462.8 (4)C13—C14—C15—C162.2 (10)
N2—P2—O4—C3468.2 (4)C14—C15—C16—C19174.5 (6)
N1—P2—N2—P38.1 (4)C14—C15—C16—C173.0 (9)
N2—P2—N1—P16.5 (4)C15—C16—C17—C182.5 (10)
O3—P2—N2—P3119.4 (3)C19—C16—C17—C18174.9 (6)
O4—P2—N1—P1132.5 (3)C15—C16—C19—Br189.6 (7)
O4—P2—N2—P3134.4 (3)C17—C16—C19—Br193.1 (7)
N2—P3—O5—C20132.4 (5)C16—C17—C18—C131.2 (10)
N3—P3—O5—C202.0 (6)O5—C20—C21—C22175.3 (6)
O6—P3—O5—C20114.4 (5)O5—C20—C25—C24176.5 (5)
O5—P3—N2—P2132.2 (3)C21—C20—C25—C240.3 (9)
O6—P3—N2—P2122.6 (3)C25—C20—C21—C220.9 (9)
N3—P3—N2—P25.8 (4)C20—C21—C22—C232.2 (10)
O5—P3—O6—C27159.7 (4)C21—C22—C23—C242.2 (10)
N2—P3—O6—C2748.1 (5)C21—C22—C23—C26177.7 (6)
N3—P3—O6—C2784.1 (5)C22—C23—C24—C251.0 (9)
O5—P3—N3—P1126.6 (3)C22—C23—C26—Br273.1 (7)
O6—P3—N3—P1125.6 (3)C24—C23—C26—Br2111.5 (6)
N2—P3—N3—P12.0 (4)C26—C23—C24—C25176.4 (6)
P1—O1—C1—C2108.8 (5)C23—C24—C25—C200.3 (9)
P1—O1—C1—C676.9 (6)C32—C27—C28—C292.6 (8)
P1—O2—C12—C775.7 (6)O6—C27—C28—C29177.2 (5)
P1—O2—C12—C11110.5 (5)O6—C27—C32—C31177.7 (5)
P2—O3—C13—C1874.7 (6)C28—C27—C32—C312.1 (8)
P2—O3—C13—C14109.9 (5)C27—C28—C29—C300.3 (8)
P2—O4—C34—C3984.1 (6)C28—C29—C30—C33176.4 (5)
P2—O4—C34—C3597.7 (6)C28—C29—C30—C313.7 (8)
P3—O5—C20—C2194.2 (7)C33—C30—C31—C32175.9 (6)
P3—O5—C20—C2589.6 (7)C29—C30—C31—C324.1 (9)
P3—O6—C27—C32118.7 (5)C29—C30—C33—Br3101.7 (6)
P3—O6—C27—C2861.1 (7)C31—C30—C33—Br378.3 (7)
O1—C1—C6—C5171.9 (5)C30—C31—C32—C271.3 (9)
C6—C1—C2—C30.1 (9)O4—C34—C35—C36176.4 (5)
O1—C1—C2—C3174.1 (5)C39—C34—C35—C361.8 (10)
O1—C1—C6—C78.0 (8)O4—C34—C39—C38176.4 (6)
C2—C1—C6—C52.2 (8)C35—C34—C39—C381.7 (9)
C2—C1—C6—C7178.0 (5)C34—C35—C36—C370.3 (10)
C1—C2—C3—C42.4 (9)C35—C36—C37—C381.2 (11)
C2—C3—C4—C52.6 (10)C35—C36—C37—C40179.9 (7)
C3—C4—C5—C60.3 (9)C36—C37—C38—C391.3 (11)
C4—C5—C6—C7178.2 (5)C40—C37—C38—C39179.8 (7)
C4—C5—C6—C11.9 (8)C36—C37—C40—Br496.5 (9)
C1—C6—C7—C1238.3 (8)C38—C37—C40—Br482.5 (8)
C5—C6—C7—C12141.9 (6)C37—C38—C39—C340.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33A···O1i0.972.603.525 (8)160
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC40H32Br4N3O6P3
Mr1063.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.991 (2), 28.417 (6), 14.008 (3)
β (°) 105.47 (3)
V3)4216.7 (15)
Z4
Radiation typeMo Kα
µ (mm1)3.98
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker P4 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.392, 0.520
No. of measured, independent and
observed [I > 2σ(I)] reflections
52073, 9978, 6049
Rint0.075
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.192, 1.11
No. of reflections9978
No. of parameters505
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.71

Computer programs: XSCANS (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C33—H33A···O1i0.972.603.525 (8)160
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by Natural Science Foundation of China (Grant Nos. 20972143, 20602032).

References

First citationAllcock, H. R. (1977). Angew. Chem. Int. Ed. Engl. 16, 147–150.  CrossRef PubMed Google Scholar
First citationAllcock, H. R. (2000). Polym. Prep. 14, 553–558.  Google Scholar
First citationBruker (2008). XSCANS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationManners, I. (1996). Angew. Chem. Int. Ed. Engl. 35, 1602–1607.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrollsa, M. & Hedrick, J. L. (1998). J. Am. Chem. Soc. 120, 4644–4648.  Google Scholar
First citationWang, L., Ye, Y., Ju, Z., Zhong, S. & Zhao, Y. F. (2009). Phosphorus Sulfur, 184, 1958–1963.  CrossRef CAS Google Scholar
First citationWang, L., Ye, Y., Zhong, S., Zhang, D. & Zhao, Y. F. (2009). Chem. J. Chin. Univ. 30, 493–496  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds