metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(1H-benzimidazole-κN3)(nitrato-κO)copper(II) nitrate

aDepartment of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 May 2011; accepted 18 May 2011; online 25 May 2011)

In the title salt, [Cu(NO3)(C7H6N2)4]NO3, one nitrate anion is coordinated to the CuII atom, which is also coordinated by the N atoms of four N-heterocycles. The geometry at the metal atom is a square pyramid in which the O atom of the anion occupies the apical position [Cu—O = 2.468 (5) and 2.590 (7) Å in the two independent formula units]. The cation lies on a twofold rotation axis; the coordinated nitrate anion is also disordered about this symmetry element. The lattice anion is also disordered about a twofold rotation axis. In the crystal, the cations are linked to the coordinated and free anions by N—H⋯O hydrogen bonds.

Related literature

For selected CuII adducts of imidazole and benzimidazole, see: Dobrzyńska et al. (2010[Dobrzyńska, D., Janczak, J., Wojciechowska, A. & Helios, K. (2010). J. Mol. Struct. 973, 62-68.]); McFadden et al. (1975[McFadden, D. L., McPhail, A. T., Garner, C. D. & Mabbs, F. E. (1975). J. Chem. Soc. Dalton Trans. pp. 263-268.], 1976[McFadden, D. L., McPhail, A. T., Gross, P. M., Garner, C. D. & Mabbs, F. E. (1976). J. Chem. Soc. Dalton Trans. pp. 47-52.]); Sieroń (2007[Sieroń, L. (2007). Acta Cryst. E63, m579-m580.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)(C7H6N2)4]NO3

  • Mr = 660.12

  • Orthorhombic, C 2221

  • a = 15.7181 (2) Å

  • b = 24.9338 (3) Å

  • c = 15.1048 (2) Å

  • V = 5919.75 (13) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.56 mm−1

  • T = 293 K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.860, Tmax = 0.912

  • 7285 measured reflections

  • 5038 independent reflections

  • 4779 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.03

  • 5038 reflections

  • 431 parameters

  • 130 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1676 Friedel pairs

  • Flack parameter: −0.05 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.88 2.21 3.069 (9) 167
N2—H2⋯O3ii 0.88 1.89 2.742 (9) 164
N4—H4⋯O5ii 0.88 2.24 2.964 (9) 139
N4—H4⋯O6iii 0.88 2.10 2.955 (7) 163
N6—H6⋯O7 0.88 2.23 2.998 (14) 146
N8—H8⋯O10 0.88 1.91 2.79 (2) 173
N8—H8⋯O12iv 0.88 1.87 2.75 (3) 175
Symmetry codes: (i) [-x, -y+1, z+{\script{1\over 2}}]; (ii) x, -y+1, -z+1; (iii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iv) x, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Whereas the coordination sphere of the copper(II) ion (and probably most first-row transition metal ions) readily accomodates four to six imidazole ligands, the space sphere is not large enough to fit a similar number of the related benzimidazole ligands. In the copper nitrate–tetrakis(imidazole) adduct, the nitrate ion is involved in coordination (McFadden et al., 1976) but in the hexakis(imidazole) adduct, the nitrate ion is not (McFadden et al., 1975). The tetrakis(benzimidazole)copper species has been reported for the perchlorate (Dobrzyńska et al., 2010) and the sulfate (Sierón, 2007) only. These two, as well the present nitrate (Scheme I), have the CuII atom in a square pyramidal geometry but with the square pyramid being distorted because the ligand crowds out the donor atom of the anion.

In the crystal of the salt, Cu(NO3)(C7H6N2)4.NO3, one nitrate anion is coordinated to the CuII atom, which is also coordinated by the N atoms of four N-heterocycles (Fig. 1). The geometry at the metal atom is a square pyramid in which the O atom of the anion occupies the apical position [Cu–O 2.468 (5), 2.590 (7) Å in the two independent formula units]. The coordinated and lattice nitrates are disordered about this symmetry element. The disorder, which requires space for the anions to rattle around, probably accounts for the somewhat large solvent-accessible voids. Nevertheless, the cations interact with the anions through N–H···O hydrogen bonds (Table 1).

Related literature top

For selected CuII adducts of imidazole and benzimidazole, see: Dobrzyńska et al. (2010); McFadden et al. (1975, 1976); Sieroń (2007).

Experimental top

Copper nitrate trihydrate (0.246 g), 1,3-benzimidazole (0.473 g) and water (2 ml) were placed in a 25-ml, Teflon-lined Parr bomb. The bomb was heated at 413 K for 5 days. Blue prismatic crystals were isolated after the bomb was cooled to room temperature over the course of a day.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The aromatic rings were refined as rigid hexagons with 1.39 Å sides. The four nitrate ions were allowed to refine off twofold rotation axes subject to distance restraints of N–O = 1.24±0.01 Å and O···O 2.15 Å. The four-atom nitrate units were restrained to lie on a plane. The anisotropic displacement parameters of the nitrate ions were restrained to be nearly isotropic. The absolute structure parameter was refined from 1676 Friedel pairs.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of two independent formula units of [Cu(NO3)(C7H6N2)4] NO3 at the 30% probability level with hydrogen atoms drawn as spheres of arbitrary radius. Symmetry-related benzimidazole ligands are not labeled.
Tetrakis(1H-benzimidazole-κN3)(nitrato-κO)copper(II) nitrate top
Crystal data top
[Cu(NO3)(C7H6N2)4]NO3F(000) = 2712
Mr = 660.12Dx = 1.481 Mg m3
Orthorhombic, C2221Cu Kα radiation, λ = 1.5418 Å
Hall symbol: C 2c 2Cell parameters from 5605 reflections
a = 15.7181 (2) Åθ = 2.9–70.5°
b = 24.9338 (3) ŵ = 1.56 mm1
c = 15.1048 (2) ÅT = 293 K
V = 5919.75 (13) Å3Prism, blue
Z = 80.10 × 0.08 × 0.06 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
5038 independent reflections
Radiation source: Enhance (Cu) X-ray Source4779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Detector resolution: 16.0356 pixels mm-1θmax = 70.7°, θmin = 3.3°
ω scansh = 1719
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 3012
Tmin = 0.860, Tmax = 0.912l = 1818
7285 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.081P)2 + 2.0279P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5038 reflectionsΔρmax = 0.32 e Å3
431 parametersΔρmin = 0.31 e Å3
130 restraintsAbsolute structure: Flack (1983), 1676 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
[Cu(NO3)(C7H6N2)4]NO3V = 5919.75 (13) Å3
Mr = 660.12Z = 8
Orthorhombic, C2221Cu Kα radiation
a = 15.7181 (2) ŵ = 1.56 mm1
b = 24.9338 (3) ÅT = 293 K
c = 15.1048 (2) Å0.10 × 0.08 × 0.06 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
5038 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4779 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.912Rint = 0.011
7285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.32 e Å3
S = 1.03Δρmin = 0.31 e Å3
5038 reflectionsAbsolute structure: Flack (1983), 1676 Friedel pairs
431 parametersAbsolute structure parameter: 0.05 (3)
130 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.417817 (18)0.25000.03722 (14)
Cu20.50000.38135 (2)0.75000.05537 (17)
O10.0129 (5)0.5148 (3)0.1902 (6)0.0616 (18)0.50
O20.0161 (7)0.59502 (16)0.2397 (10)0.101 (3)0.50
O30.0386 (5)0.5315 (3)0.3167 (6)0.074 (2)0.50
O40.4732 (5)0.47882 (18)0.7442 (8)0.107 (2)0.50
O50.4466 (6)0.5603 (3)0.7658 (10)0.156 (4)0.50
O60.5717 (4)0.5318 (3)0.7891 (6)0.117 (3)0.50
O70.2850 (7)0.4949 (5)0.4463 (6)0.089 (3)0.50
O80.1786 (3)0.4969 (4)0.5351 (5)0.110 (3)0.50
O90.3011 (5)0.5214 (4)0.5815 (5)0.083 (2)0.50
O100.1531 (11)0.4740 (12)0.9487 (14)0.056 (3)0.50
O110.2713 (2)0.4965 (11)1.0107 (14)0.064 (3)0.50
O120.1518 (13)0.5215 (12)1.0668 (14)0.059 (4)0.50
N10.03749 (15)0.40674 (10)0.37505 (15)0.0423 (5)
N20.04470 (17)0.42208 (11)0.51886 (16)0.0509 (6)
H20.03230.43520.57140.061*
N30.12264 (13)0.41851 (10)0.21267 (16)0.0436 (5)
N40.25856 (17)0.43865 (13)0.2204 (3)0.0744 (11)
H40.30590.45440.23770.089*
N50.46012 (19)0.37857 (12)0.6251 (2)0.0603 (7)
N60.4071 (2)0.40852 (14)0.5002 (2)0.0744 (9)
H60.38160.43020.46260.089*
N70.37999 (19)0.37880 (11)0.7923 (2)0.0598 (7)
N80.2594 (2)0.40803 (13)0.8488 (2)0.0708 (8)
H80.22310.42900.87660.085*
N90.0030 (5)0.54803 (13)0.2490 (8)0.0462 (9)0.50
N100.4980 (6)0.52280 (17)0.7649 (6)0.059 (3)0.50
N110.2553 (4)0.5029 (6)0.5215 (4)0.066 (3)0.50
N120.1927 (3)0.5001 (13)1.0062 (17)0.048 (2)0.50
C10.0063 (2)0.43455 (11)0.44316 (18)0.0478 (6)
H10.03720.45970.43830.057*
C20.10595 (12)0.38578 (8)0.50119 (11)0.0494 (6)
C30.16641 (15)0.35976 (10)0.55281 (9)0.0660 (9)
H30.17020.36720.61300.079*
C40.22118 (14)0.32267 (10)0.51443 (14)0.0723 (10)
H4A0.26160.30530.54900.087*
C50.21549 (13)0.31161 (9)0.42443 (14)0.0680 (9)
H50.25210.28680.39880.082*
C60.15502 (13)0.33764 (8)0.37281 (10)0.0515 (7)
H6A0.15120.33020.31260.062*
C70.10025 (11)0.37472 (7)0.41119 (11)0.0428 (6)
C80.18048 (17)0.44833 (12)0.2533 (3)0.0563 (7)
H8A0.16870.47260.29830.068*
C90.16669 (11)0.38703 (9)0.15231 (13)0.0509 (7)
C100.13867 (13)0.34785 (10)0.09369 (15)0.0656 (9)
H100.08130.33890.09140.079*
C110.1964 (2)0.32205 (10)0.03854 (15)0.0909 (16)
H110.17770.29580.00070.109*
C120.28222 (19)0.33543 (13)0.04201 (19)0.0989 (18)
H120.32090.31820.00510.119*
C130.31024 (11)0.37460 (13)0.1006 (2)0.109 (2)
H130.36760.38360.10290.131*
C140.25248 (13)0.40040 (10)0.15578 (17)0.0682 (10)
C150.4189 (3)0.41740 (16)0.5867 (3)0.0720 (10)
H150.39980.44790.61610.086*
C160.44165 (15)0.36015 (8)0.48107 (15)0.0637 (8)
C170.44827 (18)0.32937 (11)0.40466 (12)0.0818 (12)
H170.42600.34200.35160.098*
C180.48821 (18)0.27966 (11)0.40755 (14)0.0836 (12)
H180.49260.25910.35640.100*
C190.52152 (16)0.26073 (8)0.48686 (18)0.0764 (11)
H190.54820.22750.48880.092*
C200.51490 (15)0.29151 (8)0.56328 (14)0.0638 (9)
H200.53720.27880.61630.077*
C210.47496 (14)0.34122 (8)0.56039 (12)0.0555 (7)
C220.3423 (3)0.41754 (16)0.8371 (3)0.0691 (9)
H220.37020.44790.85810.083*
C230.24100 (14)0.36003 (8)0.80981 (14)0.0602 (8)
C240.16767 (11)0.32924 (11)0.80189 (16)0.0787 (12)
H240.11660.34150.82550.094*
C250.17062 (13)0.28005 (11)0.75867 (18)0.0788 (10)
H250.12160.25950.75340.095*
C260.24690 (16)0.26166 (8)0.72338 (16)0.0724 (10)
H260.24890.22880.69450.087*
C270.32023 (12)0.29245 (8)0.73130 (14)0.0616 (8)
H270.37130.28010.70770.074*
C280.31728 (11)0.34163 (8)0.77451 (14)0.0550 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0294 (2)0.0434 (2)0.0389 (2)0.0000.0016 (2)0.000
Cu20.0546 (3)0.0549 (3)0.0566 (3)0.0000.0062 (4)0.000
O10.068 (4)0.073 (4)0.044 (3)0.014 (3)0.013 (3)0.021 (3)
O20.115 (8)0.055 (2)0.134 (7)0.020 (3)0.018 (6)0.000 (4)
O30.086 (5)0.091 (5)0.044 (3)0.008 (4)0.009 (4)0.006 (3)
O40.129 (6)0.060 (2)0.133 (5)0.009 (3)0.036 (6)0.003 (5)
O50.118 (6)0.138 (6)0.211 (9)0.052 (5)0.003 (7)0.033 (7)
O60.061 (4)0.142 (6)0.147 (6)0.025 (4)0.007 (4)0.027 (5)
O70.089 (6)0.090 (6)0.089 (6)0.006 (6)0.003 (5)0.001 (5)
O80.057 (3)0.101 (4)0.174 (8)0.019 (4)0.015 (4)0.031 (6)
O90.063 (4)0.095 (5)0.090 (5)0.007 (3)0.019 (4)0.011 (4)
O100.046 (4)0.073 (6)0.050 (7)0.006 (4)0.003 (4)0.012 (6)
O110.0424 (17)0.071 (6)0.078 (9)0.005 (4)0.006 (3)0.018 (6)
O120.061 (5)0.073 (6)0.043 (6)0.007 (4)0.010 (4)0.006 (4)
N10.0368 (10)0.0522 (12)0.0380 (10)0.0020 (9)0.0027 (9)0.0038 (9)
N20.0533 (14)0.0601 (14)0.0394 (12)0.0063 (12)0.0041 (11)0.0073 (11)
N30.0311 (10)0.0538 (12)0.0459 (11)0.0016 (10)0.0018 (9)0.0093 (10)
N40.0348 (13)0.0754 (18)0.113 (3)0.0051 (12)0.0058 (15)0.0349 (19)
N50.0558 (15)0.0634 (15)0.0617 (16)0.0083 (13)0.0050 (14)0.0001 (13)
N60.0720 (19)0.078 (2)0.0736 (19)0.0117 (17)0.0163 (17)0.0069 (16)
N70.0567 (15)0.0606 (15)0.0621 (16)0.0058 (13)0.0081 (13)0.0081 (13)
N80.075 (2)0.0740 (19)0.0630 (16)0.0228 (16)0.0177 (16)0.0025 (15)
N90.054 (2)0.0477 (17)0.0371 (15)0.017 (5)0.0012 (19)0.002 (8)
N100.052 (2)0.058 (2)0.069 (7)0.016 (4)0.019 (4)0.007 (3)
N110.052 (3)0.061 (4)0.084 (9)0.003 (4)0.006 (3)0.016 (7)
N120.048 (2)0.0502 (19)0.047 (6)0.009 (6)0.016 (6)0.009 (4)
C10.0430 (14)0.0548 (13)0.0455 (13)0.0012 (14)0.0056 (14)0.0086 (11)
C20.0499 (15)0.0543 (15)0.0441 (14)0.0120 (13)0.0027 (13)0.0022 (12)
C30.077 (2)0.075 (2)0.0459 (16)0.0086 (19)0.0147 (17)0.0073 (16)
C40.070 (2)0.084 (2)0.062 (2)0.0121 (19)0.0175 (18)0.0206 (19)
C50.066 (2)0.073 (2)0.066 (2)0.0192 (19)0.0028 (17)0.0113 (17)
C60.0521 (17)0.0542 (16)0.0483 (15)0.0105 (14)0.0007 (13)0.0039 (13)
C70.0389 (13)0.0467 (13)0.0428 (13)0.0043 (11)0.0016 (12)0.0023 (11)
C80.0377 (13)0.0582 (15)0.0730 (18)0.0052 (11)0.0081 (16)0.0109 (19)
C90.0403 (14)0.0627 (17)0.0498 (15)0.0143 (13)0.0072 (13)0.0207 (14)
C100.074 (2)0.075 (2)0.0479 (16)0.0285 (19)0.0030 (17)0.0040 (16)
C110.110 (4)0.098 (3)0.064 (2)0.060 (3)0.017 (2)0.008 (2)
C120.107 (4)0.108 (4)0.081 (3)0.052 (3)0.040 (3)0.023 (3)
C130.055 (2)0.127 (4)0.145 (5)0.043 (3)0.049 (3)0.080 (4)
C140.0476 (17)0.078 (2)0.079 (2)0.0113 (16)0.0109 (17)0.035 (2)
C150.064 (2)0.066 (2)0.085 (3)0.0150 (18)0.003 (2)0.005 (2)
C160.0464 (16)0.073 (2)0.072 (2)0.0007 (15)0.0037 (16)0.0002 (18)
C170.065 (2)0.117 (3)0.063 (2)0.009 (2)0.0083 (19)0.014 (2)
C180.062 (2)0.098 (3)0.091 (3)0.002 (2)0.002 (2)0.033 (2)
C190.060 (2)0.069 (2)0.100 (3)0.0017 (17)0.002 (2)0.019 (2)
C200.057 (2)0.0583 (17)0.076 (2)0.0025 (15)0.0054 (16)0.0019 (15)
C210.0445 (16)0.0617 (17)0.0604 (17)0.0052 (13)0.0073 (13)0.0039 (15)
C220.078 (2)0.0638 (19)0.066 (2)0.0076 (19)0.0103 (19)0.0075 (17)
C230.0575 (19)0.078 (2)0.0449 (15)0.0174 (17)0.0030 (14)0.0051 (15)
C240.0525 (19)0.124 (4)0.059 (2)0.008 (2)0.0070 (16)0.018 (2)
C250.074 (2)0.101 (3)0.061 (2)0.016 (2)0.004 (2)0.004 (2)
C260.083 (2)0.079 (2)0.0543 (18)0.012 (2)0.0025 (18)0.0043 (16)
C270.065 (2)0.0661 (19)0.0533 (19)0.0039 (16)0.0013 (15)0.0012 (14)
C280.0525 (17)0.0644 (18)0.0481 (15)0.0077 (15)0.0012 (13)0.0038 (13)
Geometric parameters (Å, º) top
Cu1—N1i1.998 (2)C2—C31.3900
Cu1—N11.998 (2)C2—C71.3900
Cu1—N32.008 (2)C3—C41.3900
Cu1—N3i2.008 (2)C3—H30.9300
Cu1—O12.590 (7)C4—C51.3900
Cu2—N51.989 (3)C4—H4A0.9300
Cu2—N5ii1.989 (3)C5—C61.3900
Cu2—N7ii1.993 (3)C5—H50.9300
Cu2—N71.993 (3)C6—C71.3900
Cu2—O42.468 (5)C6—H6A0.9300
O1—N91.240 (7)C8—H8A0.9300
O2—N91.218 (5)C9—C101.3900
O3—N91.236 (9)C9—C141.3900
O4—N101.205 (6)C10—C111.3900
O5—N101.234 (7)C10—H100.9300
O6—N101.237 (8)C11—C121.3900
O7—N111.244 (8)C11—H110.9300
O8—N111.231 (7)C12—C131.3900
O9—N111.246 (8)C12—H120.9300
O10—N121.250 (8)C13—C141.3900
O11—N121.240 (6)C13—H130.9300
O12—N121.239 (8)C15—H150.9300
N1—C11.334 (4)C16—C171.3900
N1—C71.382 (3)C16—C211.3900
N2—C11.330 (4)C17—C181.3900
N2—C21.348 (3)C17—H170.9300
N2—H20.8800C18—C191.3900
N3—C81.325 (4)C18—H180.9300
N3—C91.388 (3)C19—C201.3900
N4—C81.346 (4)C19—H190.9300
N4—C141.368 (4)C20—C211.3900
N4—H40.8800C20—H200.9300
N5—C151.301 (5)C22—H220.9300
N5—C211.370 (3)C23—C241.3900
N6—C151.338 (6)C23—C281.3900
N6—C161.354 (4)C24—C251.3900
N6—H60.8800C24—H240.9300
N7—C221.320 (5)C25—C261.3900
N7—C281.379 (3)C25—H250.9300
N8—C221.337 (5)C26—C271.3900
N8—C231.365 (4)C26—H260.9300
N8—H80.8800C27—C281.3900
C1—H10.9300C27—H270.9300
N1i—Cu1—N1164.10 (14)C4—C5—H5120.0
N1i—Cu1—N391.08 (10)C6—C5—H5120.0
N1—Cu1—N389.06 (10)C7—C6—C5120.0
N1i—Cu1—N3i89.06 (10)C7—C6—H6A120.0
N1—Cu1—N3i91.08 (10)C5—C6—H6A120.0
N3—Cu1—N3i179.02 (14)N1—C7—C6131.44 (15)
N1i—Cu1—O177.06 (17)N1—C7—C2108.53 (15)
N1—Cu1—O1118.83 (17)C6—C7—C2120.0
N3—Cu1—O188.23 (19)N3—C8—N4110.7 (3)
N3i—Cu1—O190.9 (2)N3—C8—H8A124.6
N5—Cu2—N5ii176.00 (17)N4—C8—H8A124.6
N5—Cu2—N7ii89.60 (13)N3—C9—C10131.12 (17)
N5ii—Cu2—N7ii90.27 (13)N3—C9—C14108.88 (17)
N5—Cu2—N790.27 (13)C10—C9—C14120.0
N5ii—Cu2—N789.60 (13)C9—C10—C11120.0
N7ii—Cu2—N7176.34 (17)C9—C10—H10120.0
N5—Cu2—O487.0 (3)C11—C10—H10120.0
N5ii—Cu2—O497.0 (3)C10—C11—C12120.0
N7ii—Cu2—O4100.5 (2)C10—C11—H11120.0
N7—Cu2—O483.2 (2)C12—C11—H11120.0
N9—O1—Cu1111.0 (5)C13—C12—C11120.0
N10—O4—Cu2146.3 (6)C13—C12—H12120.0
C1—N1—C7105.0 (2)C11—C12—H12120.0
C1—N1—Cu1123.3 (2)C12—C13—C14120.0
C7—N1—Cu1131.62 (17)C12—C13—H13120.0
C1—N2—C2108.1 (2)C14—C13—H13120.0
C1—N2—H2125.9N4—C14—C13134.80 (19)
C2—N2—H2125.9N4—C14—C9105.18 (19)
C8—N3—C9106.2 (2)C13—C14—C9120.0
C8—N3—Cu1122.2 (2)N5—C15—N6112.4 (4)
C9—N3—Cu1131.17 (17)N5—C15—H15123.8
C8—N4—C14109.0 (3)N6—C15—H15123.8
C8—N4—H4125.5N6—C16—C17134.4 (2)
C14—N4—H4125.5N6—C16—C21105.6 (2)
C15—N5—C21105.8 (3)C17—C16—C21120.0
C15—N5—Cu2123.6 (3)C16—C17—C18120.0
C21—N5—Cu2130.3 (2)C16—C17—H17120.0
C15—N6—C16107.5 (3)C18—C17—H17120.0
C15—N6—H6126.3C19—C18—C17120.0
C16—N6—H6126.3C19—C18—H18120.0
C22—N7—C28105.7 (3)C17—C18—H18120.0
C22—N7—Cu2124.5 (3)C20—C19—C18120.0
C28—N7—Cu2129.45 (19)C20—C19—H19120.0
C22—N8—C23107.8 (3)C18—C19—H19120.0
C22—N8—H8126.1C19—C20—C21120.0
C23—N8—H8126.1C19—C20—H20120.0
O2—N9—O3121.8 (8)C21—C20—H20120.0
O2—N9—O1120.7 (9)N5—C21—C20131.35 (19)
O3—N9—O1117.5 (5)N5—C21—C16108.65 (19)
O4—N10—O5118.7 (9)C20—C21—C16120.0
O4—N10—O6123.0 (7)N7—C22—N8112.0 (4)
O5—N10—O6118.2 (7)N7—C22—H22124.0
O8—N11—O7120.0 (7)N8—C22—H22124.0
O8—N11—O9119.3 (7)N8—C23—C24134.2 (2)
O7—N11—O9120.4 (7)N8—C23—C28105.8 (2)
O11—N12—O12120.5 (10)C24—C23—C28120.0
O11—N12—O10119.7 (10)C23—C24—C25120.0
O12—N12—O10118.6 (6)C23—C24—H24120.0
N2—C1—N1112.0 (3)C25—C24—H24120.0
N2—C1—H1124.0C26—C25—C24120.0
N1—C1—H1124.0C26—C25—H25120.0
N2—C2—C3133.68 (17)C24—C25—H25120.0
N2—C2—C7106.31 (17)C27—C26—C25120.0
C3—C2—C7120.0C27—C26—H26120.0
C2—C3—C4120.0C25—C26—H26120.0
C2—C3—H3120.0C26—C27—C28120.0
C4—C3—H3120.0C26—C27—H27120.0
C3—C4—C5120.0C28—C27—H27120.0
C3—C4—H4A120.0N7—C28—C27131.33 (18)
C5—C4—H4A120.0N7—C28—C23108.66 (18)
C4—C5—C6120.0C27—C28—C23120.0
N1i—Cu1—O1—N9177.7 (5)Cu1—N3—C8—N4175.3 (2)
N1—Cu1—O1—N92.8 (5)C14—N4—C8—N30.6 (4)
N3—Cu1—O1—N990.8 (4)C8—N3—C9—C10178.5 (2)
N3i—Cu1—O1—N988.9 (4)Cu1—N3—C9—C105.7 (3)
N5—Cu2—O4—N10139.8 (18)C8—N3—C9—C142.2 (3)
N5ii—Cu2—O4—N1040.8 (18)Cu1—N3—C9—C14174.97 (16)
N7ii—Cu2—O4—N1050.8 (18)N3—C9—C10—C11179.3 (2)
N7—Cu2—O4—N10129.6 (18)C14—C9—C10—C110.0
N1i—Cu1—N1—C1136.0 (2)C9—C10—C11—C120.0
N3—Cu1—N1—C1133.4 (2)C10—C11—C12—C130.0
N3i—Cu1—N1—C145.7 (2)C11—C12—C13—C140.0
O1—Cu1—N1—C145.9 (3)C8—N4—C14—C13179.2 (2)
N1i—Cu1—N1—C749.0 (2)C8—N4—C14—C90.8 (3)
N3—Cu1—N1—C741.7 (2)C12—C13—C14—N4178.3 (3)
N3i—Cu1—N1—C7139.3 (2)C12—C13—C14—C90.0
O1—Cu1—N1—C7129.1 (3)N3—C9—C14—N41.8 (2)
N1i—Cu1—N3—C8146.8 (2)C10—C9—C14—N4178.7 (2)
N1—Cu1—N3—C849.1 (2)N3—C9—C14—C13179.4 (2)
O1—Cu1—N3—C869.8 (3)C10—C9—C14—C130.0
N1i—Cu1—N3—C941.4 (2)C21—N5—C15—N61.3 (5)
N1—Cu1—N3—C9122.7 (2)Cu2—N5—C15—N6173.2 (3)
O1—Cu1—N3—C9118.4 (3)C16—N6—C15—N51.2 (5)
N7ii—Cu2—N5—C15115.3 (3)C15—N6—C16—C17178.9 (3)
N7—Cu2—N5—C1568.3 (3)C15—N6—C16—C210.5 (4)
O4—Cu2—N5—C1514.8 (4)N6—C16—C17—C18179.4 (3)
N7ii—Cu2—N5—C2157.7 (3)C21—C16—C17—C180.0
N7—Cu2—N5—C21118.6 (3)C16—C17—C18—C190.0
O4—Cu2—N5—C21158.2 (4)C17—C18—C19—C200.0
N5—Cu2—N7—C22116.5 (3)C18—C19—C20—C210.0
N5ii—Cu2—N7—C2267.5 (3)C15—N5—C21—C20178.8 (3)
O4—Cu2—N7—C2229.6 (4)Cu2—N5—C21—C207.2 (4)
N5—Cu2—N7—C2855.6 (3)C15—N5—C21—C160.9 (3)
N5ii—Cu2—N7—C28120.4 (3)Cu2—N5—C21—C16173.1 (2)
O4—Cu2—N7—C28142.5 (4)C19—C20—C21—N5179.8 (3)
Cu1—O1—N9—O2165.0 (7)C19—C20—C21—C160.0
Cu1—O1—N9—O315.0 (7)N6—C16—C21—N50.3 (3)
Cu2—O4—N10—O5159.8 (14)C17—C16—C21—N5179.8 (2)
Cu2—O4—N10—O617 (2)N6—C16—C21—C20179.6 (2)
C2—N2—C1—N12.0 (3)C17—C16—C21—C200.0
C7—N1—C1—N20.2 (3)C28—N7—C22—N80.5 (4)
Cu1—N1—C1—N2176.4 (2)Cu2—N7—C22—N8173.2 (3)
C1—N2—C2—C3178.3 (2)C23—N8—C22—N70.3 (4)
C1—N2—C2—C72.8 (3)C22—N8—C23—C24178.5 (2)
N2—C2—C3—C4178.8 (3)C22—N8—C23—C280.0 (3)
C7—C2—C3—C40.0N8—C23—C24—C25178.3 (3)
C2—C3—C4—C50.0C28—C23—C24—C250.0
C3—C4—C5—C60.0C23—C24—C25—C260.0
C4—C5—C6—C70.0C24—C25—C26—C270.0
C1—N1—C7—C6179.5 (2)C25—C26—C27—C280.0
Cu1—N1—C7—C63.8 (3)C22—N7—C28—C27178.4 (2)
C1—N1—C7—C21.6 (2)Cu2—N7—C28—C278.3 (4)
Cu1—N1—C7—C2174.14 (17)C22—N7—C28—C230.5 (3)
C5—C6—C7—N1177.7 (2)Cu2—N7—C28—C23172.7 (2)
C5—C6—C7—C20.0C26—C27—C28—N7178.8 (3)
N2—C2—C7—N12.7 (2)C26—C27—C28—C230.0
C3—C2—C7—N1178.2 (2)N8—C23—C28—N70.3 (2)
N2—C2—C7—C6179.1 (2)C24—C23—C28—N7179.1 (2)
C3—C2—C7—C60.0N8—C23—C28—C27178.7 (2)
C9—N3—C8—N41.7 (4)C24—C23—C28—C270.0
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1iii0.882.213.069 (9)167
N2—H2···O3iv0.881.892.742 (9)164
N4—H4···O5iv0.882.242.964 (9)139
N4—H4···O6v0.882.102.955 (7)163
N6—H6···O70.882.232.998 (14)146
N8—H8···O100.881.912.79 (2)173
N8—H8···O12vi0.881.872.75 (3)175
Symmetry codes: (iii) x, y+1, z+1/2; (iv) x, y+1, z+1; (v) x+1, y+1, z1/2; (vi) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(NO3)(C7H6N2)4]NO3
Mr660.12
Crystal system, space groupOrthorhombic, C2221
Temperature (K)293
a, b, c (Å)15.7181 (2), 24.9338 (3), 15.1048 (2)
V3)5919.75 (13)
Z8
Radiation typeCu Kα
µ (mm1)1.56
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.860, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
7285, 5038, 4779
Rint0.011
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.03
No. of reflections5038
No. of parameters431
No. of restraints130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.31
Absolute structureFlack (1983), 1676 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.882.213.069 (9)167
N2—H2···O3ii0.881.892.742 (9)164
N4—H4···O5ii0.882.242.964 (9)139
N4—H4···O6iii0.882.102.955 (7)163
N6—H6···O70.882.232.998 (14)146
N8—H8···O100.881.912.79 (2)173
N8—H8···O12iv0.881.872.75 (3)175
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z1/2; (iv) x, y+1, z+2.
 

Acknowledgements

We thank Yuncheng University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDobrzyńska, D., Janczak, J., Wojciechowska, A. & Helios, K. (2010). J. Mol. Struct. 973, 62–68.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMcFadden, D. L., McPhail, A. T., Garner, C. D. & Mabbs, F. E. (1975). J. Chem. Soc. Dalton Trans. pp. 263–268.  CSD CrossRef Google Scholar
First citationMcFadden, D. L., McPhail, A. T., Gross, P. M., Garner, C. D. & Mabbs, F. E. (1976). J. Chem. Soc. Dalton Trans. pp. 47–52.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L. (2007). Acta Cryst. E63, m579–m580.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds