metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m830-m831

(2-{[2-(2-Amino­ethyl­amino)­ethyl­imino]­meth­yl}phenolato-κ4O,N′,N′′,N′′′)copper(II) perchlorate

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cDepartamento de Química Inorgánica, Facultade de Química, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 13 April 2011; accepted 26 May 2011; online 4 June 2011)

The asymmetric unit of the title complex, [Cu(C11H16N3O)]ClO4, consists of two CuII ions coordinated by Schiff base ligands and two perchlorate anions. The Schiff base mol­ecules are linked to the CuII atoms via three N atoms and one O atom, resulting in a square-planar geometry. Inter­molecular hydrogen bonds involving the NH groups as donors and O atoms of the perchlorate anions as acceptors are observed.

Related literature

For related structures, see: Ambrosi et al. (2003[Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Micheloni, M., Pontellini, R. & Rossi, P. (2003). Polyhedron, 22, 1135-1146.]); Jiang et al. (2009[Jiang, J., Chu, Z. & Huang, W. (2009). Inorg. Chim. Acta, 362, 2933-2936.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H16N3O)]ClO4

  • Mr = 369.26

  • Triclinic, [P \overline 1]

  • a = 10.371 (3) Å

  • b = 12.615 (3) Å

  • c = 13.390 (3) Å

  • α = 108.240 (4)°

  • β = 105.568 (4)°

  • γ = 108.154 (4)°

  • V = 1445.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 293 K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 9604 measured reflections

  • 4979 independent reflections

  • 4043 reflections with I > 2σ(I)

  • Rint = 0.024

  • 2 standard reflections every 167 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.131

  • S = 1.04

  • 4979 reflections

  • 403 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.891 (3)
Cu1—N6 1.933 (4)
Cu1—N5 2.005 (4)
Cu1—N4 2.006 (4)
Cu2—O1 1.895 (3)
Cu2—N3 1.930 (3)
Cu2—N2 2.010 (4)
Cu2—N1 2.012 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3Pi 0.85 (2) 2.52 (3) 3.188 (5) 136 (4)
N1—H1⋯O3P 0.85 (2) 2.54 (3) 3.208 (5) 136 (4)
N2—H2⋯O9Pii 0.85 (2) 2.30 (3) 3.069 (6) 151 (4)
N2—H3⋯O2 0.86 (2) 2.12 (2) 2.955 (5) 162 (4)
N4—H4⋯O8P 0.86 (2) 2.46 (3) 3.223 (7) 148 (3)
N4—H5⋯O1 0.86 (2) 2.24 (2) 3.084 (5) 168 (4)
N5—H6⋯O6Piii 0.84 (2) 2.47 (4) 3.081 (5) 131 (4)
N5—H6⋯O4P 0.84 (2) 2.51 (3) 3.195 (5) 139 (4)
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+2, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997)[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title complex, [C11H16N3ClO5Cu]2, consists of two CuII ions coordinated with Schiff base ligands and two perclorate anions. The Schiff base molecules are linked to the CuII atoms via three N atoms and one O atom. Each Shiff base ligand exhibits a square-planar geometry about the copper(II) ion. Intermolecular hydrogen bonds involving the NH groups as donors and O atoms as acceptors are observed. The Cu–O distances are 1.891 (3) and 1.895 (3) A° while the Cu–N are in the range 1.930 (3)- 2.011 (3) A ° . These values are lower than those observed for the copper complex obtained from the ligand 4-chloro-6-hydroxymethyl-2-((3-aminopropylimino)methyl)phenol (Jiang et al. , 2009). The sum of the angles around the Cu1 atom is 359.56° and around Cu2 atom the sum is 360.3°. These facts indicate that there are very slight distortions from the square planar geometry around the CuII atom. In the two molecules the atoms around Cu are situated in the same plane (dihedral angles N2—Cu1—N1—C8 = 178.4 (3)°, N2—Cu1—N1—C8 =-178.4 (3)° , N5—Cu2—N4—C18 = 178.9 (4)° and O2—Cu2—N4—C19 =-177.4 (3)° ). The structure of the complex is shown at Fig. 1. Intermolecular hydrogen bonding network is shown at Fig. 2.

Related literature top

For related structures, see Ambrosi et al. (2003); Jiang et al. (2009).

Experimental top

Diethylentriamine (1.0311 g, 10 mmol) and salicylaldehyde (2.4408 g, 20 mmol) were dissolved in 20 ml of ethanol with few drops of glacial acetic acid. The mixture was refluxed for 3 h. On cooling a yellow oil was isolated. In a round bottomed flask, copper perclhorate (0.5249, 2 mmol) dissoveld in 10 ml of methanol was introduced. The resulting ligand (0.4145 g, 2 mmol) dissolved in 10 ml of methanol was added. Immediate color change was observed indicating instant formation of the complex. The mixture was stirred at room tempearture for two hours. The blue solution was filtered off and the filtrate was letf at room temperature. After one month, suitable blue crystals for X-ray analysis were obtained. Yield: 70%. Anal. Calc. for [C11H16N3ClO5Cu]2 (%): C, 35.78; H, 4.37; N, 11.38. Found: C, 35.80; H, 4.35; N, 11.34. Selected IR data (cm-1, KBr pellet): 3216, 1637, 1600, 1582, 1197, 764.

Refinement top

The H atoms of the NH and NH2 groups were located in the Fourier difference maps and refined with N—H distance restrained to 0.86 (2) A °. Others H atoms (of the CH2 groups) were placed geometrically and refined with a riding model. Uiso(H) for H was assigned as 1.2 Ueq of the parent C atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.
[Figure 2] Fig. 2. Molecular representation of the compound showing hydrogen bonds. The Perchlorate groups are omitted for clarity.
(2-{[2-(2-Aminoethylamino)ethylimino]methyl}phenolato- κ4O,N',N'',N''')copper(II) perchlorate top
Crystal data top
[Cu(C11H16N3O)]ClO4Z = 4
Mr = 369.26F(000) = 756
Triclinic, P1Dx = 1.697 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.371 (3) ÅCell parameters from 25 reflections
b = 12.615 (3) Åθ = 11–15°
c = 13.390 (3) ŵ = 1.72 mm1
α = 108.240 (4)°T = 293 K
β = 105.568 (4)°Prism, blue
γ = 108.154 (4)°0.14 × 0.12 × 0.10 mm
V = 1445.2 (6) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.024
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 1.8°
Graphite monochromatorh = 1212
π scansk = 1515
9604 measured reflectionsl = 1515
4979 independent reflections2 standard reflections every 167 reflections
4043 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0736P)2 + 1.8036P]
where P = (Fo2 + 2Fc2)/3
4979 reflections(Δ/σ)max < 0.001
403 parametersΔρmax = 0.53 e Å3
6 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cu(C11H16N3O)]ClO4γ = 108.154 (4)°
Mr = 369.26V = 1445.2 (6) Å3
Triclinic, P1Z = 4
a = 10.371 (3) ÅMo Kα radiation
b = 12.615 (3) ŵ = 1.72 mm1
c = 13.390 (3) ÅT = 293 K
α = 108.240 (4)°0.14 × 0.12 × 0.10 mm
β = 105.568 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.024
9604 measured reflections2 standard reflections every 167 reflections
4979 independent reflections intensity decay: none
4043 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0376 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.53 e Å3
4979 reflectionsΔρmin = 0.52 e Å3
403 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.48017 (5)0.82083 (4)0.17536 (4)0.03778 (16)
Cu20.69669 (5)0.67765 (4)0.40785 (4)0.03492 (16)
Cl10.71789 (11)0.96716 (9)0.47942 (8)0.0404 (2)
Cl20.18182 (13)0.66397 (10)0.12121 (9)0.0502 (3)
O10.4879 (3)0.6029 (3)0.3599 (2)0.0397 (6)
O20.5561 (3)0.7179 (3)0.0997 (2)0.0421 (7)
O3P0.8668 (4)1.0066 (3)0.5557 (3)0.0625 (9)
O4P0.6998 (4)1.0681 (3)0.4620 (3)0.0635 (9)
O5P0.6818 (4)0.8682 (3)0.3721 (3)0.0620 (9)
O6P0.6191 (5)0.9214 (4)0.5281 (4)0.0790 (12)
O7P0.2836 (5)0.7790 (4)0.0273 (3)0.0841 (13)
O8P0.1176 (7)0.5817 (4)0.0787 (5)0.1186 (19)
O9P0.2632 (8)0.6193 (5)0.1779 (5)0.129 (2)
O10P0.0789 (7)0.6826 (7)0.1963 (6)0.158 (3)
N10.9185 (4)0.7628 (3)0.4620 (3)0.0377 (7)
N20.6939 (4)0.6190 (3)0.2490 (3)0.0390 (8)
N30.7429 (4)0.7226 (3)0.5692 (3)0.0377 (7)
N40.3318 (4)0.6842 (3)0.1875 (3)0.0418 (8)
N50.3875 (4)0.9249 (3)0.2452 (3)0.0435 (8)
N60.5927 (4)0.9644 (3)0.1598 (3)0.0438 (8)
C10.8468 (5)0.6837 (4)0.2588 (4)0.0447 (10)
H1A0.86270.76390.25940.054*
H1B0.86050.63540.19360.054*
C20.9551 (5)0.6995 (4)0.3685 (4)0.0463 (10)
H2A0.94660.61950.36510.056*
H2B1.05580.74860.38110.056*
C30.9887 (5)0.7633 (5)0.5735 (4)0.0487 (11)
H3A1.09100.82550.61290.058*
H3B0.98790.68320.56180.058*
C40.9022 (5)0.7919 (5)0.6450 (4)0.0490 (11)
H4A0.92440.76750.70710.059*
H4B0.92930.88000.67820.059*
C50.6476 (5)0.6967 (4)0.6119 (3)0.0384 (9)
H5A0.68360.71640.69000.046*
C60.4894 (4)0.6394 (4)0.5491 (3)0.0354 (8)
C70.4020 (5)0.6276 (4)0.6131 (4)0.0468 (10)
H70.44840.65270.69170.056*
C80.2508 (5)0.5801 (4)0.5621 (4)0.0499 (11)
H80.19540.57620.60620.060*
C90.1807 (5)0.5377 (4)0.4439 (4)0.0475 (11)
H90.07780.50450.40860.057*
C100.2621 (4)0.5444 (4)0.3793 (4)0.0395 (9)
H100.21250.51320.30000.047*
C110.4171 (4)0.5967 (3)0.4277 (4)0.0356 (8)
C120.2444 (5)0.7334 (5)0.2428 (4)0.0508 (11)
H12A0.29140.76270.32540.061*
H12B0.14540.66860.21470.061*
C130.2352 (5)0.8390 (4)0.2150 (4)0.0468 (10)
H13A0.17540.80820.13380.056*
H13B0.19050.88040.25910.056*
C140.4064 (6)1.0212 (4)0.2021 (4)0.0516 (11)
H14A0.38971.08750.24870.062*
H14B0.33490.98580.12330.062*
C150.5611 (6)1.0710 (4)0.2080 (4)0.0539 (12)
H15A0.56901.11900.16390.065*
H15B0.63151.12430.28710.065*
C160.6800 (5)0.9681 (4)0.1085 (4)0.0508 (11)
H160.72601.04200.10460.061*
C170.7135 (5)0.8673 (4)0.0559 (4)0.0458 (10)
C180.8147 (6)0.8893 (5)0.0056 (5)0.0629 (14)
H180.85900.96810.01020.076*
C190.8513 (7)0.8000 (6)0.0501 (5)0.0713 (16)
H190.91980.81770.08230.086*
C200.7843 (7)0.6823 (6)0.0578 (5)0.0708 (15)
H200.80790.62020.09530.085*
C210.6831 (6)0.6569 (5)0.0100 (4)0.0576 (12)
H210.63740.57680.01800.069*
C220.6463 (5)0.7482 (4)0.0505 (3)0.0425 (10)
H10.939 (5)0.836 (2)0.468 (4)0.037 (11)*
H20.670 (5)0.542 (2)0.220 (4)0.051 (14)*
H30.636 (4)0.635 (4)0.203 (3)0.035 (11)*
H40.275 (4)0.629 (3)0.1181 (19)0.025 (10)*
H50.370 (4)0.651 (4)0.227 (3)0.039 (12)*
H60.435 (4)0.960 (4)0.3166 (18)0.040 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0470 (3)0.0347 (3)0.0394 (3)0.0218 (2)0.0218 (2)0.0175 (2)
Cu20.0324 (3)0.0383 (3)0.0361 (3)0.0163 (2)0.0152 (2)0.0164 (2)
Cl10.0419 (5)0.0336 (5)0.0399 (5)0.0184 (4)0.0122 (4)0.0107 (4)
Cl20.0618 (7)0.0415 (6)0.0332 (5)0.0193 (5)0.0111 (5)0.0091 (4)
O10.0364 (15)0.0482 (16)0.0372 (14)0.0171 (13)0.0167 (12)0.0215 (13)
O20.0559 (17)0.0396 (15)0.0442 (16)0.0262 (14)0.0294 (14)0.0210 (13)
O3P0.0487 (19)0.0512 (19)0.065 (2)0.0210 (16)0.0049 (16)0.0148 (16)
O4P0.062 (2)0.0436 (18)0.069 (2)0.0254 (16)0.0070 (17)0.0193 (16)
O5P0.081 (2)0.054 (2)0.0428 (17)0.0379 (18)0.0181 (17)0.0074 (15)
O6P0.089 (3)0.073 (2)0.091 (3)0.032 (2)0.063 (2)0.035 (2)
O7P0.111 (3)0.057 (2)0.045 (2)0.019 (2)0.012 (2)0.0098 (17)
O8P0.147 (5)0.072 (3)0.105 (4)0.005 (3)0.058 (4)0.037 (3)
O9P0.226 (7)0.106 (4)0.137 (5)0.110 (4)0.134 (5)0.063 (4)
O10P0.103 (4)0.177 (6)0.149 (6)0.051 (4)0.024 (4)0.089 (5)
N10.0353 (18)0.0349 (19)0.0467 (19)0.0161 (15)0.0168 (15)0.0212 (16)
N20.043 (2)0.0359 (19)0.0425 (19)0.0210 (16)0.0195 (16)0.0169 (16)
N30.0327 (17)0.0438 (19)0.0343 (17)0.0160 (15)0.0100 (14)0.0178 (15)
N40.046 (2)0.042 (2)0.042 (2)0.0199 (17)0.0227 (17)0.0184 (17)
N50.052 (2)0.044 (2)0.0327 (18)0.0267 (17)0.0125 (16)0.0124 (16)
N60.051 (2)0.0343 (18)0.0431 (19)0.0203 (16)0.0135 (17)0.0169 (16)
C10.049 (2)0.043 (2)0.051 (2)0.023 (2)0.028 (2)0.021 (2)
C20.035 (2)0.044 (2)0.062 (3)0.0191 (19)0.023 (2)0.020 (2)
C30.034 (2)0.056 (3)0.057 (3)0.020 (2)0.014 (2)0.029 (2)
C40.042 (2)0.058 (3)0.041 (2)0.019 (2)0.0086 (19)0.024 (2)
C50.045 (2)0.036 (2)0.036 (2)0.0192 (18)0.0165 (18)0.0162 (17)
C60.042 (2)0.034 (2)0.042 (2)0.0214 (17)0.0226 (18)0.0206 (17)
C70.066 (3)0.036 (2)0.052 (3)0.027 (2)0.037 (2)0.021 (2)
C80.052 (3)0.052 (3)0.070 (3)0.030 (2)0.040 (2)0.035 (2)
C90.041 (2)0.046 (2)0.074 (3)0.024 (2)0.032 (2)0.036 (2)
C100.035 (2)0.041 (2)0.049 (2)0.0165 (18)0.0154 (18)0.0275 (19)
C110.039 (2)0.032 (2)0.046 (2)0.0195 (17)0.0226 (18)0.0204 (17)
C120.053 (3)0.058 (3)0.051 (3)0.029 (2)0.030 (2)0.022 (2)
C130.047 (2)0.053 (3)0.042 (2)0.029 (2)0.019 (2)0.015 (2)
C140.069 (3)0.048 (3)0.047 (2)0.037 (2)0.021 (2)0.021 (2)
C150.068 (3)0.040 (2)0.053 (3)0.026 (2)0.018 (2)0.021 (2)
C160.055 (3)0.047 (3)0.048 (2)0.014 (2)0.017 (2)0.028 (2)
C170.045 (2)0.052 (3)0.043 (2)0.020 (2)0.021 (2)0.024 (2)
C180.060 (3)0.070 (3)0.067 (3)0.021 (3)0.032 (3)0.041 (3)
C190.071 (4)0.096 (4)0.063 (3)0.036 (3)0.050 (3)0.036 (3)
C200.076 (4)0.079 (4)0.058 (3)0.034 (3)0.039 (3)0.019 (3)
C210.071 (3)0.054 (3)0.054 (3)0.028 (2)0.037 (3)0.018 (2)
C220.047 (2)0.047 (2)0.034 (2)0.022 (2)0.0151 (18)0.0166 (18)
Geometric parameters (Å, º) top
Cu1—O21.891 (3)C3—C41.516 (6)
Cu1—N61.933 (4)C3—H3A0.9700
Cu1—N52.005 (4)C3—H3B0.9700
Cu1—N42.006 (4)C4—H4A0.9700
Cu2—O11.895 (3)C4—H4B0.9700
Cu2—N31.930 (3)C5—C61.436 (6)
Cu2—N22.010 (4)C5—H5A0.9300
Cu2—N12.012 (3)C6—C71.410 (6)
Cl1—O4P1.422 (3)C6—C111.429 (6)
Cl1—O3P1.425 (3)C7—C81.367 (7)
Cl1—O6P1.426 (4)C7—H70.9300
Cl1—O5P1.435 (3)C8—C91.390 (7)
Cl2—O10P1.391 (5)C8—H80.9300
Cl2—O9P1.406 (5)C9—C101.364 (6)
Cl2—O8P1.410 (5)C9—H90.9300
Cl2—O7P1.411 (4)C10—C111.398 (6)
O1—C111.317 (5)C10—H100.9300
O2—C221.311 (5)C12—C131.514 (6)
N1—C31.472 (6)C12—H12A0.9700
N1—C21.472 (5)C12—H12B0.9700
N1—H10.851 (19)C13—H13A0.9700
N2—C11.487 (5)C13—H13B0.9700
N2—H20.849 (19)C14—C151.499 (7)
N2—H30.859 (19)C14—H14A0.9700
N3—C51.276 (5)C14—H14B0.9700
N3—C41.472 (5)C15—H15A0.9700
N4—C121.476 (5)C15—H15B0.9700
N4—H40.861 (19)C16—C171.442 (7)
N4—H50.860 (19)C16—H160.9300
N5—C131.466 (6)C17—C181.396 (7)
N5—C141.483 (6)C17—C221.414 (6)
N5—H60.836 (19)C18—C191.365 (8)
N6—C161.273 (6)C18—H180.9300
N6—C151.476 (6)C19—C201.386 (8)
C1—C21.500 (6)C19—H190.9300
C1—H1A0.9700C20—C211.375 (7)
C1—H1B0.9700C20—H200.9300
C2—H2A0.9700C21—C221.408 (6)
C2—H2B0.9700C21—H210.9300
O2—Cu1—N695.35 (14)H3A—C3—H3B108.4
O2—Cu1—N5176.01 (13)N3—C4—C3108.1 (4)
N6—Cu1—N585.05 (16)N3—C4—H4A110.1
O2—Cu1—N494.12 (14)C3—C4—H4A110.1
N6—Cu1—N4168.50 (15)N3—C4—H4B110.1
N5—Cu1—N485.06 (15)C3—C4—H4B110.1
O1—Cu2—N395.44 (13)H4A—C4—H4B108.4
O1—Cu2—N296.03 (13)N3—C5—C6125.3 (4)
N3—Cu2—N2164.80 (14)N3—C5—H5A117.3
O1—Cu2—N1177.95 (13)C6—C5—H5A117.3
N3—Cu2—N183.63 (14)C7—C6—C11118.9 (4)
N2—Cu2—N185.21 (14)C7—C6—C5117.1 (4)
O4P—Cl1—O3P110.2 (2)C11—C6—C5124.0 (4)
O4P—Cl1—O6P108.8 (3)C8—C7—C6121.5 (4)
O3P—Cl1—O6P109.3 (3)C8—C7—H7119.2
O4P—Cl1—O5P110.8 (2)C6—C7—H7119.2
O3P—Cl1—O5P109.6 (2)C7—C8—C9119.4 (4)
O6P—Cl1—O5P108.0 (2)C7—C8—H8120.3
O10P—Cl2—O9P108.8 (4)C9—C8—H8120.3
O10P—Cl2—O8P113.7 (4)C10—C9—C8120.3 (4)
O9P—Cl2—O8P109.6 (4)C10—C9—H9119.8
O10P—Cl2—O7P108.9 (4)C8—C9—H9119.8
O9P—Cl2—O7P107.0 (4)C9—C10—C11122.5 (4)
O8P—Cl2—O7P108.7 (3)C9—C10—H10118.8
C11—O1—Cu2126.0 (3)C11—C10—H10118.8
C22—O2—Cu1125.5 (3)O1—C11—C10118.9 (4)
C3—N1—C2116.0 (3)O1—C11—C6123.9 (3)
C3—N1—Cu2108.7 (3)C10—C11—C6117.2 (4)
C2—N1—Cu2106.7 (3)N4—C12—C13108.9 (4)
C3—N1—H1111 (3)N4—C12—H12A109.9
C2—N1—H1107 (3)C13—C12—H12A109.9
Cu2—N1—H1106 (3)N4—C12—H12B109.9
C1—N2—Cu2108.0 (3)C13—C12—H12B109.9
C1—N2—H2107 (3)H12A—C12—H12B108.3
Cu2—N2—H2111 (3)N5—C13—C12106.9 (4)
C1—N2—H3108 (3)N5—C13—H13A110.3
Cu2—N2—H3113 (3)C12—C13—H13A110.3
H2—N2—H3110 (4)N5—C13—H13B110.3
C5—N3—C4119.9 (3)C12—C13—H13B110.3
C5—N3—Cu2125.1 (3)H13A—C13—H13B108.6
C4—N3—Cu2115.0 (3)N5—C14—C15108.8 (4)
C12—N4—Cu1109.1 (3)N5—C14—H14A109.9
C12—N4—H4110 (3)C15—C14—H14A109.9
Cu1—N4—H4106 (3)N5—C14—H14B109.9
C12—N4—H5108 (3)C15—C14—H14B109.9
Cu1—N4—H5114 (3)H14A—C14—H14B108.3
H4—N4—H5110 (4)N6—C15—C14107.6 (4)
C13—N5—C14117.2 (4)N6—C15—H15A110.2
C13—N5—Cu1106.1 (3)C14—C15—H15A110.2
C14—N5—Cu1106.3 (3)N6—C15—H15B110.2
C13—N5—H6110 (3)C14—C15—H15B110.2
C14—N5—H6109 (3)H15A—C15—H15B108.5
Cu1—N5—H6108 (3)N6—C16—C17125.4 (4)
C16—N6—C15121.7 (4)N6—C16—H16117.3
C16—N6—Cu1125.1 (3)C17—C16—H16117.3
C15—N6—Cu1113.0 (3)C18—C17—C22119.3 (4)
N2—C1—C2108.4 (3)C18—C17—C16117.3 (4)
N2—C1—H1A110.0C22—C17—C16123.4 (4)
C2—C1—H1A110.0C19—C18—C17122.7 (5)
N2—C1—H1B110.0C19—C18—H18118.7
C2—C1—H1B110.0C17—C18—H18118.7
H1A—C1—H1B108.4C18—C19—C20118.6 (5)
N1—C2—C1106.9 (3)C18—C19—H19120.7
N1—C2—H2A110.3C20—C19—H19120.7
C1—C2—H2A110.3C21—C20—C19120.3 (5)
N1—C2—H2B110.3C21—C20—H20119.9
C1—C2—H2B110.3C19—C20—H20119.9
H2A—C2—H2B108.6C20—C21—C22122.3 (5)
N1—C3—C4108.3 (3)C20—C21—H21118.9
N1—C3—H3A110.0C22—C21—H21118.9
C4—C3—H3A110.0O2—C22—C21118.2 (4)
N1—C3—H3B110.0O2—C22—C17125.0 (4)
C4—C3—H3B110.0C21—C22—C17116.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3Pi0.85 (2)2.52 (3)3.188 (5)136 (4)
N1—H1···O3P0.85 (2)2.54 (3)3.208 (5)136 (4)
N2—H2···O9Pii0.85 (2)2.30 (3)3.069 (6)151 (4)
N2—H3···O20.86 (2)2.12 (2)2.955 (5)162 (4)
N4—H4···O8P0.86 (2)2.46 (3)3.223 (7)148 (3)
N4—H5···O10.86 (2)2.24 (2)3.084 (5)168 (4)
N5—H6···O6Piii0.84 (2)2.47 (4)3.081 (5)131 (4)
N5—H6···O4P0.84 (2)2.51 (3)3.195 (5)139 (4)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C11H16N3O)]ClO4
Mr369.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.371 (3), 12.615 (3), 13.390 (3)
α, β, γ (°)108.240 (4), 105.568 (4), 108.154 (4)
V3)1445.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9604, 4979, 4043
Rint0.024
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.131, 1.04
No. of reflections4979
No. of parameters403
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.52

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
Cu1—O21.891 (3)Cl1—O4P1.422 (3)
Cu1—N61.933 (4)Cl1—O3P1.425 (3)
Cu1—N52.005 (4)Cl1—O6P1.426 (4)
Cu1—N42.006 (4)Cl1—O5P1.435 (3)
Cu2—O11.895 (3)Cl2—O10P1.391 (5)
Cu2—N31.930 (3)Cl2—O9P1.406 (5)
Cu2—N22.010 (4)Cl2—O8P1.410 (5)
Cu2—N12.012 (3)Cl2—O7P1.411 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3Pi0.851 (19)2.52 (3)3.188 (5)136 (4)
N1—H1···O3P0.851 (19)2.54 (3)3.208 (5)136 (4)
N2—H2···O9Pii0.849 (19)2.30 (3)3.069 (6)151 (4)
N2—H3···O20.859 (19)2.12 (2)2.955 (5)162 (4)
N4—H4···O8P0.861 (19)2.46 (3)3.223 (7)148 (3)
N4—H5···O10.860 (19)2.24 (2)3.084 (5)168 (4)
N5—H6···O6Piii0.836 (19)2.47 (4)3.081 (5)131 (4)
N5—H6···O4P0.836 (19)2.51 (3)3.195 (5)139 (4)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

References

First citationAmbrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Micheloni, M., Pontellini, R. & Rossi, P. (2003). Polyhedron, 22, 1135–1146.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJiang, J., Chu, Z. & Huang, W. (2009). Inorg. Chim. Acta, 362, 2933–2936.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m830-m831
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds