metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[bis­­(3,5-di­methyl-1H-pyrazol-1-yl)­borato]cobalt(II)

aDepartment of Chemistry, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran, and bDepartment of Chemistry, University of Akron, Akron, OH, USA
*Correspondence e-mail: sadr@azaruniv.edu

(Received 19 May 2011; accepted 31 May 2011; online 11 June 2011)

The asymmetric unit of the title compound, [Co(C10H16BN4)2], comprises one unit of the complex. The geometry around the CoII ion is a distorted tetra­hedron. The dihedral angles between the pyrazole rings in the two ligands are 47.19 (15) and 47.20 (16)°, while that between the coordination planes is 79.77 (7)°.

Related literature

For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background on pyrazolates and their complexes, see, for example; Trofimenko (1967[Trofimenko, S. (1967). J. Am. Chem. Soc. 89, 6288-6294.]); Trofimenko (1999[Trofimenko, S. (1999). Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands, pp. 292-292. London: Imperial College Press.]); Trofimenko (2004[Trofimenko, S. (2004). Polyhedron, 23, 197-203.]); Sadr et al. (2008[Sadr, M. H., Niaz, S. A., Gorbani, S., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, m158.]); Ruman et al. (2003[Ruman, T., Ciunik, Z. & Wolowiec, S. (2003). Polyhedron, 22, 581-586.]); Krzystek et al. (2010[Krzystek, J., Swenson, D. C., Zvyagin, S. A., Smirnov, D., Ozarowski, A. & Telser, J. (2010). J. Am. Chem. Soc. 132, 5241-5253.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H16BN4)2]

  • Mr = 465.09

  • Monoclinic, P 21 /c

  • a = 8.351 (5) Å

  • b = 14.012 (9) Å

  • c = 19.833 (13) Å

  • β = 93.281 (7)°

  • V = 2317 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2005[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.832, Tmax = 0.914

  • 18648 measured reflections

  • 5048 independent reflections

  • 3947 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.122

  • S = 1.04

  • 5048 reflections

  • 288 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

During the last 40 years anionic polypyrazolylborate ligands (or Trofimeko's scorpionates) have proven to be popular and versatile ligands, binding to a wide variety of transition-metal ions (Trofimenko, 1967; Trofimenko, 1999; Trofimenko, 2004). In addition to variation of the coordinated metal ion or replacing H atoms bonded to a B centre by alkyl moieties, variation of type and number of substituents on the pyrazolyl rings allows for the synthesis of a large number of scorpionate complexes (Ruman et al., 2003; Krzystek et al., 2010). Cobalt complexes with bis pyrazolylborate ligands are of inherent interest in terms of understanding the electronic structure of CoII as a function of coordination environment, even though, CoII complexes themselves are of specific, biological interest as models for the active sites of many metalloproteins. In continuation of our work on the synthesis and structure of pyrazolate complexes (Sadr et al., 2008), we determined the crystal structure of the title compound, [Co(C10 H16 B N4)2] (1).

The asymmetric unit of (1) (Fig. 1), comprises one unit of the complex. The bond lengths and angles are within the normal ranges (Allen, et al., 1987). The geometry around CoII is a distorted tetrahedron defined by N1, N4, N5, and N8 in the coordinated pyrazolate ligands. (Co-N, N-Co-N' ranges: 1.990 (2)-1.996 (2)Å and 97.03 (9)-137.03 (10)°, respectively ). The dihedral angle between the coordination planes (N1–Co1–N4 and N5–Co1–N8) is 79.77 (7)°, and the ones between the pyrazolate rings in each ligand are 47.19 (15) and 47.20 (16)°.

The structure does not present any kind of H-bonding interactions.

Related literature top

For standard values of bond lengths, see: Allen et al., (1987). For background on pyrazolate and their complexes see, for examples; Trofimenko (1967); Trofimenko (1999); Trofimenko (2004); Sadr et al. (2008); Ruman et al. (2003); Krzystek et al. (2010).

Experimental top

Tetrahydrofurane (25 ml) solution of potassium pyrazolborate (2 mmol, 0.48 g) was added into the stock water solution of Co(NO3)2,6H2O (50 ml, 0.1 M). The reaction mixture was stirred for 3 h and the resulting product was extracted with CH2Cl2 (50 ml). The organic phase was washed twice with water (100 ml) and CH2Cl2 was removed on a rotary evaporator. The solid residue was dissolved in THF and left for crystallization from THF/n-Hexane (3/1) mixture at ambient temperature by slow evaporation. After 3 days, block purple crystals were collected. Single crystals suitable for X-ray diffraction analysis were obtained after 4 days.

Refinement top

All hydrogen atoms were positioned geometrically with C–H = 0.95–0.98 Åand included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C), except the B-bound H atoms which were located from the difference Fourier map and constrained to refine with the parent atom with Uiso (H) = 1.2 Ueq (B). A rotating model were applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The H atoms were omitted for clarity.
Bis[bis(3,5-dimethyl-1H-pyrazol-1-yl)borato]cobalt(II) top
Crystal data top
[Co(C10H16BN4)2]F(000) = 980
Mr = 465.09Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5094 reflections
a = 8.351 (5) Åθ = 2.5–28.1°
b = 14.012 (9) ŵ = 0.77 mm1
c = 19.833 (13) ÅT = 100 K
β = 93.281 (7)°Block, purple
V = 2317 (3) Å30.25 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5048 independent reflections
Radiation source: fine-focus sealed tube3947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1010
Tmin = 0.832, Tmax = 0.914k = 1717
18648 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0516P)2 + 2.3676P]
where P = (Fo2 + 2Fc2)/3
5048 reflections(Δ/σ)max < 0.001
288 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Co(C10H16BN4)2]V = 2317 (3) Å3
Mr = 465.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.351 (5) ŵ = 0.77 mm1
b = 14.012 (9) ÅT = 100 K
c = 19.833 (13) Å0.25 × 0.15 × 0.12 mm
β = 93.281 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
5048 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3947 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.914Rint = 0.046
18648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.04Δρmax = 0.60 e Å3
5048 reflectionsΔρmin = 0.61 e Å3
288 parameters
Special details top

Experimental. 'Ratio of minimum to maximum apparent transmission: 0.1661'

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.10933 (4)0.19693 (2)0.197855 (17)0.01815 (12)
N10.1543 (3)0.15049 (15)0.34192 (11)0.0192 (5)
N20.0445 (3)0.15101 (15)0.28722 (11)0.0193 (5)
N30.3688 (2)0.25721 (15)0.29484 (10)0.0172 (5)
N40.2967 (3)0.27492 (16)0.23208 (11)0.0192 (5)
N50.0682 (3)0.28065 (15)0.16145 (11)0.0194 (5)
N60.1491 (3)0.25825 (16)0.10128 (11)0.0196 (5)
N70.0520 (3)0.14005 (16)0.05685 (11)0.0211 (5)
N80.1649 (3)0.13899 (16)0.11056 (11)0.0201 (5)
C10.1616 (4)0.1256 (2)0.46705 (14)0.0293 (7)
H1A0.23060.06900.46950.044*
H1B0.08160.12080.50120.044*
H1C0.22700.18290.47550.044*
C20.0784 (3)0.13186 (19)0.39839 (14)0.0219 (6)
C30.0833 (3)0.1208 (2)0.38042 (14)0.0242 (6)
H30.16620.10710.40980.029*
C40.1002 (3)0.13375 (19)0.31117 (14)0.0228 (6)
C50.2482 (3)0.1303 (2)0.26574 (15)0.0274 (6)
H5A0.27260.19440.24830.041*
H5B0.33790.10720.29100.041*
H5C0.23150.08700.22800.041*
C60.5782 (3)0.3276 (2)0.37451 (14)0.0246 (6)
H6A0.51280.31260.41260.037*
H6B0.62620.39100.38110.037*
H6C0.66340.27980.37180.037*
C70.4748 (3)0.32668 (18)0.31042 (13)0.0191 (5)
C80.4721 (3)0.39084 (19)0.25731 (13)0.0206 (6)
H80.53460.44710.25430.025*
C90.3593 (3)0.35616 (18)0.20939 (13)0.0195 (5)
C100.3077 (3)0.3951 (2)0.14138 (14)0.0251 (6)
H10A0.31010.34410.10770.038*
H10B0.38080.44640.12950.038*
H10C0.19850.42040.14240.038*
C110.0646 (3)0.4077 (2)0.24764 (14)0.0261 (6)
H11A0.08210.36250.28420.039*
H11B0.12340.46690.25540.039*
H11C0.05020.42170.24650.039*
C120.1234 (3)0.36511 (18)0.18175 (13)0.0204 (6)
C130.2387 (3)0.39813 (19)0.13439 (13)0.0210 (6)
H130.29650.45640.13570.025*
C140.2524 (3)0.32872 (19)0.08469 (13)0.0201 (5)
C150.3648 (3)0.3250 (2)0.02312 (14)0.0260 (6)
H15A0.30680.30270.01550.039*
H15B0.40810.38890.01350.039*
H15C0.45290.28100.03100.039*
C160.0339 (4)0.1101 (2)0.06737 (14)0.0282 (6)
H16A0.04760.05990.06660.042*
H16B0.10940.09520.10190.042*
H16C0.01810.17150.07790.042*
C170.1225 (3)0.11597 (19)0.00018 (14)0.0225 (6)
C180.2834 (3)0.09960 (19)0.01625 (14)0.0248 (6)
H180.36250.08130.01380.030*
C190.3061 (3)0.11533 (19)0.08547 (14)0.0221 (6)
C200.4570 (3)0.1113 (2)0.12963 (15)0.0282 (6)
H20A0.50290.17550.13420.042*
H20B0.53400.06880.10930.042*
H20C0.43290.08710.17430.042*
B10.3357 (3)0.1598 (2)0.32884 (16)0.0201 (6)
H1D0.39870.15530.37130.024*
H1E0.36740.10810.29990.024*
B20.1278 (4)0.1565 (2)0.07122 (17)0.0237 (7)
H2A0.16210.10890.10280.028*
H2B0.19370.15030.02960.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01670 (19)0.01856 (19)0.01875 (19)0.00036 (14)0.00268 (13)0.00079 (15)
N10.0196 (12)0.0180 (11)0.0196 (11)0.0006 (9)0.0028 (9)0.0001 (9)
N20.0178 (11)0.0188 (11)0.0208 (11)0.0011 (9)0.0026 (9)0.0018 (9)
N30.0166 (11)0.0174 (11)0.0171 (11)0.0004 (8)0.0039 (9)0.0019 (8)
N40.0178 (11)0.0210 (11)0.0183 (11)0.0002 (9)0.0035 (9)0.0024 (9)
N50.0185 (11)0.0190 (11)0.0200 (11)0.0002 (9)0.0052 (9)0.0024 (9)
N60.0178 (12)0.0201 (11)0.0201 (11)0.0012 (9)0.0040 (9)0.0023 (9)
N70.0217 (12)0.0207 (12)0.0203 (12)0.0013 (9)0.0026 (9)0.0016 (9)
N80.0189 (11)0.0208 (12)0.0203 (11)0.0003 (9)0.0026 (9)0.0009 (9)
C10.0339 (17)0.0305 (16)0.0232 (15)0.0030 (13)0.0002 (12)0.0009 (12)
C20.0250 (14)0.0173 (13)0.0236 (14)0.0013 (11)0.0034 (11)0.0012 (11)
C30.0229 (14)0.0239 (14)0.0265 (15)0.0034 (11)0.0063 (11)0.0025 (12)
C40.0205 (14)0.0184 (13)0.0296 (15)0.0008 (11)0.0030 (11)0.0027 (11)
C50.0161 (14)0.0346 (16)0.0315 (16)0.0024 (12)0.0001 (11)0.0056 (13)
C60.0260 (15)0.0248 (15)0.0223 (14)0.0041 (11)0.0053 (11)0.0017 (11)
C70.0171 (13)0.0185 (13)0.0213 (13)0.0010 (10)0.0016 (10)0.0013 (10)
C80.0209 (14)0.0179 (13)0.0229 (14)0.0027 (10)0.0007 (11)0.0008 (11)
C90.0196 (13)0.0185 (13)0.0205 (13)0.0022 (10)0.0019 (10)0.0018 (10)
C100.0267 (15)0.0263 (15)0.0222 (14)0.0008 (11)0.0004 (11)0.0046 (11)
C110.0287 (16)0.0251 (15)0.0241 (15)0.0003 (12)0.0012 (12)0.0043 (11)
C120.0208 (14)0.0174 (13)0.0230 (14)0.0015 (10)0.0024 (11)0.0003 (10)
C130.0206 (14)0.0195 (13)0.0231 (14)0.0029 (10)0.0019 (11)0.0022 (11)
C140.0186 (13)0.0230 (14)0.0187 (13)0.0005 (10)0.0020 (10)0.0016 (10)
C150.0254 (15)0.0299 (16)0.0223 (14)0.0035 (12)0.0038 (11)0.0006 (12)
C160.0355 (17)0.0268 (15)0.0218 (15)0.0062 (13)0.0035 (12)0.0017 (12)
C170.0278 (15)0.0172 (13)0.0224 (14)0.0013 (11)0.0009 (11)0.0008 (11)
C180.0269 (15)0.0218 (14)0.0261 (15)0.0035 (11)0.0056 (11)0.0017 (11)
C190.0212 (14)0.0187 (13)0.0265 (15)0.0025 (10)0.0028 (11)0.0028 (11)
C200.0207 (15)0.0330 (16)0.0308 (16)0.0017 (12)0.0001 (12)0.0024 (13)
B10.0171 (15)0.0193 (15)0.0233 (15)0.0001 (11)0.0021 (11)0.0039 (12)
B20.0194 (16)0.0215 (15)0.0296 (17)0.0016 (12)0.0029 (12)0.0053 (13)
Geometric parameters (Å, º) top
Co1—N21.990 (2)C6—H6C0.9800
Co1—N81.991 (2)C7—C81.384 (4)
Co1—N51.993 (2)C8—C91.387 (4)
Co1—N41.996 (2)C8—H80.9500
N1—C21.344 (3)C9—C101.495 (4)
N1—N21.380 (3)C10—H10A0.9800
N1—B11.557 (4)C10—H10B0.9800
N2—C41.345 (3)C10—H10C0.9800
N3—C71.340 (3)C11—C121.494 (4)
N3—N41.374 (3)C11—H11A0.9800
N3—B11.554 (4)C11—H11B0.9800
N4—C91.341 (3)C11—H11C0.9800
N5—C121.340 (3)C12—C131.385 (4)
N5—N61.374 (3)C13—C141.385 (4)
N6—C141.340 (3)C13—H130.9500
N6—B21.560 (4)C14—C151.498 (4)
N7—C171.341 (3)C15—H15A0.9800
N7—N81.381 (3)C15—H15B0.9800
N7—B21.561 (4)C15—H15C0.9800
N8—C191.347 (3)C16—C171.495 (4)
C1—C21.496 (4)C16—H16A0.9800
C1—H1A0.9800C16—H16B0.9800
C1—H1B0.9800C16—H16C0.9800
C1—H1C0.9800C17—C181.382 (4)
C2—C31.385 (4)C18—C191.393 (4)
C3—C41.385 (4)C18—H180.9500
C3—H30.9500C19—C201.494 (4)
C4—C51.488 (4)C20—H20A0.9800
C5—H5A0.9800C20—H20B0.9800
C5—H5B0.9800C20—H20C0.9800
C5—H5C0.9800B1—H1D0.9691
C6—C71.495 (4)B1—H1E0.9704
C6—H6A0.9800B2—H2A0.9695
C6—H6B0.9800B2—H2B0.9693
N2—Co1—N8137.03 (10)N4—C9—C8109.3 (2)
N2—Co1—N5106.14 (10)N4—C9—C10121.0 (2)
N8—Co1—N597.50 (10)C8—C9—C10129.8 (2)
N2—Co1—N497.03 (9)C9—C10—H10A109.5
N8—Co1—N4107.57 (10)C9—C10—H10B109.5
N5—Co1—N4110.71 (10)H10A—C10—H10B109.5
C2—N1—N2109.4 (2)C9—C10—H10C109.5
C2—N1—B1131.7 (2)H10A—C10—H10C109.5
N2—N1—B1118.5 (2)H10B—C10—H10C109.5
C4—N2—N1106.9 (2)C12—C11—H11A109.5
C4—N2—Co1131.96 (19)C12—C11—H11B109.5
N1—N2—Co1119.96 (17)H11A—C11—H11B109.5
C7—N3—N4109.1 (2)C12—C11—H11C109.5
C7—N3—B1132.0 (2)H11A—C11—H11C109.5
N4—N3—B1118.2 (2)H11B—C11—H11C109.5
C9—N4—N3107.4 (2)N5—C12—C13109.2 (2)
C9—N4—Co1131.58 (18)N5—C12—C11120.9 (2)
N3—N4—Co1120.24 (16)C13—C12—C11129.8 (2)
C12—N5—N6107.6 (2)C14—C13—C12105.9 (2)
C12—N5—Co1132.25 (18)C14—C13—H13127.0
N6—N5—Co1119.92 (16)C12—C13—H13127.0
C14—N6—N5108.8 (2)N6—C14—C13108.5 (2)
C14—N6—B2131.8 (2)N6—C14—C15122.6 (2)
N5—N6—B2118.7 (2)C13—C14—C15128.8 (2)
C17—N7—N8109.3 (2)C14—C15—H15A109.5
C17—N7—B2131.5 (2)C14—C15—H15B109.5
N8—N7—B2118.8 (2)H15A—C15—H15B109.5
C19—N8—N7106.9 (2)C14—C15—H15C109.5
C19—N8—Co1132.37 (19)H15A—C15—H15C109.5
N7—N8—Co1118.93 (17)H15B—C15—H15C109.5
C2—C1—H1A109.5C17—C16—H16A109.5
C2—C1—H1B109.5C17—C16—H16B109.5
H1A—C1—H1B109.5H16A—C16—H16B109.5
C2—C1—H1C109.5C17—C16—H16C109.5
H1A—C1—H1C109.5H16A—C16—H16C109.5
H1B—C1—H1C109.5H16B—C16—H16C109.5
N1—C2—C3107.9 (2)N7—C17—C18108.4 (2)
N1—C2—C1123.6 (3)N7—C17—C16123.1 (3)
C3—C2—C1128.5 (3)C18—C17—C16128.5 (3)
C4—C3—C2106.5 (2)C17—C18—C19106.0 (2)
C4—C3—H3126.8C17—C18—H18127.0
C2—C3—H3126.8C19—C18—H18127.0
N2—C4—C3109.3 (2)N8—C19—C18109.3 (2)
N2—C4—C5121.6 (3)N8—C19—C20121.3 (2)
C3—C4—C5129.1 (3)C18—C19—C20129.4 (3)
C4—C5—H5A109.5C19—C20—H20A109.5
C4—C5—H5B109.5C19—C20—H20B109.5
H5A—C5—H5B109.5H20A—C20—H20B109.5
C4—C5—H5C109.5C19—C20—H20C109.5
H5A—C5—H5C109.5H20A—C20—H20C109.5
H5B—C5—H5C109.5H20B—C20—H20C109.5
C7—C6—H6A109.5N3—B1—N1110.2 (2)
C7—C6—H6B109.5N3—B1—H1D109.4
H6A—C6—H6B109.5N1—B1—H1D109.6
C7—C6—H6C109.5N3—B1—H1E109.7
H6A—C6—H6C109.5N1—B1—H1E109.7
H6B—C6—H6C109.5H1D—B1—H1E108.2
N3—C7—C8108.3 (2)N6—B2—N7109.7 (2)
N3—C7—C6123.0 (2)N6—B2—H2A109.7
C8—C7—C6128.7 (2)N7—B2—H2A109.8
C7—C8—C9106.0 (2)N6—B2—H2B109.6
C7—C8—H8127.0N7—B2—H2B109.7
C9—C8—H8127.0H2A—B2—H2B108.3
C2—N1—N2—C40.8 (3)N1—N2—C4—C5179.3 (2)
B1—N1—N2—C4174.7 (2)Co1—N2—C4—C511.9 (4)
C2—N1—N2—Co1170.05 (17)C2—C3—C4—N20.6 (3)
B1—N1—N2—Co116.1 (3)C2—C3—C4—C5179.6 (3)
N8—Co1—N2—C490.4 (3)N4—N3—C7—C80.1 (3)
N5—Co1—N2—C430.3 (3)B1—N3—C7—C8170.1 (3)
N4—Co1—N2—C4144.3 (2)N4—N3—C7—C6178.0 (2)
N8—Co1—N2—N1103.6 (2)B1—N3—C7—C68.0 (4)
N5—Co1—N2—N1135.75 (18)N3—C7—C8—C90.0 (3)
N4—Co1—N2—N121.76 (19)C6—C7—C8—C9178.0 (3)
C7—N3—N4—C90.2 (3)N3—N4—C9—C80.2 (3)
B1—N3—N4—C9171.7 (2)Co1—N4—C9—C8169.59 (19)
C7—N3—N4—Co1171.03 (17)N3—N4—C9—C10179.1 (2)
B1—N3—N4—Co117.4 (3)Co1—N4—C9—C1011.5 (4)
N2—Co1—N4—C9147.1 (2)C7—C8—C9—N40.1 (3)
N8—Co1—N4—C968.6 (3)C7—C8—C9—C10178.9 (3)
N5—Co1—N4—C936.9 (3)N6—N5—C12—C130.7 (3)
N2—Co1—N4—N321.2 (2)Co1—N5—C12—C13173.49 (19)
N8—Co1—N4—N3123.16 (19)N6—N5—C12—C11177.2 (2)
N5—Co1—N4—N3131.42 (18)Co1—N5—C12—C118.6 (4)
N2—Co1—N5—C1266.4 (3)N5—C12—C13—C140.8 (3)
N8—Co1—N5—C12149.9 (2)C11—C12—C13—C14176.8 (3)
N4—Co1—N5—C1237.8 (3)N5—N6—C14—C130.2 (3)
N2—Co1—N5—N6119.98 (19)B2—N6—C14—C13169.9 (3)
N8—Co1—N5—N623.8 (2)N5—N6—C14—C15177.4 (2)
N4—Co1—N5—N6135.80 (18)B2—N6—C14—C157.7 (4)
C12—N5—N6—C140.3 (3)C12—C13—C14—N60.6 (3)
Co1—N5—N6—C14174.73 (17)C12—C13—C14—C15176.8 (3)
C12—N5—N6—B2170.9 (2)N8—N7—C17—C180.5 (3)
Co1—N5—N6—B214.0 (3)B2—N7—C17—C18173.1 (3)
C17—N7—N8—C191.0 (3)N8—N7—C17—C16180.0 (2)
B2—N7—N8—C19174.6 (2)B2—N7—C17—C167.4 (5)
C17—N7—N8—Co1167.53 (18)N7—C17—C18—C190.1 (3)
B2—N7—N8—Co118.8 (3)C16—C17—C18—C19179.4 (3)
N2—Co1—N8—C1995.1 (3)N7—N8—C19—C181.1 (3)
N5—Co1—N8—C19141.3 (2)Co1—N8—C19—C18165.08 (19)
N4—Co1—N8—C1926.8 (3)N7—N8—C19—C20177.5 (2)
N2—Co1—N8—N7102.4 (2)Co1—N8—C19—C2013.5 (4)
N5—Co1—N8—N721.16 (19)C17—C18—C19—N80.8 (3)
N4—Co1—N8—N7135.73 (18)C17—C18—C19—C20177.6 (3)
N2—N1—C2—C30.5 (3)C7—N3—B1—N1127.9 (3)
B1—N1—C2—C3173.3 (3)N4—N3—B1—N162.9 (3)
N2—N1—C2—C1179.7 (2)C2—N1—B1—N3125.5 (3)
B1—N1—C2—C17.0 (4)N2—N1—B1—N362.3 (3)
N1—C2—C3—C40.1 (3)C14—N6—B2—N7130.1 (3)
C1—C2—C3—C4179.7 (3)N5—N6—B2—N761.1 (3)
N1—N2—C4—C30.9 (3)C17—N7—B2—N6123.8 (3)
Co1—N2—C4—C3168.27 (19)N8—N7—B2—N664.2 (3)

Experimental details

Crystal data
Chemical formula[Co(C10H16BN4)2]
Mr465.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.351 (5), 14.012 (9), 19.833 (13)
β (°) 93.281 (7)
V3)2317 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.25 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.832, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
18648, 5048, 3947
Rint0.046
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.122, 1.04
No. of reflections5048
No. of parameters288
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.61

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

This research has been supported by a research fund (No. 403/313) from Aza­rbaijan University of Tarbiat Moallem (MHS and BS). CJZ and JTE thank the University of Akron for providing the X-ray facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrzystek, J., Swenson, D. C., Zvyagin, S. A., Smirnov, D., Ozarowski, A. & Telser, J. (2010). J. Am. Chem. Soc. 132, 5241–5253.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRuman, T., Ciunik, Z. & Wolowiec, S. (2003). Polyhedron, 22, 581–586.  CrossRef CAS Google Scholar
First citationSadr, M. H., Niaz, S. A., Gorbani, S., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, m158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrofimenko, S. (1967). J. Am. Chem. Soc. 89, 6288–6294.  CrossRef CAS Web of Science Google Scholar
First citationTrofimenko, S. (1999). Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands, pp. 292–292. London: Imperial College Press.  Google Scholar
First citationTrofimenko, S. (2004). Polyhedron, 23, 197–203.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds