metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m849-m850

Di­aqua­bis­­(propane-1,3-di­amine)­copper(II) bis­­[diammine­tetra­kis­(thio­cyanato-κN)chromate(III)] di­methyl sulfoxide octa­solvate

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Str. 64, 01033 Kyiv, Ukraine, and bInstitute for Scintillation Materials, "Institute for Single Crystals", National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine
*Correspondence e-mail: rusanova_j@yahoo.com

(Received 11 May 2011; accepted 26 May 2011; online 4 June 2011)

The ionic title complex, [Cu(C3H10N2)2(H2O)2][Cr(NCS)4(NH3)2]·8C2H6OS, consists of complex [Cu(dipr)2(H2O)2]2+ copper cations (dipr is propane-1,3-diamine), complex [Cr(NCS)4(NH3)2] anions and uncoord­inated solvent dimethyl sulfoxide (DMSO) mol­ecules. All the metal atoms lie on crystallographic centers of symmetry. The cations are connected to the anions through N—H⋯O hydrogen bonds between the NH3 mol­ecules of the anion and the water mol­ecules of the cation. The DMSO mol­ecules are involved in hydrogen-bonded linkage of the [Cr(NCS)4(NH3)2] anions into supra­molecular chains through bridging O atoms. A network of hydrogen bonds as well as short S⋯S contacts [3.5159 (12) and 3.4880 (12) Å] between the NCS groups of the complex anions link the mol­ecules into a three-dimensional supra­molecular network.

Related literature

For background to direct synthesis see: Nesterov et al. (2004[Nesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. pp. 7868-7876.], 2006[Nesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, F., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605-4607.]); Kovbasyuk et al. (1997[Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, pp. 161-163.], 1998[Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735-2738.]); Vassilyeva et al. (1997[Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, pp. 263-266.]). For the stuctures of related compexes, see: Zhang et al. (2001[Zhang, K.-L., Chen, W., Xu, Y., Wang, Z., Zhong, Z. J. & You, X.-Z. (2001). Polyhedron, pp. 2033-2036.]); Cucos et al. (2006[Cucos, A., Avarvari, N., Andruh, M., Journaux, Y., Muller, A. & Schmidtmann, M. (2006). Eur. J. Inorg. Chem. pp. 903-907.]); Cherkasova & Gorunova (2003[Cherkasova, T. G. & Gorunova, I. P. (2003). Zh. Neorg. Khim. 48, 611-615.]); Kolotilov et al. (2010[Kolotilov, S. V., Cador, O., Gavrilenko, K. S., Golhen, S., Ouahab, L. & Pavlishchuk, V. V. (2010). Eur. J. Inorg. Chem. 8, 1255-1266.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C3H10N2)2(H2O)2]·[Cr(NCS)4(NH3)2]·8(C2H6OS)

  • Mr = 1509.63

  • Triclinic, [P \overline 1]

  • a = 12.2609 (11) Å

  • b = 12.2772 (12) Å

  • c = 13.8578 (12) Å

  • α = 72.466 (8)°

  • β = 89.664 (7)°

  • γ = 61.535 (10)°

  • V = 1724.9 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 100 K

  • 0.6 × 0.4 × 0.3 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.58, Tmax = 0.71

  • 15229 measured reflections

  • 8482 independent reflections

  • 6966 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.08

  • 8482 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1E⋯O2i 0.87 1.88 2.732 (2) 165
O1—H1E⋯S5i 0.87 2.87 3.5905 (18) 142
O1—H1F⋯O4 0.87 1.98 2.786 (2) 153
N1—H1A⋯O2ii 0.92 2.10 2.995 (3) 163
N1—H1B⋯S4iii 0.92 2.70 3.490 (2) 145
N2—H2A⋯O4 0.92 2.33 3.052 (2) 135
N2—H2B⋯O3 0.92 2.24 3.091 (3) 153
N5—H5A⋯O2 0.91 2.11 3.003 (2) 167
N5—H5B⋯O3iv 0.91 2.21 3.079 (2) 161
N5—H5C⋯O5v 0.91 2.09 2.966 (2) 160
N8—H8A⋯O1iii 0.91 2.08 2.956 (2) 162
N8—H8B⋯O5vi 0.91 2.19 3.054 (2) 159
N8—H8C⋯O3vii 0.91 2.10 2.981 (2) 162
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y+1, z; (iii) -x, -y+1, -z; (iv) x+1, y-1, z; (v) -x+1, -y+1, -z+1; (vi) -x, -y+1, -z+1; (vii) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

It has been shown that direct synthesis is an efficient method to obtained novel homo- and heterometallic complexes (Nesterov et al. (2004, 2006); Kovbasyuk et al. (1997, 1998); Vassilyeva et al. (1997)). Continuing our investigations in this paper we present a novel Cu/Cr heterometallic ionic complex which has been synthesized using zerovalent copper, Reinecke's salt and 1,3-propilenediamine as starting materials. As it shown on Fig. 1 Cu atoms in complex cations are in square bypiramidal coordination environment with four N atoms in equatorial position and two O atoms of the H2O molecules in axial position. The Cr centers are coordinated to six N atoms - four NCS-groups in equatorial position and two NH3 molecules in axial position. The bond distances and angles in the title molecule agree well with the corresponding bond distances and angles reported in closely related compounds (Zhang et al., 2001, Cucos et al., 2006; Cherkasova et al., 2003; Kolotilov et al., 2010). There are short interanionic S···S contacts between NCS-groups of the complex anions with the distances 3.5159 (12) and 3.4880 (12) Å whereas sum of standard Van-der-Vaals radius of the sulfur atom is 3.68 Å. The crystal packing of the title compound is presented on Fig 2.

Related literature top

For background to direct synthesis see: Nesterov et al. (2004, 2006); Kovbasyuk et al. (1997, 1998); Vassilyeva et al. (1997). For the stuctures of related compexes, see: Zhang et al. (2001); Cucos et al. (2006); Cherkasova & Gorunova (2003); Kolotilov et al. (2010).

Experimental top

For the preparation of the title compound, copper powder 0.04 g (0.63 mmol), NH4[Cr(NCS)4(NH3)2].H2O 0.45 g (1.26 mmol), 0.11 ml (1.26 mmol) 1,3-propilenediamine (dipr), 20 ml of DMSO, were heated to 323–333 K and stirred magnetically for 15 min, until total dissolution of the copper powder was observed. Addition of a few ml of the PriOH to the cooled solution leads to precipitation within few days of the dark violet crystals suitable for X-ray analysis. They were collected by filter-suction, washed with dry PriOH and finally dried in vacuo at room temperature (yield: 0.59 g, 69%).

Refinement top

The structure was solved by direct methods and refined by the full-matrix least-squares technique in the anisotropic approximation for non-hydrogen atoms using the BRUKER SHELXTL program package. All hydrogen atoms where placed at calculated positions which were refined as 'riding' model.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound. DMSO molecules are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound along b axis.
Diaquabis(propane-1,3-diamine)copper(II) bis[diamminetetrakis(thiocyanato-κN)chromate(III)] dimethyl sulfoxide octasolvate top
Crystal data top
[Cu(C3H10N2)2(H2O)2]·[Cr(NCS)4(NH3)2]·8(C2H6OS)Z = 1
Mr = 1509.63F(000) = 789
Triclinic, P1Dx = 1.453 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.2609 (11) ÅCell parameters from 4303 reflections
b = 12.2772 (12) Åθ = 2.9–25.0°
c = 13.8578 (12) ŵ = 1.15 mm1
α = 72.466 (8)°T = 100 K
β = 89.664 (7)°Block, violet
γ = 61.535 (10)°0.6 × 0.4 × 0.3 mm
V = 1724.9 (3) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
8482 independent reflections
Radiation source: Enhance (Mo) X-ray Source6966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.1827 pixels mm-1θmax = 29.9°, θmin = 2.9°
ω and ϕ scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1615
Tmin = 0.58, Tmax = 0.71l = 1919
15229 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0448P)2 + 1.0385P]
where P = (Fo2 + 2Fc2)/3
8482 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cu(C3H10N2)2(H2O)2]·[Cr(NCS)4(NH3)2]·8(C2H6OS)γ = 61.535 (10)°
Mr = 1509.63V = 1724.9 (3) Å3
Triclinic, P1Z = 1
a = 12.2609 (11) ÅMo Kα radiation
b = 12.2772 (12) ŵ = 1.15 mm1
c = 13.8578 (12) ÅT = 100 K
α = 72.466 (8)°0.6 × 0.4 × 0.3 mm
β = 89.664 (7)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
8482 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
6966 reflections with I > 2σ(I)
Tmin = 0.58, Tmax = 0.71Rint = 0.020
15229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.08Δρmax = 0.76 e Å3
8482 reflectionsΔρmin = 0.56 e Å3
353 parameters
Special details top

Experimental. Xcalibur; Oxford Diffraction, (2010) CrysAlisPro, Oxford Diffraction (2010). Oxford Diffraction Ltd., Version 1.171.34.44 (release 25-10-2010 CrysAlis171 .NET) (compiled Oct 25 2010,18:11:34) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13010 (15)0.77778 (15)0.02683 (12)0.0259 (3)
H1E0.14840.80370.08710.039*
H1F0.19910.74250.01600.039*
Cu10.00001.00000.00000.01782 (9)
Cr11.00000.00000.50000.01666 (10)
Cr20.00000.50000.00000.01895 (11)
S11.22765 (6)0.19198 (6)0.58717 (5)0.03186 (14)
S20.60022 (5)0.32965 (5)0.52979 (4)0.02642 (13)
S30.28491 (6)0.43926 (7)0.26932 (6)0.03845 (16)
S40.34351 (5)0.12439 (6)0.04325 (5)0.02791 (13)
S50.64253 (5)0.22031 (5)0.19080 (4)0.02553 (12)
S60.30881 (5)1.08392 (5)0.23806 (4)0.02493 (12)
S70.47022 (5)0.58296 (6)0.11082 (4)0.02518 (12)
S80.17949 (5)0.48082 (5)0.67464 (4)0.02321 (12)
O20.78274 (14)0.13337 (16)0.19770 (12)0.0264 (3)
O30.18069 (15)1.09692 (16)0.22392 (13)0.0276 (3)
O40.36425 (15)0.72167 (16)0.05789 (12)0.0275 (3)
O50.16592 (15)0.58928 (15)0.71241 (12)0.0263 (3)
N10.10137 (17)0.93537 (17)0.09092 (14)0.0220 (4)
H1A0.15221.00080.11620.026*
H1B0.15350.92720.04960.026*
N20.13971 (17)0.92577 (18)0.12042 (13)0.0212 (4)
H2A0.21330.90490.09400.025*
H2B0.12360.99360.14400.025*
N31.08964 (17)0.08516 (17)0.53719 (13)0.0209 (4)
N40.83883 (17)0.13557 (17)0.52307 (14)0.0220 (4)
N50.96720 (16)0.11943 (17)0.34908 (13)0.0186 (3)
H5A0.91240.11230.31080.022*
H5B1.04100.09390.32410.022*
H5C0.93380.20460.34600.022*
N60.12608 (17)0.47359 (18)0.10717 (15)0.0242 (4)
N70.13479 (17)0.35414 (18)0.03865 (15)0.0239 (4)
N80.03243 (17)0.36323 (17)0.10530 (14)0.0213 (4)
H8A0.07530.33810.07190.026*
H8B0.07860.39960.15010.026*
H8C0.04230.29170.14030.026*
C10.0366 (2)0.8106 (2)0.17926 (17)0.0254 (5)
H1C0.01340.73650.15410.031*
H1D0.09980.79420.21570.031*
C20.0489 (2)0.8171 (2)0.25237 (17)0.0266 (5)
H2C0.07410.74340.31790.032*
H2D0.00180.90030.26690.032*
C30.1658 (2)0.8099 (2)0.21183 (16)0.0256 (5)
H3A0.22240.80270.26690.031*
H3B0.21030.72910.19350.031*
C41.1462 (2)0.1305 (2)0.55823 (16)0.0215 (4)
C50.7391 (2)0.2164 (2)0.52692 (16)0.0207 (4)
C60.1937 (2)0.4591 (2)0.17413 (18)0.0240 (4)
C70.2218 (2)0.2583 (2)0.04054 (16)0.0219 (4)
C80.5722 (2)0.1351 (3)0.1611 (2)0.0333 (5)
H8D0.58210.13330.09130.050*
H8E0.48260.18010.16590.050*
H8F0.61310.04470.20980.050*
C90.6182 (3)0.1991 (3)0.3196 (2)0.0557 (10)
H9A0.65140.10530.35780.084*
H9B0.52800.24800.32140.084*
H9C0.66190.23230.35110.084*
C100.4189 (2)0.9225 (2)0.2392 (2)0.0311 (5)
H10A0.40430.85780.29030.047*
H10B0.50460.90450.25680.047*
H10C0.40830.91670.17120.047*
C110.3450 (3)1.0572 (3)0.3702 (2)0.0402 (6)
H11A0.29261.13900.38420.060*
H11B0.43401.02940.38700.060*
H11C0.32850.98830.41220.060*
C120.6073 (2)0.5762 (3)0.0626 (2)0.0329 (5)
H12A0.60200.57840.00860.049*
H12B0.68180.49460.10460.049*
H12C0.61350.65200.06520.049*
C130.5117 (2)0.5740 (3)0.23673 (19)0.0354 (6)
H13A0.52840.64570.23280.053*
H13B0.58730.48920.27180.053*
H13C0.44230.58240.27500.053*
C140.0292 (2)0.4947 (3)0.6669 (2)0.0331 (5)
H14A0.00740.47580.73580.050*
H14B0.03020.43170.63670.050*
H14C0.03340.58440.62390.050*
C150.1823 (3)0.5356 (3)0.54062 (19)0.0348 (6)
H15A0.10950.62370.50800.052*
H15B0.17910.47440.51040.052*
H15C0.25990.53890.52980.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0239 (8)0.0248 (8)0.0277 (8)0.0124 (7)0.0004 (6)0.0066 (6)
Cu10.01624 (17)0.01650 (17)0.01893 (17)0.00831 (14)0.00019 (13)0.00339 (13)
Cr10.0145 (2)0.0143 (2)0.0189 (2)0.00612 (17)0.00164 (17)0.00447 (17)
Cr20.0162 (2)0.0144 (2)0.0248 (2)0.00683 (18)0.00464 (18)0.00617 (18)
S10.0354 (3)0.0315 (3)0.0385 (3)0.0230 (3)0.0043 (3)0.0136 (3)
S20.0196 (3)0.0210 (3)0.0285 (3)0.0031 (2)0.0046 (2)0.0073 (2)
S30.0249 (3)0.0358 (3)0.0474 (4)0.0128 (3)0.0097 (3)0.0085 (3)
S40.0189 (3)0.0210 (3)0.0415 (3)0.0054 (2)0.0044 (2)0.0154 (2)
S50.0205 (3)0.0208 (3)0.0282 (3)0.0047 (2)0.0019 (2)0.0087 (2)
S60.0225 (3)0.0225 (3)0.0303 (3)0.0126 (2)0.0066 (2)0.0071 (2)
S70.0186 (3)0.0235 (3)0.0323 (3)0.0096 (2)0.0007 (2)0.0095 (2)
S80.0230 (3)0.0177 (2)0.0258 (3)0.0086 (2)0.0018 (2)0.0060 (2)
O20.0186 (8)0.0266 (8)0.0288 (8)0.0080 (6)0.0002 (6)0.0083 (7)
O30.0203 (8)0.0248 (8)0.0363 (9)0.0109 (7)0.0059 (7)0.0093 (7)
O40.0193 (8)0.0240 (8)0.0304 (8)0.0060 (6)0.0000 (6)0.0061 (6)
O50.0292 (8)0.0210 (8)0.0282 (8)0.0115 (7)0.0020 (7)0.0093 (6)
N10.0193 (9)0.0189 (9)0.0257 (9)0.0096 (7)0.0015 (7)0.0046 (7)
N20.0185 (8)0.0228 (9)0.0208 (8)0.0095 (7)0.0018 (7)0.0065 (7)
N30.0192 (9)0.0166 (8)0.0228 (8)0.0069 (7)0.0025 (7)0.0048 (7)
N40.0202 (9)0.0183 (9)0.0233 (9)0.0078 (7)0.0020 (7)0.0046 (7)
N50.0183 (8)0.0173 (8)0.0191 (8)0.0081 (7)0.0033 (7)0.0059 (6)
N60.0192 (9)0.0208 (9)0.0308 (10)0.0094 (7)0.0033 (8)0.0076 (8)
N70.0201 (9)0.0198 (9)0.0306 (9)0.0089 (7)0.0064 (7)0.0085 (7)
N80.0205 (9)0.0168 (8)0.0269 (9)0.0100 (7)0.0041 (7)0.0067 (7)
C10.0270 (11)0.0196 (10)0.0251 (10)0.0115 (9)0.0022 (9)0.0018 (8)
C20.0279 (12)0.0238 (11)0.0197 (10)0.0085 (9)0.0026 (9)0.0041 (8)
C30.0235 (11)0.0232 (11)0.0197 (10)0.0073 (9)0.0039 (8)0.0012 (8)
C40.0215 (10)0.0176 (10)0.0212 (10)0.0078 (8)0.0026 (8)0.0045 (8)
C50.0222 (10)0.0176 (10)0.0204 (9)0.0096 (8)0.0020 (8)0.0046 (8)
C60.0176 (10)0.0173 (10)0.0324 (11)0.0073 (8)0.0041 (9)0.0046 (9)
C70.0194 (10)0.0235 (11)0.0267 (10)0.0122 (9)0.0067 (8)0.0110 (9)
C80.0254 (12)0.0302 (12)0.0427 (14)0.0155 (10)0.0030 (10)0.0075 (11)
C90.0343 (15)0.064 (2)0.0323 (14)0.0075 (14)0.0003 (12)0.0237 (14)
C100.0228 (11)0.0241 (11)0.0393 (13)0.0085 (9)0.0057 (10)0.0070 (10)
C110.0467 (16)0.0494 (17)0.0368 (14)0.0317 (14)0.0075 (12)0.0169 (12)
C120.0197 (11)0.0330 (13)0.0436 (14)0.0112 (10)0.0056 (10)0.0133 (11)
C130.0267 (12)0.0367 (14)0.0314 (12)0.0080 (11)0.0039 (10)0.0101 (11)
C140.0312 (13)0.0326 (13)0.0399 (13)0.0195 (11)0.0069 (11)0.0119 (11)
C150.0510 (16)0.0367 (14)0.0314 (12)0.0301 (13)0.0165 (11)0.0166 (11)
Geometric parameters (Å, º) top
O1—H1E0.8692N4—C51.165 (3)
O1—H1F0.8704N5—H5A0.9100
Cu1—O12.5655 (16)N5—H5B0.9100
Cu1—N12.0202 (18)N5—H5C0.9100
Cu1—N1i2.0202 (18)N6—C61.162 (3)
Cu1—N2i2.0442 (17)N7—C71.159 (3)
Cu1—N22.0442 (17)N8—H8A0.9100
Cr1—N41.9888 (18)N8—H8B0.9100
Cr1—N4ii1.9888 (18)N8—H8C0.9100
Cr1—N3ii1.9983 (19)C1—C21.508 (3)
Cr1—N31.9983 (19)C1—H1C0.9900
Cr1—N52.0702 (17)C1—H1D0.9900
Cr1—N5ii2.0702 (17)C2—C31.509 (3)
Cr2—N61.9898 (19)C2—H2C0.9900
Cr2—N6iii1.9898 (19)C2—H2D0.9900
Cr2—N7iii1.9928 (18)C3—H3A0.9900
Cr2—N71.9928 (19)C3—H3B0.9900
Cr2—N82.0640 (17)C8—H8D0.9800
Cr2—N8iii2.0641 (17)C8—H8E0.9800
S1—C41.623 (2)C8—H8F0.9800
S2—C51.615 (2)C9—H9A0.9800
S3—C61.617 (2)C9—H9B0.9800
S4—C71.622 (2)C9—H9C0.9800
S5—O21.5149 (16)C10—H10A0.9800
S5—C81.769 (3)C10—H10B0.9800
S5—C91.770 (3)C10—H10C0.9800
S6—O31.5090 (17)C11—H11A0.9800
S6—C111.780 (3)C11—H11B0.9800
S6—C101.783 (2)C11—H11C0.9800
S7—O41.5086 (16)C12—H12A0.9800
S7—C131.777 (3)C12—H12B0.9800
S7—C121.779 (2)C12—H12C0.9800
S8—O51.5108 (17)C13—H13A0.9800
S8—C141.769 (3)C13—H13B0.9800
S8—C151.781 (2)C13—H13C0.9800
N1—C11.483 (3)C14—H14A0.9800
N1—H1A0.9200C14—H14B0.9800
N1—H1B0.9200C14—H14C0.9800
N2—C31.489 (3)C15—H15A0.9800
N2—H2A0.9200C15—H15B0.9800
N2—H2B0.9200C15—H15C0.9800
N3—C41.159 (3)
H1E—O1—H1F105.3Cr2—N8—H8B109.5
N1—Cu1—N1i180.00 (11)H8A—N8—H8B109.5
N1—Cu1—N2i87.84 (7)Cr2—N8—H8C109.5
N1i—Cu1—N2i92.16 (7)H8A—N8—H8C109.5
N1—Cu1—N292.16 (7)H8B—N8—H8C109.5
N1i—Cu1—N287.84 (7)N1—C1—C2110.69 (19)
N2i—Cu1—N2180.0N1—C1—H1C109.5
N1—Cu1—O192.27 (6)C2—C1—H1C109.5
N1i—Cu1—O187.73 (6)N1—C1—H1D109.5
N2i—Cu1—O194.59 (6)C2—C1—H1D109.5
N2—Cu1—O185.41 (6)H1C—C1—H1D108.1
N4—Cr1—N4ii180.00 (10)C1—C2—C3113.34 (19)
N4—Cr1—N3ii89.65 (8)C1—C2—H2C108.9
N4ii—Cr1—N3ii90.35 (8)C3—C2—H2C108.9
N4—Cr1—N390.35 (8)C1—C2—H2D108.9
N4ii—Cr1—N389.65 (8)C3—C2—H2D108.9
N3ii—Cr1—N3180.00 (6)H2C—C2—H2D107.7
N4—Cr1—N590.24 (7)N2—C3—C2113.53 (18)
N4ii—Cr1—N589.76 (7)N2—C3—H3A108.9
N3ii—Cr1—N591.87 (7)C2—C3—H3A108.9
N3—Cr1—N588.13 (7)N2—C3—H3B108.9
N4—Cr1—N5ii89.76 (7)C2—C3—H3B108.9
N4ii—Cr1—N5ii90.24 (7)H3A—C3—H3B107.7
N3ii—Cr1—N5ii88.13 (7)N3—C4—S1178.9 (2)
N3—Cr1—N5ii91.87 (7)N4—C5—S2178.86 (19)
N5—Cr1—N5ii180.000 (1)N6—C6—S3178.4 (2)
N6—Cr2—N6iii180.0N7—C7—S4179.9 (3)
N6—Cr2—N7iii90.37 (8)S5—C8—H8D109.5
N6iii—Cr2—N7iii89.63 (8)S5—C8—H8E109.5
N6—Cr2—N789.63 (8)H8D—C8—H8E109.5
N6iii—Cr2—N790.37 (8)S5—C8—H8F109.5
N7iii—Cr2—N7180.00 (10)H8D—C8—H8F109.5
N6—Cr2—N889.48 (8)H8E—C8—H8F109.5
N6iii—Cr2—N890.52 (8)S5—C9—H9A109.5
N7iii—Cr2—N891.17 (7)S5—C9—H9B109.5
N7—Cr2—N888.83 (7)H9A—C9—H9B109.5
N6—Cr2—N8iii90.52 (8)S5—C9—H9C109.5
N6iii—Cr2—N8iii89.48 (8)H9A—C9—H9C109.5
N7iii—Cr2—N8iii88.83 (7)H9B—C9—H9C109.5
N7—Cr2—N8iii91.17 (7)S6—C10—H10A109.5
N8—Cr2—N8iii180.00 (14)S6—C10—H10B109.5
O2—S5—C8105.70 (11)H10A—C10—H10B109.5
O2—S5—C9104.89 (11)S6—C10—H10C109.5
C8—S5—C998.98 (17)H10A—C10—H10C109.5
O3—S6—C11105.98 (12)H10B—C10—H10C109.5
O3—S6—C10105.91 (11)S6—C11—H11A109.5
C11—S6—C1097.80 (13)S6—C11—H11B109.5
O4—S7—C13106.08 (11)H11A—C11—H11B109.5
O4—S7—C12106.13 (11)S6—C11—H11C109.5
C13—S7—C1297.55 (13)H11A—C11—H11C109.5
O5—S8—C14105.80 (11)H11B—C11—H11C109.5
O5—S8—C15106.19 (11)S7—C12—H12A109.5
C14—S8—C1597.93 (13)S7—C12—H12B109.5
C1—N1—Cu1120.07 (14)H12A—C12—H12B109.5
C1—N1—H1A107.3S7—C12—H12C109.5
Cu1—N1—H1A107.3H12A—C12—H12C109.5
C1—N1—H1B107.3H12B—C12—H12C109.5
Cu1—N1—H1B107.3S7—C13—H13A109.5
H1A—N1—H1B106.9S7—C13—H13B109.5
C3—N2—Cu1121.96 (14)H13A—C13—H13B109.5
C3—N2—H2A106.8S7—C13—H13C109.5
Cu1—N2—H2A106.8H13A—C13—H13C109.5
C3—N2—H2B106.8H13B—C13—H13C109.5
Cu1—N2—H2B106.8S8—C14—H14A109.5
H2A—N2—H2B106.7S8—C14—H14B109.5
C4—N3—Cr1177.22 (18)H14A—C14—H14B109.5
C5—N4—Cr1173.03 (18)S8—C14—H14C109.5
Cr1—N5—H5A109.5H14A—C14—H14C109.5
Cr1—N5—H5B109.5H14B—C14—H14C109.5
H5A—N5—H5B109.5S8—C15—H15A109.5
Cr1—N5—H5C109.5S8—C15—H15B109.5
H5A—N5—H5C109.5H15A—C15—H15B109.5
H5B—N5—H5C109.5S8—C15—H15C109.5
C6—N6—Cr2175.38 (19)H15A—C15—H15C109.5
C7—N7—Cr2166.49 (18)H15B—C15—H15C109.5
Cr2—N8—H8A109.5
Symmetry codes: (i) x, y+2, z; (ii) x+2, y, z+1; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1E···O2iv0.871.882.732 (2)165
O1—H1E···S5iv0.872.873.5905 (18)142
O1—H1F···O40.871.982.786 (2)153
N1—H1A···O2v0.922.102.995 (3)163
N1—H1B···S4iii0.922.703.490 (2)145
N2—H2A···O40.922.333.052 (2)135
N2—H2B···O30.922.243.091 (3)153
N5—H5A···O20.912.113.003 (2)167
N5—H5B···O3vi0.912.213.079 (2)161
N5—H5C···O5vii0.912.092.966 (2)160
N8—H8A···O1iii0.912.082.956 (2)162
N8—H8B···O5viii0.912.193.054 (2)159
N8—H8C···O3ix0.912.102.981 (2)162
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x1, y+1, z; (vi) x+1, y1, z; (vii) x+1, y+1, z+1; (viii) x, y+1, z+1; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C3H10N2)2(H2O)2]·[Cr(NCS)4(NH3)2]·8(C2H6OS)
Mr1509.63
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)12.2609 (11), 12.2772 (12), 13.8578 (12)
α, β, γ (°)72.466 (8), 89.664 (7), 61.535 (10)
V3)1724.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.6 × 0.4 × 0.3
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.58, 0.71
No. of measured, independent and
observed [I > 2σ(I)] reflections
15229, 8482, 6966
Rint0.020
(sin θ/λ)max1)0.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.08
No. of reflections8482
No. of parameters353
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.56

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1E···O2i0.871.882.732 (2)165
O1—H1E···S5i0.872.873.5905 (18)142
O1—H1F···O40.871.982.786 (2)153
N1—H1A···O2ii0.922.102.995 (3)163
N1—H1B···S4iii0.922.703.490 (2)145
N2—H2A···O40.922.333.052 (2)135
N2—H2B···O30.922.243.091 (3)153
N5—H5A···O20.912.113.003 (2)167
N5—H5B···O3iv0.912.213.079 (2)161
N5—H5C···O5v0.912.092.966 (2)160
N8—H8A···O1iii0.912.082.956 (2)162
N8—H8B···O5vi0.912.193.054 (2)159
N8—H8C···O3vii0.912.102.981 (2)162
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x+1, y1, z; (v) x+1, y+1, z+1; (vi) x, y+1, z+1; (vii) x, y1, z.
 

Acknowledgements

The authors gratefully acknowledge the Ukrainian State Fund for Fundamental Researchers (SFFR) for financial support of the Research Program (Chemistry).

References

First citationCherkasova, T. G. & Gorunova, I. P. (2003). Zh. Neorg. Khim. 48, 611–615.  CAS Google Scholar
First citationCucos, A., Avarvari, N., Andruh, M., Journaux, Y., Muller, A. & Schmidtmann, M. (2006). Eur. J. Inorg. Chem. pp. 903–907.  Web of Science CSD CrossRef Google Scholar
First citationKolotilov, S. V., Cador, O., Gavrilenko, K. S., Golhen, S., Ouahab, L. & Pavlishchuk, V. V. (2010). Eur. J. Inorg. Chem. 8, 1255–1266.  Web of Science CSD CrossRef Google Scholar
First citationKovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, pp. 161–163.  CSD CrossRef Web of Science Google Scholar
First citationKovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735–2738.  Web of Science CSD CrossRef Google Scholar
First citationNesterov, D. S., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Jezierska, J., Ozarowski, F., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2006). Chem. Commun. pp. 4605–4607.  Web of Science CSD CrossRef Google Scholar
First citationNesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. pp. 7868–7876.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, pp. 263–266.  CSD CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, K.-L., Chen, W., Xu, Y., Wang, Z., Zhong, Z. J. & You, X.-Z. (2001). Polyhedron, pp. 2033–2036.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m849-m850
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds