metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m950-m951

Poly[hemi(hexa­aqua­zinc) [[μ2-1,3-bis­­(1,2,4-triazol-1-yl)methane](μ2-5-sulfonato­benzene-1,3-di­carboxyl­ato)zinc] sesquihydrate]

aCollege of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: lilytianli@hotmail.com

(Received 19 May 2011; accepted 13 June 2011; online 18 June 2011)

The title coordination polymer, {[Zn(H2O)6]0.5[Zn(C8H3O7S)(C5H6N6)]·1.5H2O}n, synthesized under hydro­thermal conditions, possesses a one-dimensional tube-like chain structure along [100], with octahedral [Zn(H2O)6]2+ groups ([\overline1] symmetry) trapped in the pores. The other Zn atom is five-coordinated in a highly distorted trigonal–biyramidal coordin­ation that is defined by two different N atoms from two 1,3-bis­(1,2,4-triazol-1-yl)methane (btrm) ligands and three carboxyl­ate O atoms from 5-sulfonato­benzene-1,3-dicarboxyl­ate ligands. The chains carry negative charges, whereas the free [Zn(H2O)6]2+ cations are positively charged. The [Zn(H2O)6]2+ cation is connected with the one-dimensional tubelike chain through weak classical O—H⋯O and O—H⋯N hydrogen-bonding inter­actions as well as through electrostatic inter­actions. One of the two uncoordinated water molecules exhibits half-occupancy.

Related literature

For properties of organic–inorganic hybrid materials, see: Ishikava et al. (2003[Ishikava, N., Sugita, M., Ishikawa, T., Koshihara, S. Y. & Kaizu, Y. (2003). J. Am. Chem. Soc. 125, 8694-8695.]). One of the key steps in the preparation of polymeric transition metal complexes is to select multidentate bridging ligands or mixed multidentate ligands, see: Biradha et al. (2006[Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169-4179.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(H2O)6]0.5[Zn(C8H3O7S)(C5H6N6)]·1.5H2O

  • Mr = 571.48

  • Monoclinic, P 21 /c

  • a = 10.2611 (3) Å

  • b = 16.9967 (4) Å

  • c = 11.4808 (3) Å

  • β = 93.812 (2)°

  • V = 1997.88 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 293 K

  • 0.23 × 0.15 × 0.14 mm

Data collection
  • Bruker SuperNova Eos diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SAINT, SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.657, Tmax = 0.767

  • 7740 measured reflections

  • 3524 independent reflections

  • 2763 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.155

  • S = 1.11

  • 3524 reflections

  • 304 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 1.67 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O3i 0.86 1.90 2.628 (7) 141
O8—H8B⋯O11 0.86 2.40 3.126 (7) 143
O8—H8B⋯O7ii 0.86 2.49 2.983 (7) 117
O9—H9A⋯O6iii 0.86 1.91 2.700 (7) 151
O9—H9B⋯O5ii 0.86 1.94 2.794 (7) 170
O10—H10A⋯O2 0.86 1.98 2.716 (7) 143
O10—H10B⋯O11 0.86 2.12 2.656 (7) 119
O10—H10B⋯O12 0.86 2.39 3.068 (7) 135
O11—H11A⋯O7iii 0.86 2.37 2.887 (7) 119
O11—H11B⋯N5 0.86 2.39 3.029 (7) 131
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT, SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT, SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic-inorganic hybrid materials have obtained extensive attention due to not only the structural diversity but also their attractive properties, such as catalytic activity, magnetism, photochemical activity and electrical chemistry (Ishikava et al., 2003). One of the key steps for preparation of polymeric transition metal complexes is to select the multidentate bridging ligands or mixed multidentate ligands (Biradha et al., 2006). 5-Sulfoisophthalic acid as a kind of multi-carboxylic ligand is a good bridging ligand, but it has been less explored for the synthesis. On the other hand, 1,4-bis(1,2,4-triazol-1-yl)methane (abbreviated as btrm) is a flexible ligand. In this contribution, we describe the Zn(II) metal-organic frameworks constructed from the rigid multi-carboxylic ligand sip and flexible btrm ligand. A new complex {[Zn(btrp)(sip)][Zn0.5(H2O)]}n was fabricated.

The title compound possesses a dinuclear structure with the asymmetric unit containing one crystallographically unique Zn2+ ion, one btrm ligand, one sip ligand and half of one free Zn(H2O)62+ ion. As viewed in Fig. 1, Zn1 is five-coordinated in a highly distorted trigonal biyramid coordination sphere that is defined by two different nitrogen atoms from two btrm ligands and three carboxylic oxygen atoms. Both btrm and sip adopt two connected mode. Every sip ligand links two Zn(II) atoms to construct a one-dimensional chain, two such chains are bridged by cis-btrm ligands to produce a one-dimensional tubelike chain (Fig. 2). Noteworthily, the one-dimensional chains carry negative charges, whereas the free Zn(H2O)62+ ion show positive electricity. Through weak classical hydrogen-bonding interactions as well as the electrostatic interactions, the Zn(H2O)62+ ions are connected with the one-dimensional tubelike chain.

Related literature top

For properties of organic–inorganic hybrid materials, see: Ishikava et al. (2003). One of the key steps in the preparation of polymeric transition metal complexes is to select multidentate bridging ligands or mixed multidentate ligands, see: Biradha et al. (2006).

Experimental top

A mixture of [Zn(NO3)2]6H2O (148 mg, 0.5 mmol), NaH2sip (135 mg, 0.5 mmol), btrm (68 mg, 0.5 mmol), triethylamine (1.0 mmol), H2O (12 ml) was added into a Parr Teflon-lined stainless steel vessel, and then the vessel was sealed and heated to 413 K, kept for 3 days. After that the autoclave was cooled to room temperature at a rate of 1.5 °K/h. The title compound was filtered off, washed with distilled water and dried in air (yield 65% based on Zn). Analysis, calculated for C13H18N6O11.5SZn1.5: C 27.29, H 3.17, N 14.68; found: C 27.01, H 3.58, N 14.88%.

Refinement top

After the non-hydrogen atoms of the cation and anion had been located, a number of peaks remained in the difference electron density. We have assigned these as water of solvation, O11 and O12. As a result of the large Ueq on O12 this atom was assigned an occupation number of 0.5 which is consistent with the C, H and N elemental analyses. It was not possible to locate the hydrogen atoms around O12, but those around O11 were located from difference Fourier maps and further refined by using geometrical restraints. Several small, but significant, peaks of around 1.5 e/A3 remain in the neighborhood of the the cation.

H atoms were positioned geometrically with O—H = 0.86 Å, C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectivly, and constrained to ride on their parent atoms, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environments of Zn1 in the title compound.
[Figure 2] Fig. 2. The one-dimensional chain of the title compound.
[Figure 3] Fig. 3. Reaction scheme
Poly[hemi(hexaaquazinc) [[µ2-1,3-bis(1,2,4-triazol-1-yl)methane](µ2-5-sulfonatobenzene- 1,3-dicarboxylato)zinc] sesquihydrate] top
Crystal data top
[Zn(H2O)6]0.5[Zn(C8H3O7S)(C5H6N6)]·1.5H2OF(000) = 1160
Mr = 571.48Dx = 1.900 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4538 reflections
a = 10.2611 (3) Åθ = 2.4–25.0°
b = 16.9967 (4) ŵ = 2.00 mm1
c = 11.4808 (3) ÅT = 293 K
β = 93.812 (2)°BLOCK, colourless
V = 1997.88 (9) Å30.23 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker SuperNova Eos
diffractometer
3524 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2763 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 16.2116 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 1210
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 2019
Tmin = 0.657, Tmax = 0.767l = 813
7740 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0939P)2 + 1.3769P]
where P = (Fo2 + 2Fc2)/3
3524 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 1.67 e Å3
30 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Zn(H2O)6]0.5[Zn(C8H3O7S)(C5H6N6)]·1.5H2OV = 1997.88 (9) Å3
Mr = 571.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2611 (3) ŵ = 2.00 mm1
b = 16.9967 (4) ÅT = 293 K
c = 11.4808 (3) Å0.23 × 0.15 × 0.14 mm
β = 93.812 (2)°
Data collection top
Bruker SuperNova Eos
diffractometer
3524 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2763 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.767Rint = 0.030
7740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04930 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.11Δρmax = 1.67 e Å3
3524 reflectionsΔρmin = 0.90 e Å3
304 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.05241 (5)0.44539 (3)0.65524 (5)0.0173 (2)
Zn20.50000.50001.00000.0242 (3)
C10.1029 (5)0.5844 (3)0.8059 (5)0.0223 (12)
H10.16890.55830.84200.027*
C20.0432 (6)0.6157 (3)0.6959 (5)0.0290 (13)
H20.10130.61290.63720.035*
C30.0915 (6)0.7063 (3)0.9310 (4)0.0222 (12)
H3A0.07260.76060.91230.027*
H3B0.18410.70200.94180.027*
C40.0526 (5)0.6384 (3)1.1245 (5)0.0226 (12)
H40.13550.61721.13010.027*
C50.1439 (5)0.6712 (3)1.1562 (5)0.0263 (13)
H50.22700.67611.19300.032*
C60.3270 (5)0.4047 (3)0.5589 (4)0.0164 (11)
C70.3175 (5)0.3543 (3)0.4624 (4)0.0177 (11)
H70.23620.33800.43080.021*
C80.4303 (5)0.3289 (3)0.4144 (4)0.0166 (11)
C90.5517 (5)0.3537 (3)0.4584 (4)0.0178 (11)
H90.62650.33640.42470.021*
C100.5614 (5)0.4045 (3)0.5531 (4)0.0156 (11)
C110.4512 (5)0.4286 (3)0.6035 (4)0.0168 (11)
H110.45870.46140.66850.020*
C120.2081 (5)0.4314 (3)0.6171 (5)0.0191 (11)
C130.6940 (5)0.4296 (3)0.6051 (4)0.0173 (11)
N10.0406 (4)0.5563 (2)0.7185 (4)0.0198 (10)
N20.0580 (4)0.6556 (2)0.8351 (4)0.0201 (10)
N30.0351 (5)0.6768 (3)0.7636 (4)0.0308 (12)
N40.0173 (4)0.6839 (2)1.0379 (4)0.0199 (9)
N50.1097 (5)0.7049 (3)1.0573 (4)0.0285 (11)
N60.0471 (4)0.6278 (2)1.2015 (4)0.0210 (10)
O10.0957 (3)0.4135 (2)0.5658 (3)0.0265 (9)
O20.2190 (3)0.4662 (2)0.7126 (3)0.0258 (9)
O30.7036 (3)0.4664 (2)0.6994 (3)0.0263 (9)
O40.7944 (3)0.4118 (2)0.5511 (3)0.0245 (9)
O50.3252 (4)0.1997 (2)0.3349 (4)0.0410 (11)
O60.3664 (4)0.3024 (2)0.1958 (4)0.0401 (11)
O70.5457 (4)0.2277 (2)0.2870 (4)0.0391 (11)
O80.3948 (5)0.5718 (3)1.1028 (5)0.0574 (14)
H8A0.38920.57611.17730.028*
H8B0.38610.61921.07610.028*
O90.6329 (5)0.5931 (3)0.9813 (5)0.0526 (13)
H9A0.60460.62610.92780.028*
H9B0.65110.62161.04250.028*
O100.3976 (5)0.5446 (3)0.8539 (5)0.0565 (14)
H10A0.37210.50710.80810.028*
H10B0.32840.56880.87450.028*
O110.3350 (5)0.6924 (3)0.9006 (4)0.0494 (12)
H11A0.38590.73220.89680.028*
H11B0.25770.71160.90570.028*
O120.133 (2)0.5302 (11)0.9610 (18)0.138 (6)0.50
S10.41635 (13)0.25941 (8)0.29848 (12)0.0236 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0120 (3)0.0235 (3)0.0165 (4)0.0001 (2)0.0004 (2)0.0058 (2)
Zn20.0253 (5)0.0277 (5)0.0200 (5)0.0025 (4)0.0037 (4)0.0067 (4)
C10.021 (3)0.020 (3)0.026 (3)0.003 (2)0.005 (2)0.003 (2)
C20.034 (3)0.031 (3)0.024 (3)0.010 (3)0.012 (3)0.000 (3)
C30.031 (3)0.020 (3)0.016 (3)0.003 (2)0.002 (2)0.004 (2)
C40.020 (3)0.025 (3)0.023 (3)0.000 (2)0.000 (2)0.003 (2)
C50.019 (3)0.031 (3)0.029 (3)0.005 (2)0.002 (2)0.002 (3)
C60.013 (3)0.018 (2)0.018 (3)0.002 (2)0.002 (2)0.004 (2)
C70.010 (3)0.022 (3)0.020 (3)0.004 (2)0.003 (2)0.002 (2)
C80.018 (3)0.016 (2)0.016 (3)0.002 (2)0.000 (2)0.001 (2)
C90.015 (3)0.019 (2)0.020 (3)0.002 (2)0.004 (2)0.002 (2)
C100.012 (3)0.021 (2)0.013 (3)0.000 (2)0.001 (2)0.004 (2)
C110.016 (3)0.019 (2)0.014 (3)0.000 (2)0.002 (2)0.002 (2)
C120.013 (3)0.023 (3)0.022 (3)0.000 (2)0.003 (2)0.004 (2)
C130.015 (3)0.022 (2)0.015 (3)0.002 (2)0.002 (2)0.007 (2)
N10.018 (2)0.023 (2)0.019 (2)0.0011 (18)0.0012 (18)0.0030 (18)
N20.023 (2)0.020 (2)0.018 (2)0.0012 (18)0.0054 (19)0.0008 (18)
N30.044 (3)0.027 (2)0.023 (3)0.014 (2)0.012 (2)0.004 (2)
N40.018 (2)0.022 (2)0.020 (2)0.0000 (18)0.0022 (18)0.0052 (19)
N50.025 (3)0.030 (2)0.031 (3)0.004 (2)0.004 (2)0.001 (2)
N60.019 (2)0.024 (2)0.020 (2)0.0025 (19)0.0004 (18)0.0021 (19)
O10.0118 (19)0.042 (2)0.025 (2)0.0029 (16)0.0014 (16)0.0110 (18)
O20.017 (2)0.037 (2)0.024 (2)0.0014 (17)0.0025 (16)0.0123 (18)
O30.016 (2)0.043 (2)0.020 (2)0.0070 (17)0.0008 (15)0.0093 (18)
O40.0080 (18)0.041 (2)0.025 (2)0.0024 (16)0.0027 (15)0.0077 (17)
O50.041 (3)0.032 (2)0.051 (3)0.019 (2)0.009 (2)0.009 (2)
O60.044 (3)0.052 (3)0.023 (2)0.001 (2)0.0047 (19)0.008 (2)
O70.026 (2)0.050 (2)0.042 (3)0.0041 (19)0.0052 (19)0.022 (2)
O80.063 (2)0.0562 (19)0.054 (2)0.0053 (17)0.0110 (17)0.0018 (16)
O90.052 (2)0.0526 (19)0.053 (2)0.0027 (16)0.0012 (16)0.0009 (16)
O100.059 (2)0.0541 (19)0.055 (2)0.0054 (16)0.0057 (17)0.0066 (16)
O110.0467 (19)0.0461 (17)0.057 (2)0.0014 (16)0.0128 (16)0.0003 (16)
O120.138 (6)0.138 (6)0.138 (6)0.000 (2)0.009 (2)0.000 (2)
S10.0189 (7)0.0269 (7)0.0250 (8)0.0024 (6)0.0008 (6)0.0094 (6)
Geometric parameters (Å, º) top
Zn1—O11.967 (4)C6—C111.402 (7)
Zn1—O4i1.994 (4)C6—C121.500 (7)
Zn1—N12.020 (4)C7—C81.384 (7)
Zn1—N6ii2.059 (4)C7—H70.9300
Zn1—O3i2.611 (4)C8—C91.378 (7)
Zn2—O8iii2.053 (5)C8—S11.778 (5)
Zn2—O82.053 (5)C9—C101.388 (7)
Zn2—O10iii2.063 (5)C9—H90.9300
Zn2—O102.063 (5)C10—C111.367 (7)
Zn2—O92.109 (5)C10—C131.510 (7)
Zn2—O9iii2.109 (5)C11—H110.9300
C1—N11.315 (7)C12—O21.244 (6)
C1—N21.331 (6)C12—O11.296 (6)
C1—H10.9300C13—O31.248 (6)
C2—N31.304 (7)C13—O41.274 (6)
C2—N11.363 (7)N2—N31.348 (6)
C2—H20.9300N4—N51.355 (6)
C3—N41.451 (7)O5—S11.459 (4)
C3—N21.457 (6)O6—S11.452 (4)
C3—H3A0.9700O7—S11.446 (4)
C3—H3B0.9700O8—H8A0.8647
C4—N61.319 (7)O8—H8B0.8647
C4—N41.329 (7)O9—H9A0.8672
C4—H40.9300O9—H9B0.8636
C5—N51.299 (7)O10—H10A0.8566
C5—N61.367 (7)O10—H10B0.8672
C5—H50.9300O11—H11A0.8576
C6—C71.398 (7)O11—H11B0.8636
O1—Zn1—O4i102.35 (15)C8—C9—H9120.2
O1—Zn1—N1114.53 (17)C10—C9—H9120.2
O4i—Zn1—N1120.59 (16)C11—C10—C9120.0 (5)
O1—Zn1—N6ii105.67 (16)C11—C10—C13119.8 (4)
O4i—Zn1—N6ii106.46 (16)C9—C10—C13120.1 (4)
N1—Zn1—N6ii106.17 (17)C10—C11—C6121.1 (5)
O1—Zn1—O3i157.39 (13)C10—C11—H11119.5
O4i—Zn1—O3i55.08 (13)C6—C11—H11119.5
N1—Zn1—O3i80.70 (15)O2—C12—O1122.5 (5)
N6ii—Zn1—O3i84.39 (15)O2—C12—C6120.6 (5)
O8iii—Zn2—O10iii89.4 (2)O1—C12—C6116.9 (5)
O8—Zn2—O10iii90.6 (2)O3—C13—O4121.4 (5)
O8iii—Zn2—O991.1 (2)O3—C13—C10120.1 (5)
O8—Zn2—O988.9 (2)O4—C13—C10118.5 (4)
O10iii—Zn2—O993.5 (2)C1—N1—C2102.7 (4)
O10—Zn2—O986.5 (2)C1—N1—Zn1126.3 (4)
O8iii—Zn2—O9iii88.9 (2)C2—N1—Zn1130.3 (4)
O8—Zn2—O9iii91.1 (2)C1—N2—N3109.7 (4)
O10iii—Zn2—O9iii86.5 (2)C1—N2—C3129.3 (5)
O10—Zn2—O9iii93.5 (2)N3—N2—C3120.9 (4)
N1—C1—N2110.2 (5)C2—N3—N2103.0 (4)
N1—C1—H1124.9C4—N4—N5109.7 (4)
N2—C1—H1124.9C4—N4—C3129.2 (5)
N3—C2—N1114.3 (5)N5—N4—C3121.0 (4)
N3—C2—H2122.9C5—N5—N4103.2 (4)
N1—C2—H2122.9C4—N6—C5102.8 (5)
N4—C3—N2110.3 (4)C4—N6—Zn1ii126.6 (4)
N4—C3—H3A109.6C5—N6—Zn1ii130.4 (4)
N2—C3—H3A109.6C12—O1—Zn1113.1 (3)
N4—C3—H3B109.6C13—O3—Zn1iv77.6 (3)
N2—C3—H3B109.6C13—O4—Zn1iv105.7 (3)
H3A—C3—H3B108.1Zn2—O8—H8A133.7
N6—C4—N4110.1 (5)Zn2—O8—H8B113.3
N6—C4—H4125.0H8A—O8—H8B105.1
N4—C4—H4125.0Zn2—O9—H9A111.6
N5—C5—N6114.2 (5)Zn2—O9—H9B116.4
N5—C5—H5122.9H9A—O9—H9B104.9
N6—C5—H5122.9Zn2—O10—H10A110.1
C7—C6—C11118.7 (5)Zn2—O10—H10B109.5
C7—C6—C12121.5 (4)H10A—O10—H10B107.3
C11—C6—C12119.7 (4)H11A—O11—H11B105.8
C8—C7—C6119.4 (4)O7—S1—O6113.0 (3)
C8—C7—H7120.3O7—S1—O5112.1 (3)
C6—C7—H7120.3O6—S1—O5112.6 (3)
C9—C8—C7121.2 (5)O7—S1—C8106.7 (2)
C9—C8—S1120.2 (4)O6—S1—C8106.3 (2)
C7—C8—S1118.6 (4)O5—S1—C8105.6 (2)
C8—C9—C10119.6 (5)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O3iii0.861.902.628 (7)141
O8—H8B···O110.862.403.126 (7)143
O8—H8B···O7v0.862.492.983 (7)117
O9—H9A···O6vi0.861.912.700 (7)151
O9—H9B···O5v0.861.942.794 (7)170
O10—H10A···O20.861.982.716 (7)143
O10—H10B···O110.862.122.656 (7)119
O10—H10B···O120.862.393.068 (7)135
O11—H11A···O7vi0.862.372.887 (7)119
O11—H11B···N50.862.393.029 (7)131
Symmetry codes: (iii) x+1, y+1, z+2; (v) x+1, y+1/2, z+3/2; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(H2O)6]0.5[Zn(C8H3O7S)(C5H6N6)]·1.5H2O
Mr571.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.2611 (3), 16.9967 (4), 11.4808 (3)
β (°) 93.812 (2)
V3)1997.88 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.23 × 0.15 × 0.14
Data collection
DiffractometerBruker SuperNova Eos
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.657, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
7740, 3524, 2763
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.155, 1.11
No. of reflections3524
No. of parameters304
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.67, 0.90

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O3i0.861.902.628 (7)141
O8—H8B···O110.862.403.126 (7)143
O8—H8B···O7ii0.862.492.983 (7)117
O9—H9A···O6iii0.861.912.700 (7)151
O9—H9B···O5ii0.861.942.794 (7)170
O10—H10A···O20.861.982.716 (7)143
O10—H10B···O110.862.122.656 (7)119
O10—H10B···O120.862.393.068 (7)135
O11—H11A···O7iii0.862.3682.887 (7)119
O11—H11B···N50.862.3883.029 (7)131
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

LT acknowledges financial support from the Doctor's Foundation of Tianjin Normal University (No. 5RL029)

References

First citationBiradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179.  Web of Science CrossRef Google Scholar
First citationBruker (1997). SAINT, SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIshikava, N., Sugita, M., Ishikawa, T., Koshihara, S. Y. & Kaizu, Y. (2003). J. Am. Chem. Soc. 125, 8694–8695.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m950-m951
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds