metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­tetra­kis­(4,4′-bi­pyridine dioxide-κO)terbium(III) octa­cyanido­molybdate(V)

aSchool of Biological and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 30 March 2011; accepted 26 May 2011; online 4 June 2011)

In the title compound, [Tb(C10H8N2O2)4(H2O)4][Mo(CN)8], both metal atoms are eight-coordinated. The TbIII atom displays a dodecahedral geometry, while the MoV ion exhibits a distorted square-anti­prismatic geometry. The Tb atoms are located on a special position of site symmetry [\overline{4}], whereas the Mo atoms are located on a twofold rotation axis. The cations are linked by O—H⋯O hydrogen bonds.

Related literature

For general background to octa­cyanidometallate-based complexes involving lanthanide ions, see: Chelebaeva et al. (2009[Chelebaeva, E., Larionova, J., Guari, Y., Ferreira, R. A. S., Carlos, L. D., Paz, F. A. A., Trifonov, A. & Guérin, C. (2009). Inorg. Chem. 48, 5983-5995.]); Ma et al. (2009[Ma, S. L., Ren, S., Ma, Y. & Liao, D. Z. (2009). J. Chem. Sci. 121, 421-427.]); Qian et al. (2010[Qian, S. Y., Zhou, H., Zhang, Y. & Yuan, A. H. (2010). Z. Anorg. Allg. Chem. 636, 2671-2674.]); Wang et al. (2006[Wang, Z. X., Shen, X. F., Wang, J., Zhang, P., Li, Y. Z., Nfor, E. N., Song, Y., Ohkoshi, S., Hashimoto, K. & You, X. Z. (2006). Angew. Chem. Int. Ed. 45, 3287-3291.]); Zhou et al. (2010[Zhou, H., Yuan, A. H., Qian, S. Y., Song, Y. & Diao, G. W. (2010). Inorg. Chem. 49, 5971-5976.]). For the preparation of the title compound, see: Bok et al. (1975[Bok, L. D. C., Leipoldt, J. G. & Basson, S. S. (1975). Z. Anorg. Allg. Chem. 415, 81-83.]). For related structures, see: Kozieł et al. (2010[Kozieł, M., Pełka, R., Rams, M., Nitek, W. & Sieklucka, B. (2010). Inorg. Chem. 49, 4268-4277.]); Przychodzeń et al. (2007[Przychodzeń, P., Pełka, R., Lewiński, K., Supel, J., Rams, M., Tomala, K. & Sieklucka, B. (2007). Inorg. Chem. 46, 8924-8938.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb(C10H8N2O2)4(H2O)4][Mo(CN)8]

  • Mr = 1287.72

  • Tetragonal, P 4/n

  • a = 17.9226 (7) Å

  • c = 7.8877 (6) Å

  • V = 2533.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 291 K

  • 0.22 × 0.21 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.843

  • 21243 measured reflections

  • 2921 independent reflections

  • 2730 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.043

  • S = 1.08

  • 2921 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3WA⋯O2i 0.83 1.85 2.6702 (15) 169
O3—H3WB⋯O2ii 0.84 1.92 2.7417 (16) 164
Symmetry codes: (i) [-y+{\script{1\over 2}}, x, z+1]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the past few years, octacyanometallate-based complexes have attracted considerable attention in the field of cyanide-bridged hetero-metallic system. Many assemblies based on [MV(CN)8]3- (M = Mo or W) and lanthanide ions can take a variety of structures (Chelebaeva et al., 2009; Kozieł et al., 2010; Ma et al., 2009; Przychodzeń et al., 2007; Qian et al., 2010; Wang et al., 2006; Zhou et al., 2010). Recently, we have used [Mo(CN)8]3- as a building block to react with Tb3+ and 4,4'-bipyridine dioxide (4,4'-dpdo) obtaining a new ionic complex, [Tb(4,4'-bpdo)4(H2O)4][Mo(CN)8.

In the structure, the eight-coordinated TbIII center displays a decahedron geometry, while each [MoV(CN)8] moiety exhibits a distorted square antiprismic geometry. The average values of Mo—C and C—N bond distances are 2.171 and 1.155 Å, respectively, while the Mo—C—N units are nearly linear. The anions are linked by O-H..O hydrogen bonds.

Related literature top

For general background to octacyanidometallate-based complexes involving lanthanide ions, see: Chelebaeva et al. (2009); Ma et al. (2009); Qian et al. (2010); Wang et al. (2006); Zhou et al. (2010). For the preparation of the title compound, see: Bok et al. (1975). For related structures, see: Kozieł et al. (2010); Przychodzeń et al. (2007).

Experimental top

Single crystals of the title compound were prepared at room temperature in the dark by slow diffusion of a H2O solution (3 ml) containing Tb(NO3)3.6H2O (0.05 mmol) and 4,4'-dpdo (0.05 mmol) into a CH3CN solution (15 ml) of [HN(n-C4H9)3]3[Mo(CN)8].4H2O (0.05 mmol) (Bok et al., 1975). After two weeks, yellow block crystals were obtained.

Refinement top

The H atoms of 4,4'-bipyridine dioxide ligands were ideally positioned with C—H = 0.93 Å and included in the refinement using a riding model with U(H) set to 1.2 Ueq(C). The H atoms bound to oxygen atoms were located from difference maps and refined as riding with U(H) set to 1.2 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound. Hydrogen atoms have been omitted for clarity and thermal ellipsoids are presented at the 30% probability level.
[Figure 2] Fig. 2. Perspective view of the title compound in ab plane. Hydrogen atoms and coordinated water molecules have been omitted for clarity.
Tetraaquatetrakis(4,4'-bipyridine dioxide-κO)terbium(III) octacyanidomolybdate(V) top
Crystal data top
[Tb(C10H8N2O2)4(H2O)4][Mo(CN)8]Dx = 1.688 Mg m3
Mr = 1287.72Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nCell parameters from 9881 reflections
Hall symbol: -P 4aθ = 2.3–27.5°
a = 17.9226 (7) ŵ = 1.71 mm1
c = 7.8877 (6) ÅT = 291 K
V = 2533.7 (2) Å3Block, yellow
Z = 20.22 × 0.21 × 0.12 mm
F(000) = 1286
Data collection top
Bruker SMART APEX CCD
diffractometer
2730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2323
Tmin = 0.693, Tmax = 0.843k = 2323
21243 measured reflectionsl = 1010
2921 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0183P)2 + 1.8165P]
where P = (Fo2 + 2Fc2)/3
2921 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Tb(C10H8N2O2)4(H2O)4][Mo(CN)8]Z = 2
Mr = 1287.72Mo Kα radiation
Tetragonal, P4/nµ = 1.71 mm1
a = 17.9226 (7) ÅT = 291 K
c = 7.8877 (6) Å0.22 × 0.21 × 0.12 mm
V = 2533.7 (2) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2921 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2730 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.843Rint = 0.026
21243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.08Δρmax = 0.36 e Å3
2921 reflectionsΔρmin = 0.29 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.75000.25000.00000.01136 (5)
Mo10.75000.75000.24987 (4)0.02019 (7)
O10.64962 (6)0.17736 (7)0.10113 (14)0.0251 (3)
O20.27973 (7)0.11246 (7)0.50459 (14)0.0223 (2)
O30.70614 (6)0.31664 (6)0.24591 (13)0.0183 (2)
N10.60473 (10)0.81932 (10)0.4592 (3)0.0422 (4)
N20.59644 (10)0.70470 (10)0.0373 (3)0.0393 (4)
N30.60104 (8)0.13848 (8)0.00837 (16)0.0201 (3)
N40.33441 (7)0.07064 (7)0.44088 (17)0.0176 (2)
C10.65693 (10)0.79577 (9)0.3922 (3)0.0300 (4)
C20.65123 (10)0.71973 (9)0.1057 (3)0.0293 (4)
C30.62224 (9)0.07458 (9)0.0674 (2)0.0234 (3)
H30.67090.05750.05370.028*
C40.57297 (9)0.03404 (9)0.1648 (2)0.0215 (3)
H40.58880.00980.21660.026*
C50.49930 (8)0.05822 (8)0.1867 (2)0.0175 (3)
C60.47918 (9)0.12409 (9)0.1031 (2)0.0248 (3)
H60.43060.14190.11290.030*
C70.53013 (10)0.16301 (10)0.0063 (2)0.0257 (4)
H70.51550.20640.04910.031*
C80.44383 (8)0.01450 (8)0.28394 (19)0.0168 (3)
C90.45913 (8)0.05724 (8)0.3460 (2)0.0182 (3)
H90.50700.07680.33560.022*
C100.40389 (8)0.09908 (8)0.4224 (2)0.0189 (3)
H100.41440.14690.46130.023*
C120.37208 (9)0.04249 (8)0.3126 (2)0.0209 (3)
H120.36040.09070.27800.025*
C130.31847 (9)0.00028 (9)0.3913 (2)0.0217 (3)
H130.27120.01930.41030.026*
H3WA0.67270.30400.31340.033*
H3WB0.73630.33680.31360.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01183 (5)0.01183 (5)0.01043 (7)0.0000.0000.000
Mo10.01407 (8)0.01407 (8)0.03243 (15)0.0000.0000.000
O10.0234 (6)0.0348 (6)0.0171 (5)0.0157 (5)0.0019 (5)0.0008 (5)
O20.0190 (5)0.0247 (6)0.0231 (6)0.0067 (4)0.0023 (4)0.0059 (4)
O30.0179 (5)0.0232 (5)0.0139 (5)0.0007 (4)0.0019 (4)0.0032 (4)
N10.0310 (9)0.0290 (8)0.0666 (12)0.0020 (7)0.0123 (9)0.0126 (8)
N20.0297 (8)0.0313 (8)0.0569 (11)0.0000 (7)0.0099 (8)0.0101 (8)
N30.0188 (6)0.0246 (7)0.0170 (6)0.0095 (5)0.0005 (5)0.0018 (5)
N40.0183 (6)0.0198 (6)0.0146 (6)0.0043 (5)0.0004 (5)0.0006 (5)
C10.0243 (8)0.0195 (8)0.0462 (11)0.0031 (6)0.0026 (8)0.0050 (7)
C20.0241 (8)0.0201 (8)0.0438 (11)0.0008 (6)0.0020 (8)0.0045 (7)
C30.0166 (7)0.0280 (8)0.0257 (8)0.0021 (6)0.0004 (6)0.0010 (7)
C40.0189 (7)0.0217 (7)0.0239 (8)0.0016 (6)0.0000 (6)0.0011 (6)
C50.0177 (7)0.0172 (7)0.0176 (7)0.0041 (5)0.0004 (6)0.0026 (6)
C60.0186 (7)0.0210 (8)0.0349 (9)0.0013 (6)0.0035 (7)0.0042 (7)
C70.0230 (8)0.0215 (8)0.0328 (9)0.0044 (6)0.0002 (7)0.0052 (7)
C80.0173 (7)0.0163 (7)0.0168 (7)0.0037 (5)0.0011 (5)0.0019 (5)
C90.0162 (7)0.0188 (7)0.0198 (7)0.0004 (5)0.0022 (6)0.0009 (6)
C100.0203 (7)0.0171 (7)0.0191 (7)0.0006 (5)0.0030 (6)0.0018 (6)
C120.0222 (7)0.0166 (7)0.0241 (8)0.0009 (6)0.0023 (6)0.0016 (6)
C130.0192 (7)0.0213 (7)0.0246 (8)0.0022 (6)0.0034 (6)0.0026 (6)
Geometric parameters (Å, º) top
Tb1—O1i2.3596 (11)N3—C31.346 (2)
Tb1—O1ii2.3596 (11)N3—C71.350 (2)
Tb1—O12.3596 (11)N4—C131.351 (2)
Tb1—O1iii2.3596 (11)N4—C101.3533 (19)
Tb1—O3i2.4097 (10)C3—C41.378 (2)
Tb1—O3ii2.4097 (10)C3—H30.9300
Tb1—O32.4097 (10)C4—C51.400 (2)
Tb1—O3iii2.4097 (10)C4—H40.9300
Mo1—C1iv2.1715 (18)C5—C61.400 (2)
Mo1—C12.1715 (18)C5—C81.480 (2)
Mo1—C1v2.1715 (18)C6—C71.379 (2)
Mo1—C1vi2.1715 (18)C6—H60.9300
Mo1—C2iv2.1731 (18)C7—H70.9300
Mo1—C22.1731 (18)C8—C121.399 (2)
Mo1—C2vi2.1731 (18)C8—C91.403 (2)
Mo1—C2v2.1731 (18)C9—C101.380 (2)
O1—N31.3338 (17)C9—H90.9300
O2—N41.3323 (16)C10—H100.9300
O3—H3WA0.8326C12—C131.377 (2)
O3—H3WB0.8422C12—H120.9300
N1—C11.155 (2)C13—H130.9300
N2—C21.152 (2)
O1i—Tb1—O1ii96.562 (17)C1iv—Mo1—C2v143.33 (6)
O1i—Tb1—O196.562 (17)C1—Mo1—C2v76.77 (7)
O1ii—Tb1—O1140.48 (5)C1v—Mo1—C2v74.88 (7)
O1i—Tb1—O1iii140.48 (5)C1vi—Mo1—C2v140.36 (6)
O1ii—Tb1—O1iii96.562 (17)C2iv—Mo1—C2v116.87 (11)
O1—Tb1—O1iii96.562 (17)C2—Mo1—C2v74.10 (5)
O1i—Tb1—O3i75.68 (4)C2vi—Mo1—C2v74.10 (5)
O1ii—Tb1—O3i146.10 (4)N3—O1—Tb1126.90 (9)
O1—Tb1—O3i73.39 (4)Tb1—O3—H3WA128.0
O1iii—Tb1—O3i72.73 (4)Tb1—O3—H3WB120.9
O1i—Tb1—O3ii73.39 (4)H3WA—O3—H3WB100.0
O1ii—Tb1—O3ii75.68 (4)O1—N3—C3120.24 (14)
O1—Tb1—O3ii72.73 (4)O1—N3—C7119.45 (14)
O1iii—Tb1—O3ii146.10 (4)C3—N3—C7120.30 (14)
O3i—Tb1—O3ii130.38 (3)O2—N4—C13118.60 (13)
O1i—Tb1—O3146.10 (4)O2—N4—C10120.38 (13)
O1ii—Tb1—O372.73 (4)C13—N4—C10121.00 (13)
O1—Tb1—O375.68 (4)N1—C1—Mo1175.79 (19)
O1iii—Tb1—O373.39 (4)N2—C2—Mo1176.07 (18)
O3i—Tb1—O3130.38 (3)N3—C3—C4121.02 (15)
O3ii—Tb1—O372.79 (5)N3—C3—H3119.5
O1i—Tb1—O3iii72.73 (4)C4—C3—H3119.5
O1ii—Tb1—O3iii73.39 (4)C3—C4—C5120.65 (15)
O1—Tb1—O3iii146.10 (4)C3—C4—H4119.7
O1iii—Tb1—O3iii75.68 (4)C5—C4—H4119.7
O3i—Tb1—O3iii72.79 (5)C6—C5—C4116.49 (14)
O3ii—Tb1—O3iii130.38 (3)C6—C5—C8121.17 (14)
O3—Tb1—O3iii130.38 (3)C4—C5—C8122.23 (14)
C1iv—Mo1—C174.50 (5)C7—C6—C5121.10 (15)
C1iv—Mo1—C1v117.74 (11)C7—C6—H6119.4
C1—Mo1—C1v74.50 (5)C5—C6—H6119.4
C1iv—Mo1—C1vi74.50 (5)N3—C7—C6120.42 (16)
C1—Mo1—C1vi117.74 (11)N3—C7—H7119.8
C1v—Mo1—C1vi74.50 (5)C6—C7—H7119.8
C1iv—Mo1—C2iv74.88 (7)C12—C8—C9116.87 (14)
C1—Mo1—C2iv140.36 (6)C12—C8—C5120.77 (13)
C1v—Mo1—C2iv143.33 (6)C9—C8—C5122.32 (13)
C1vi—Mo1—C2iv76.77 (7)C10—C9—C8120.66 (14)
C1iv—Mo1—C276.77 (7)C10—C9—H9119.7
C1—Mo1—C274.88 (7)C8—C9—H9119.7
C1v—Mo1—C2140.36 (6)N4—C10—C9120.16 (14)
C1vi—Mo1—C2143.33 (6)N4—C10—H10119.9
C2iv—Mo1—C274.10 (5)C9—C10—H10119.9
C1iv—Mo1—C2vi140.36 (6)C13—C12—C8120.98 (14)
C1—Mo1—C2vi143.33 (6)C13—C12—H12119.5
C1v—Mo1—C2vi76.77 (7)C8—C12—H12119.5
C1vi—Mo1—C2vi74.88 (7)N4—C13—C12120.17 (14)
C2iv—Mo1—C2vi74.10 (5)N4—C13—H13119.9
C2—Mo1—C2vi116.87 (11)C12—C13—H13119.9
Symmetry codes: (i) y+1, x1/2, z; (ii) x+3/2, y+1/2, z; (iii) y+1/2, x+1, z; (iv) y+3/2, x, z; (v) y, x+3/2, z; (vi) x+3/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3WA···O2vii0.831.852.6702 (15)169
O3—H3WB···O2viii0.841.922.7417 (16)164
O3—H3WB···N4viii0.842.623.4251 (16)161
Symmetry codes: (vii) y+1/2, x, z+1; (viii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Tb(C10H8N2O2)4(H2O)4][Mo(CN)8]
Mr1287.72
Crystal system, space groupTetragonal, P4/n
Temperature (K)291
a, c (Å)17.9226 (7), 7.8877 (6)
V3)2533.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.22 × 0.21 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.693, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
21243, 2921, 2730
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.043, 1.08
No. of reflections2921
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.29

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3WA···O2i0.831.852.6702 (15)169
O3—H3WB···O2ii0.841.922.7417 (16)164
O3—H3WB···N4ii0.842.623.4251 (16)161
Symmetry codes: (i) y+1/2, x, z+1; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The work was supported by the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

First citationBok, L. D. C., Leipoldt, J. G. & Basson, S. S. (1975). Z. Anorg. Allg. Chem. 415, 81–83.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChelebaeva, E., Larionova, J., Guari, Y., Ferreira, R. A. S., Carlos, L. D., Paz, F. A. A., Trifonov, A. & Guérin, C. (2009). Inorg. Chem. 48, 5983–5995.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKozieł, M., Pełka, R., Rams, M., Nitek, W. & Sieklucka, B. (2010). Inorg. Chem. 49, 4268–4277.  Web of Science PubMed Google Scholar
First citationMa, S. L., Ren, S., Ma, Y. & Liao, D. Z. (2009). J. Chem. Sci. 121, 421–427.  CrossRef CAS Google Scholar
First citationPrzychodzeń, P., Pełka, R., Lewiński, K., Supel, J., Rams, M., Tomala, K. & Sieklucka, B. (2007). Inorg. Chem. 46, 8924–8938.  Web of Science PubMed Google Scholar
First citationQian, S. Y., Zhou, H., Zhang, Y. & Yuan, A. H. (2010). Z. Anorg. Allg. Chem. 636, 2671–2674.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. X., Shen, X. F., Wang, J., Zhang, P., Li, Y. Z., Nfor, E. N., Song, Y., Ohkoshi, S., Hashimoto, K. & You, X. Z. (2006). Angew. Chem. Int. Ed. 45, 3287–3291.  CrossRef CAS Google Scholar
First citationZhou, H., Yuan, A. H., Qian, S. Y., Song, Y. & Diao, G. W. (2010). Inorg. Chem. 49, 5971–5976.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds