organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(3-Methyl­phen­yl)-3-phenyl-1,2-oxazole

aDepartment of Physics, P. T. Lee Chengalvaraya Naicker College of Engineering & Technology, Kancheepuram 631 502, India, bOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India, and cPostGraduate & Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 10 April 2011; accepted 26 May 2011; online 4 June 2011)

In the title compound, C16H13NO, the isoxazole ring makes dihedral angles of 16.64 (7)° with 3-methyl­phenzyl ring and 17.60 (7)° with the unsubstituted phenyl ring.

Related literature

For general background to isoxazole derivatives, see: Sperry & Wright (2005[Sperry, J. & Wright, D. (2005). Curr. Opin. Drug. Discov. Dev. 8, 723-740.]); Krogsgaard-Larsen et al. (1996[Krogsgaard-Larsen, P., Eber, B., Lund, T. M., Brauner-Osborne, H., Slok, F. A., Johansen, T. N., Brehm, L. & Madsen, U. (1996). Eur. J. Med. Chem. 31, 515-537.]); Deng et al. (2009[Deng, B. L., Zhao, Y., Hartman, T. L., Watson, K., Buckheit, R. W. Jr, Pannecouque, C., De Clereq, E. & Cushman, M. (2009). Eur. J. Med. Chem. 44, 1210-1214.]); Talley (1999[Talley, J. (1999). J. Prog. Med. Chem. 13, 201-234.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO

  • Mr = 235.27

  • Orthorhombic, P 21 21 21

  • a = 5.8052 (2) Å

  • b = 7.7010 (3) Å

  • c = 27.4363 (8) Å

  • V = 1226.56 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.984

  • 14583 measured reflections

  • 1599 independent reflections

  • 1302 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.08

  • 1599 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Isoxazoles are an important class of heteroaromatic molecules which are components in a variety of natural products and medicinally useful compounds (Sperry et al., 2005). For example, the natural product ibotenic acid, an active constituent of the psychotrophic fly agaric mushroom amanita muscaria, acts at both ionotropic and metabotropic glutamate receptor subtypes (Krogsgaard-Larsen et al., 1996). Isoxazole systems have also been targeted in synthetic investigations for their known bological and pharmacological properties such as hypoglycemic, anti-inflammatory and anti-bacterial activities. The growing interest in such analogues also rises from their high potential value as antiviral agents (Deng et al., 2009). Valdecoxib is a nonsteroidal anti-inflammatory drug used in the treatment of osteoarthritis, rheumatoid arthritis and powerful menstration and menstrual symptoms (Talley, 1999). In the title compound the isoxazole ring makes a dihedral angle of 16.64 (7)° with methyl benzyl ring (C10/C11/C12/C13/C14/C15/C16) and a dihedral angle of 17.60 (7)° with the phenyl ring (C1/C2/C3/C4/C5/C6) attached to the planar isoxazole moiety.

Related literature top

For general background to isoxazole derivatives, see: Sperry & Wright (2005); Krogsgaard-Larsen et al. (1996); Deng et al. (2009); Talley (1999).

Experimental top

To a solution of 1-phenyl-3-m-tolyl-propynone oxime (235 mg, 1.0(mmol) in dry dichloromethane (1 ml) wasadded AuCl3 (3.03 mg, 1mol%) under N2 atmosphere and stirred for 10 min. After completion of the reaction as indicated by TLC the reaction mixture was concertrated under reduced pressure and purified by column chromatography over silica gel(100–200mech) Et 0 Ac/hexane to afford the pure product.

Refinement top

Due to the absence of anomalous scatterers, Friedel pairs were merged. All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids.
5-(3-Methylphenyl)-3-phenyl-1,2-oxazole top
Crystal data top
C16H13NODx = 1.274 Mg m3
Mr = 235.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 14583 reflections
a = 5.8052 (2) Åθ = 1.5–27.1°
b = 7.7010 (3) ŵ = 0.08 mm1
c = 27.4363 (8) ÅT = 293 K
V = 1226.56 (7) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
F(000) = 496
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
1599 independent reflections
Radiation source: fine-focus sealed tube1302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 76
Tmin = 0.977, Tmax = 0.984k = 89
14583 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.1446P]
where P = (Fo2 + 2Fc2)/3
1599 reflections(Δ/σ)max = 0.003
164 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H13NOV = 1226.56 (7) Å3
Mr = 235.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8052 (2) ŵ = 0.08 mm1
b = 7.7010 (3) ÅT = 293 K
c = 27.4363 (8) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
1599 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1302 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.034
14583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.08Δρmax = 0.12 e Å3
1599 reflectionsΔρmin = 0.18 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.3214 (3)0.4492 (3)0.09265 (7)0.0550 (5)
O0.3690 (3)0.3988 (3)0.14108 (6)0.0662 (5)
C90.5947 (4)0.3630 (3)0.14404 (8)0.0492 (6)
C100.6819 (4)0.3105 (3)0.19162 (8)0.0471 (5)
C140.6336 (4)0.2897 (3)0.27920 (8)0.0498 (5)
C70.5182 (4)0.4406 (3)0.06915 (8)0.0505 (5)
C150.5545 (4)0.3395 (3)0.23393 (8)0.0491 (5)
H150.41210.39410.23150.059*
C130.8460 (4)0.2078 (3)0.28208 (9)0.0553 (6)
H130.90160.17210.31230.066*
C80.6941 (4)0.3875 (3)0.09969 (8)0.0526 (6)
H80.84830.37180.09160.063*
C10.7032 (5)0.4368 (3)0.01203 (9)0.0650 (7)
H10.82570.37570.00150.078*
C120.9760 (5)0.1786 (3)0.24080 (10)0.0603 (6)
H121.11810.12370.24340.072*
C110.8968 (4)0.2303 (3)0.19575 (10)0.0556 (6)
H110.98630.21190.16810.067*
C60.5200 (4)0.4874 (3)0.01707 (8)0.0506 (5)
C50.3401 (5)0.5778 (3)0.00369 (9)0.0627 (7)
H50.21620.61230.01550.075*
C160.4918 (5)0.3241 (4)0.32435 (9)0.0708 (8)
H16A0.48440.44690.33020.106*
H16B0.56200.26790.35180.106*
H16C0.33900.27950.31980.106*
C40.3426 (5)0.6172 (4)0.05246 (10)0.0718 (8)
H40.22080.67840.06620.086*
C30.5239 (5)0.5667 (4)0.08088 (10)0.0739 (8)
H30.52480.59340.11390.089*
C20.7041 (6)0.4771 (4)0.06096 (10)0.0728 (8)
H20.82720.44320.08040.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0399 (10)0.0734 (13)0.0517 (11)0.0032 (11)0.0004 (9)0.0030 (10)
O0.0460 (9)0.0866 (13)0.0659 (11)0.0012 (10)0.0061 (9)0.0003 (10)
C90.0397 (11)0.0458 (12)0.0622 (14)0.0024 (10)0.0069 (10)0.0042 (11)
C100.0386 (10)0.0410 (10)0.0618 (13)0.0057 (10)0.0035 (11)0.0007 (10)
C140.0464 (12)0.0423 (11)0.0607 (13)0.0042 (10)0.0005 (11)0.0011 (10)
C70.0461 (12)0.0453 (11)0.0599 (13)0.0042 (11)0.0024 (11)0.0036 (10)
C150.0414 (12)0.0426 (11)0.0634 (14)0.0008 (10)0.0032 (10)0.0021 (10)
C130.0481 (12)0.0482 (12)0.0696 (15)0.0022 (12)0.0060 (12)0.0048 (11)
C80.0405 (11)0.0570 (14)0.0604 (14)0.0020 (11)0.0069 (11)0.0016 (11)
C10.0630 (16)0.0617 (15)0.0702 (17)0.0093 (14)0.0084 (14)0.0007 (13)
C120.0431 (12)0.0516 (13)0.0862 (18)0.0046 (11)0.0021 (13)0.0033 (13)
C110.0423 (11)0.0507 (13)0.0739 (16)0.0010 (11)0.0092 (11)0.0019 (12)
C60.0500 (13)0.0459 (11)0.0558 (13)0.0033 (11)0.0016 (11)0.0053 (10)
C50.0538 (14)0.0686 (16)0.0658 (16)0.0088 (14)0.0002 (13)0.0047 (12)
C160.0697 (17)0.0822 (19)0.0605 (14)0.0098 (17)0.0012 (14)0.0001 (14)
C40.0721 (18)0.0784 (18)0.0648 (16)0.0102 (17)0.0104 (15)0.0002 (14)
C30.095 (2)0.0701 (17)0.0569 (15)0.0028 (18)0.0021 (16)0.0022 (13)
C20.0784 (19)0.0758 (18)0.0644 (16)0.0096 (17)0.0163 (15)0.0032 (14)
Geometric parameters (Å, º) top
N—C71.314 (3)C1—C61.386 (3)
N—O1.412 (2)C1—H10.9300
O—C91.341 (3)C12—C111.378 (3)
C9—C81.360 (3)C12—H120.9300
C9—C101.457 (3)C11—H110.9300
C10—C151.394 (3)C6—C51.378 (3)
C10—C111.397 (3)C5—C41.372 (4)
C14—C151.379 (3)C5—H50.9300
C14—C131.387 (3)C16—H16A0.9600
C14—C161.511 (3)C16—H16B0.9600
C7—C81.383 (3)C16—H16C0.9600
C7—C61.474 (3)C4—C31.366 (4)
C15—H150.9300C4—H40.9300
C13—C121.379 (4)C3—C21.367 (4)
C13—H130.9300C3—H30.9300
C8—H80.9300C2—H20.9300
C1—C21.378 (4)
C7—N—O106.11 (18)C11—C12—H12119.8
C9—O—N107.76 (18)C13—C12—H12119.8
O—C9—C8109.4 (2)C12—C11—C10119.9 (2)
O—C9—C10116.8 (2)C12—C11—H11120.0
C8—C9—C10133.8 (2)C10—C11—H11120.0
C15—C10—C11118.5 (2)C5—C6—C1119.0 (2)
C15—C10—C9121.2 (2)C5—C6—C7121.3 (2)
C11—C10—C9120.4 (2)C1—C6—C7119.7 (2)
C15—C14—C13118.3 (2)C4—C5—C6120.4 (2)
C15—C14—C16120.6 (2)C4—C5—H5119.8
C13—C14—C16121.2 (2)C6—C5—H5119.8
N—C7—C8111.1 (2)C14—C16—H16A109.5
N—C7—C6118.0 (2)C14—C16—H16B109.5
C8—C7—C6130.9 (2)H16A—C16—H16B109.5
C14—C15—C10121.9 (2)C14—C16—H16C109.5
C14—C15—H15119.0H16A—C16—H16C109.5
C10—C15—H15119.0H16B—C16—H16C109.5
C12—C13—C14120.9 (2)C3—C4—C5120.1 (3)
C12—C13—H13119.5C3—C4—H4119.9
C14—C13—H13119.5C5—C4—H4119.9
C9—C8—C7105.7 (2)C4—C3—C2120.3 (3)
C9—C8—H8127.2C4—C3—H3119.8
C7—C8—H8127.2C2—C3—H3119.8
C2—C1—C6120.1 (3)C3—C2—C1120.0 (3)
C2—C1—H1120.0C3—C2—H2120.0
C6—C1—H1120.0C1—C2—H2120.0
C11—C12—C13120.5 (2)
C7—N—O—C90.3 (3)C6—C7—C8—C9179.6 (2)
N—O—C9—C80.2 (3)C14—C13—C12—C110.1 (4)
N—O—C9—C10179.04 (18)C13—C12—C11—C101.0 (4)
O—C9—C10—C1516.3 (3)C15—C10—C11—C121.4 (3)
C8—C9—C10—C15162.8 (3)C9—C10—C11—C12178.9 (2)
O—C9—C10—C11164.0 (2)C2—C1—C6—C50.1 (4)
C8—C9—C10—C1116.9 (4)C2—C1—C6—C7178.7 (3)
O—N—C7—C80.2 (3)N—C7—C6—C516.0 (3)
O—N—C7—C6179.81 (18)C8—C7—C6—C5163.5 (3)
C13—C14—C15—C100.3 (3)N—C7—C6—C1162.6 (2)
C16—C14—C15—C10179.6 (2)C8—C7—C6—C117.9 (4)
C11—C10—C15—C140.8 (3)C1—C6—C5—C40.1 (4)
C9—C10—C15—C14179.6 (2)C7—C6—C5—C4178.7 (2)
C15—C14—C13—C120.7 (3)C6—C5—C4—C30.1 (4)
C16—C14—C13—C12179.2 (2)C5—C4—C3—C20.2 (4)
O—C9—C8—C70.1 (3)C4—C3—C2—C10.2 (4)
C10—C9—C8—C7179.0 (2)C6—C1—C2—C30.1 (4)
N—C7—C8—C90.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O0.932.492.803 (3)100

Experimental details

Crystal data
Chemical formulaC16H13NO
Mr235.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.8052 (2), 7.7010 (3), 27.4363 (8)
V3)1226.56 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.977, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
14583, 1599, 1302
Rint0.034
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.08
No. of reflections1599
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

BB thanks Dr Babu Varghese, SAIF, IIT–Madras, India, for his help with the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, B. L., Zhao, Y., Hartman, T. L., Watson, K., Buckheit, R. W. Jr, Pannecouque, C., De Clereq, E. & Cushman, M. (2009). Eur. J. Med. Chem. 44, 1210–1214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKrogsgaard-Larsen, P., Eber, B., Lund, T. M., Brauner-Osborne, H., Slok, F. A., Johansen, T. N., Brehm, L. & Madsen, U. (1996). Eur. J. Med. Chem. 31, 515–537.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSperry, J. & Wright, D. (2005). Curr. Opin. Drug. Discov. Dev. 8, 723–740.  CAS Google Scholar
First citationTalley, J. (1999). J. Prog. Med. Chem. 13, 201–234.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds