organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,7,8,9,10,10-Hexa­chloro-4-(2-phenyl­eth­yl)-4-aza­tri­cyclo­[5.2.1.02,6]dec-8-ene-3,5-dione

aCAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, and cCentre for Bioinformatics, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: gunaunom@gmail.com

(Received 8 May 2011; accepted 10 June 2011; online 18 June 2011)

In the title compound, C17H11Cl6NO2, the six-membered ring of the norbornene moiety adopts a boat conformation whereas the two five-membered rings adopt envelope conformations. The phenyl ring and the ring of the succinimide moiety are almost coplanar [dihedral angle = 7.44 (14)°]. The crystal packing is stabilized by a weak inter­molecular C—H⋯O hydrogen bond.

Related literature

The inter­est in cyclic imides is due to their biological activity and wide application in the pharmaceutical industry, see: Duarte et al. (2006[Duarte, F. S., Andrade, E. S., Vieira, R. A., Uieara, M., Nunes, R. J. & de Lima, T. C. M. (2006). Bioorg. Med. Chem. 14, 5397-5401.]); Nakamura et al. (2006[Nakamura, T., Noguchi, T., Kobayashi, H., Miyachi, H. & Hashimoto, Y. (2006). Chem. Pharm. Bull. 54, 1709-1714.]); Stefańska et al. (2010[Stefańska, J., Bielenica, A., Struga, M., Tyski, S., Kossakowski, J., Colla, P. L., Tamburini, E. & Loddo, R. (2010). Ann. Microbiol. 60, 151-155.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11Cl6NO2

  • Mr = 473.97

  • Monoclinic, P 21 /c

  • a = 13.3009 (5) Å

  • b = 13.6141 (5) Å

  • c = 11.4912 (4) Å

  • β = 111.276 (4)°

  • V = 1939.00 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.978, Tmax = 0.984

  • 9237 measured reflections

  • 4457 independent reflections

  • 2814 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.121

  • S = 0.72

  • 4457 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H1⋯O2i 0.91 (3) 2.50 (3) 3.235 (3) 138 (2)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The ORTEP diagram for the molecule of the title compound is given in Fig. 1. In the crystal structure, the phenyl and the azatricyclo substitutions are in anti conformation about the C11—C12 bond which is confirmed by the torsion angle N4—C11—C12—C13 [169.3 (3)°]. In the crystal, molecules are linked by weak intermolecular C—H···O hydrogen bonds.

Related literature top

The interest in cyclic imides is due to their biological activity and wide application in the pharmaceutical industry (Duarte et al., 2006; Nakamura et al., 2006; Stefańska et al., 2010).

Experimental top

Phenethylamine (1 equiv) and 1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dicarboxylic anhydride (1 equiv) were stirred at room temperature in dry ethyl acetate for 30 min. Ethyl acetate was removed under reduced pressure; the resulting residue was dissolved in toluene. To this reaction mixture was added acetyl chloride (5 equiv) and refluxed for 1 h. The reaction mixture was brought to room temperature and washed with aqueous Na2CO3 and dried over anhydrous Na2SO4. Filtered and concentrated under reduced pressure followed by silica gel column purification afforded the imide,1,7,8,9,10,10-Hexachloro-4-(2-phenylethyl)-4-azatricyclo [5.2.1.02,6]dec-8-ene-3,5-dione,in 55% yield as colourless solid (m.p.: 161–163°C).

Refinement top

The hydrogen atoms at ring fusion were located using difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C-H = 0.93Å for aromatic H and C-H = 0.97å for methylene H and refined using a riding model with U(H) set 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP diagram of the compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram.
1,7,8,9,10,10-Hexachloro-4-(2-phenylethyl)-4-azatricyclo[5.2.1.02,6]dec- 8-ene-3,5-dione top
Crystal data top
C17H11Cl6NO2Z = 4
Mr = 473.97F(000) = 952
Monoclinic, P21/cDx = 1.624 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.3009 (5) Åθ = 3.0–29.3°
b = 13.6141 (5) ŵ = 0.90 mm1
c = 11.4912 (4) ÅT = 293 K
β = 111.276 (4)°Monoclinic, colourless
V = 1939.00 (12) Å30.20 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4457 independent reflections
Radiation source: fine-focus sealed tube2814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 15.9821 pixels mm-1θmax = 29.3°, θmin = 3.0°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1714
Tmin = 0.978, Tmax = 0.984l = 158
9237 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0784P)2 + 2.150P]
where P = (Fo2 + 2Fc2)/3
S = 0.72(Δ/σ)max < 0.001
4457 reflectionsΔρmax = 0.49 e Å3
244 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (7)
Crystal data top
C17H11Cl6NO2V = 1939.00 (12) Å3
Mr = 473.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3009 (5) ŵ = 0.90 mm1
b = 13.6141 (5) ÅT = 293 K
c = 11.4912 (4) Å0.20 × 0.20 × 0.20 mm
β = 111.276 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4457 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2814 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.984Rint = 0.021
9237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 0.72Δρmax = 0.49 e Å3
4457 reflectionsΔρmin = 0.54 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2561 (2)0.08000 (19)0.4510 (2)0.0363 (5)
C20.31543 (19)0.02382 (19)0.3771 (2)0.0333 (5)
C30.36261 (19)0.0735 (2)0.4348 (2)0.0379 (6)
C50.2247 (2)0.1141 (2)0.2485 (2)0.0415 (6)
C60.22344 (19)0.0031 (2)0.2548 (2)0.0359 (6)
C70.1224 (2)0.0410 (2)0.2729 (2)0.0418 (6)
C80.1055 (2)0.0167 (2)0.3772 (3)0.0460 (7)
C90.1842 (2)0.0067 (2)0.4824 (2)0.0428 (6)
C100.1697 (2)0.1367 (2)0.3446 (2)0.0399 (6)
C110.3368 (3)0.2506 (2)0.3813 (3)0.0522 (7)
H11A0.41440.25670.42240.063*
H11B0.31540.28750.30390.063*
C120.2821 (3)0.2937 (2)0.4645 (4)0.0644 (9)
H12A0.29230.25010.53460.077*
H12B0.20520.29930.41780.077*
C130.3272 (2)0.3936 (2)0.5125 (3)0.0426 (6)
C140.4205 (3)0.4027 (2)0.6155 (3)0.0570 (8)
H140.45560.34630.65570.068*
C150.4629 (3)0.4925 (3)0.6604 (3)0.0676 (9)
H150.52600.49650.73050.081*
C160.4133 (3)0.5759 (3)0.6031 (3)0.0661 (9)
H160.44240.63690.63380.079*
C170.3213 (3)0.5699 (2)0.5008 (3)0.0634 (9)
H170.28740.62700.46130.076*
C180.2779 (2)0.4794 (2)0.4550 (3)0.0526 (7)
H180.21490.47600.38480.063*
N40.30886 (18)0.14704 (16)0.3532 (2)0.0403 (5)
O10.16542 (18)0.16633 (17)0.16898 (19)0.0610 (6)
O20.43337 (15)0.08669 (16)0.53428 (18)0.0539 (5)
Cl10.22370 (7)0.21660 (6)0.26068 (7)0.0601 (2)
Cl20.07822 (7)0.20423 (6)0.39214 (7)0.0620 (2)
Cl30.33930 (7)0.15230 (6)0.57446 (7)0.0663 (3)
Cl40.21264 (9)0.04238 (8)0.62570 (8)0.0806 (3)
Cl50.01097 (7)0.05813 (9)0.13594 (8)0.0834 (3)
Cl60.00951 (8)0.10391 (8)0.35359 (11)0.0894 (4)
H10.368 (2)0.062 (2)0.366 (2)0.043 (7)*
H20.232 (2)0.0211 (19)0.183 (2)0.039 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0423 (13)0.0338 (14)0.0295 (11)0.0036 (11)0.0092 (10)0.0045 (10)
C20.0310 (12)0.0318 (14)0.0393 (13)0.0037 (11)0.0152 (10)0.0033 (10)
C30.0329 (12)0.0386 (15)0.0460 (14)0.0032 (11)0.0188 (11)0.0005 (12)
C50.0459 (14)0.0467 (16)0.0421 (14)0.0073 (13)0.0280 (12)0.0097 (12)
C60.0377 (13)0.0444 (15)0.0294 (12)0.0014 (12)0.0166 (10)0.0042 (11)
C70.0340 (12)0.0560 (18)0.0323 (12)0.0029 (12)0.0084 (10)0.0037 (12)
C80.0456 (15)0.0471 (17)0.0577 (17)0.0020 (13)0.0336 (14)0.0047 (13)
C90.0601 (16)0.0410 (15)0.0392 (14)0.0146 (13)0.0323 (13)0.0061 (12)
C100.0452 (14)0.0411 (15)0.0350 (13)0.0101 (12)0.0166 (11)0.0044 (11)
C110.070 (2)0.0319 (15)0.0702 (19)0.0018 (14)0.0446 (17)0.0006 (14)
C120.072 (2)0.051 (2)0.091 (2)0.0183 (17)0.055 (2)0.0242 (17)
C130.0465 (15)0.0388 (15)0.0510 (15)0.0044 (13)0.0279 (13)0.0049 (12)
C140.0562 (18)0.0514 (19)0.0609 (19)0.0132 (16)0.0182 (15)0.0101 (15)
C150.0499 (18)0.081 (3)0.063 (2)0.0035 (19)0.0097 (15)0.0122 (19)
C160.075 (2)0.051 (2)0.083 (2)0.0209 (19)0.041 (2)0.0135 (18)
C170.087 (2)0.0437 (19)0.071 (2)0.0118 (18)0.043 (2)0.0190 (16)
C180.0504 (16)0.066 (2)0.0403 (14)0.0050 (15)0.0150 (12)0.0024 (14)
N40.0498 (12)0.0322 (12)0.0466 (12)0.0012 (10)0.0266 (10)0.0038 (10)
O10.0680 (13)0.0623 (15)0.0557 (12)0.0209 (12)0.0260 (10)0.0277 (11)
O20.0415 (10)0.0529 (13)0.0573 (12)0.0088 (10)0.0061 (9)0.0043 (10)
Cl10.0820 (6)0.0462 (4)0.0617 (5)0.0098 (4)0.0376 (4)0.0159 (3)
Cl20.0724 (5)0.0608 (5)0.0613 (5)0.0312 (4)0.0343 (4)0.0060 (4)
Cl30.0743 (5)0.0543 (5)0.0504 (4)0.0050 (4)0.0010 (4)0.0221 (4)
Cl40.1149 (8)0.0892 (7)0.0602 (5)0.0396 (6)0.0587 (5)0.0350 (5)
Cl50.0491 (4)0.1271 (9)0.0517 (5)0.0178 (5)0.0085 (4)0.0190 (5)
Cl60.0718 (6)0.0813 (7)0.1426 (9)0.0319 (5)0.0716 (6)0.0264 (6)
Geometric parameters (Å, º) top
C1—C91.514 (4)C10—Cl21.762 (3)
C1—C101.547 (3)C10—Cl11.769 (3)
C1—C21.554 (3)C11—N41.464 (3)
C1—Cl31.751 (2)C11—C121.515 (4)
C2—C31.512 (4)C11—H11A0.9700
C2—C61.535 (3)C11—H11B0.9700
C2—H10.91 (3)C12—C131.507 (4)
C3—O21.202 (3)C12—H12A0.9700
C3—N41.381 (3)C12—H12B0.9700
C5—O11.200 (3)C13—C141.375 (4)
C5—N41.387 (3)C13—C181.384 (4)
C5—C61.514 (4)C14—C151.366 (5)
C6—C71.552 (3)C14—H140.9300
C6—H20.93 (3)C15—C161.357 (5)
C7—C81.517 (4)C15—H150.9300
C7—C101.548 (4)C16—C171.357 (5)
C7—Cl51.742 (3)C16—H160.9300
C8—C91.319 (4)C17—C181.382 (5)
C8—Cl61.692 (3)C17—H170.9300
C9—Cl41.688 (3)C18—H180.9300
C9—C1—C1099.5 (2)C7—C10—Cl2114.29 (18)
C9—C1—C2107.2 (2)C1—C10—Cl1113.92 (18)
C10—C1—C2101.12 (18)C7—C10—Cl1113.21 (17)
C9—C1—Cl3116.46 (17)Cl2—C10—Cl1108.11 (15)
C10—C1—Cl3115.44 (18)N4—C11—C12111.8 (2)
C2—C1—Cl3115.00 (18)N4—C11—H11A109.3
C3—C2—C6105.0 (2)C12—C11—H11A109.3
C3—C2—C1113.8 (2)N4—C11—H11B109.3
C6—C2—C1102.91 (19)C12—C11—H11B109.3
C3—C2—H1110.1 (17)H11A—C11—H11B107.9
C6—C2—H1113.8 (17)C13—C12—C11111.3 (2)
C1—C2—H1111.1 (17)C13—C12—H12A109.4
O2—C3—N4124.8 (3)C11—C12—H12A109.4
O2—C3—C2127.3 (3)C13—C12—H12B109.4
N4—C3—C2107.9 (2)C11—C12—H12B109.4
O1—C5—N4124.7 (3)H12A—C12—H12B108.0
O1—C5—C6127.8 (3)C14—C13—C18117.3 (3)
N4—C5—C6107.5 (2)C14—C13—C12120.8 (3)
C5—C6—C2105.2 (2)C18—C13—C12122.0 (3)
C5—C6—C7114.7 (2)C15—C14—C13121.7 (3)
C2—C6—C7103.08 (18)C15—C14—H14119.1
C5—C6—H2107.6 (16)C13—C14—H14119.1
C2—C6—H2114.6 (16)C16—C15—C14120.2 (3)
C7—C6—H2111.6 (16)C16—C15—H15119.9
C8—C7—C6106.8 (2)C14—C15—H15119.9
C8—C7—C1099.4 (2)C15—C16—C17119.8 (3)
C6—C7—C10101.1 (2)C15—C16—H16120.1
C8—C7—Cl5117.48 (19)C17—C16—H16120.1
C6—C7—Cl5115.15 (17)C16—C17—C18120.3 (3)
C10—C7—Cl5114.6 (2)C16—C17—H17119.9
C9—C8—C7107.7 (2)C18—C17—H17119.9
C9—C8—Cl6128.2 (2)C13—C18—C17120.7 (3)
C7—C8—Cl6123.8 (2)C13—C18—H18119.6
C8—C9—C1107.5 (2)C17—C18—H18119.6
C8—C9—Cl4128.4 (2)C3—N4—C5114.2 (2)
C1—C9—Cl4123.8 (2)C3—N4—C11121.4 (2)
C1—C10—C792.4 (2)C5—N4—C11124.3 (2)
C1—C10—Cl2114.45 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H1···O2i0.91 (3)2.50 (3)3.235 (3)138 (2)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H11Cl6NO2
Mr473.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.3009 (5), 13.6141 (5), 11.4912 (4)
β (°) 111.276 (4)
V3)1939.00 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.978, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9237, 4457, 2814
Rint0.021
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 0.72
No. of reflections4457
No. of parameters244
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.54

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H1···O2i0.91 (3)2.50 (3)3.235 (3)138 (2)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

CRR thanks DST-FIST for the single-crystal X-ray facility at the Department of Chemistry, Pondicherry University, Pondicherry.

References

First citationDuarte, F. S., Andrade, E. S., Vieira, R. A., Uieara, M., Nunes, R. J. & de Lima, T. C. M. (2006). Bioorg. Med. Chem. 14, 5397–5401.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNakamura, T., Noguchi, T., Kobayashi, H., Miyachi, H. & Hashimoto, Y. (2006). Chem. Pharm. Bull. 54, 1709–1714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStefańska, J., Bielenica, A., Struga, M., Tyski, S., Kossakowski, J., Colla, P. L., Tamburini, E. & Loddo, R. (2010). Ann. Microbiol. 60, 151–155.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds