organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1643-o1644

Androstane-3β,5α,6β,17β-tetrol tri­hydrate

aCEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal, bCentre for Neuroscience and Cell Biology, University of Coimbra, P-3004-517 Coimbra, Portugal, and cFaculty of Pharmacy, University of Coimbra, P-3000-548 Coimbra, Portugal
*Correspondence e-mail: jap@pollux.fis.uc.pt

(Received 20 May 2011; accepted 2 June 2011; online 11 June 2011)

The title hydrated tetrol, C19H32O4·3H2O, was synthesized by stereoselective reduction of the compound 3β,5α,6β-trihy­droxy­androstan-17-one. All rings are fused trans. The organic mol­ecules are connected head-to-tail along the c axis via O—H⋯O hydrogen bonds. Layers of water mol­ecules in the ab plane inter­connect these chains. A quantum chemical ab initio Roothan Hartree–Fock calculation of the isolated mol­ecule gives values for the mol­ecular geometry close to experimentally determined ones, apart from the C—O bond lengths, whose calculated values are significantly smaller than the measured ones, probably a consequence of the involvement of the C—OH groups in the hydrogen-bonding network.

Related literature

For the synthesis of the title compound, see: Carvalho, Silva, Moreira et al. (2010[Carvalho, J. F. S., Silva, M. M. C., Moreira, J. N., Simões, S. & Sá e Melo, M. L. (2010). J. Med. Chem. 53, 7632-7638.]); Carvalho, Silva & Sá e Melo (2010[Carvalho, J. F. S., Silva, M. M. C. & Sá e Melo, M. L. (2010). Tetrahedron, 66, 2455-2462.]); Luche et al. (1978[Luche, J. L., Rodriguez-Hahn, L. & Crabbé, P. (1978). J. Chem. Soc. Chem. Commun. 14, 601-602.]). For related structures, see: Andrade et al. (2011[Andrade, L. C. R., Almeida, M. J. B. M. de, Paixão, J. A., Carvalho, J. F. S. & Sá e Melo, M. L. (2011). Acta Cryst. E67, o1056-o1057.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure. New York: Plenum Press.]); Altona et al. (1968[Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13-32.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the program GAMESS used to perform the quantum chemical calculations, see: Schmidt et al. (1993[Schmidt, M. W., Baldrige, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Sue, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363.]).

[Scheme 1]

Experimental

Crystal data
  • C19H32O4·3H2O

  • Mr = 378.49

  • Triclinic, P 1

  • a = 5.8420 (2) Å

  • b = 7.3366 (2) Å

  • c = 12.7922 (3) Å

  • α = 74.560 (1)°

  • β = 83.091 (1)°

  • γ = 68.930 (1)°

  • V = 492.97 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.24 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.982

  • 14489 measured reflections

  • 2222 independent reflections

  • 2132 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.05

  • 2222 reflections

  • 259 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O17i 0.82 1.98 2.787 (2) 169
O5—H5⋯OW1 0.82 2.08 2.891 (2) 170
O6—H6⋯O5ii 0.82 2.26 2.9897 (16) 149
O17—H17⋯OW3 0.82 1.94 2.718 (3) 159
OW1—HW11⋯O3iii 0.80 (2) 2.15 (2) 2.944 (2) 170 (4)
OW1—HW12⋯OW2i 0.82 (2) 2.19 (2) 2.977 (3) 160 (4)
OW2—HW21⋯O17 0.83 (2) 2.05 (2) 2.862 (2) 168 (4)
OW2—HW22⋯O3iv 0.81 (2) 2.14 (2) 2.921 (2) 161 (4)
OW3—HW31⋯OW1v 0.81 (2) 2.05 (2) 2.850 (3) 169 (5)
OW3—HW32⋯OW2vi 0.82 (2) 2.11 (2) 2.921 (3) 173 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y-1, z; (iv) x-1, y, z-1; (v) x-1, y+1, z-1; (vi) x, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Following our interest in oxysterols and their cytotoxicity (Carvalho, Silva, Moreira et al., 2010), we were able to synthesize the title compound, (I), by stereoselective reduction of compound 3β,5α,6β-trihydroxyandrostan-17-one (Andrade et al., 2011). Evaluation of the cytotoxicity of compound (I) towards HT-29 cancer cells (Carvalho, Silva, Moreira et al., 2010) indicates no relevant values (IC50>50µM), in contrast to other 3β,5α,6β-trihydroxy steroids, namely cholestane-3β,5α,6β-triol. Such result points to the importance of a C-17 cholesteryl-type side chain for cytoxicity. Determination of the three-dimensional structure of compound (I) by X-ray crystallography will contribute to correlate the importance of this side chain influence on the overall steroid geometry with such biological effect. Determined interatomic distances and valency angles agree well with expected values reported by Allen et al. (1987), except for C2–C3 bond [1.514 (3) Å] which is significantly shorter than average Csp3–Csp3 bond length [1.535 Å], a common feature with 3β,5α,6β-trihydroxyandrostan-17-one (Andrade et al., 2011). Rings A, B and C have slightly flattened chair conformations [weighted average torsion angles 55.9 (8)°, 54.5 (4)°, 56.4 (9)°, respectively]. Ring D adopts a conformation in between 13β-envelope and 13β,14α-half chair [Cremer & Pople (1975) parameters q2 = 0.480 (2) Å and ϕ2 = 191.2 (3)°; asymmetry parameters (Duax & Norton, 1975; Altona et al., 1968) ΔCs(14) = 24.64 (18)°; ΔCs(13) = 11.80 (19)°; ΔC2(13,14) = 9.1 (2)°; ϕm = 48.8 (1)°; Δ = 13.5 (3)°]. All rings are fused trans. The pseudo torsion angle C19—C10—C13—C18 is 2.86 (14)°, showing that the molecule is only slightly twisted.

There is an extensive hydrogen bonding network in the crystal sructure. The steroid molecules are linked head to tail via the O17 and O3 atoms, through a direct H bond where the O3 atom acts as a donor and through two additional H bonds mediated by a water molecule. The chains, aligned along the c axis, are further linked together via the two remaining water molecules. Interestingly the three water molecules are located in layers in the ab plane.

Ab-initio Roothan Hartree-Fock calculations of the free steroid molecule were performed using the computer code GAMESS (Schmidt et al., 1993) in order to access the influence in the molecular geometry of the crystalline field, in particular of the solvent water molecules involved in H-bonding. These calculations gave values of the bond lengths,valency and torsion angles very close to those observed in the crystalline environment, except for the C–O bond lengths of the C—O—H groups, whose calculated values were significantely smaller than the measured ones, an effect that can be attributed to the influence of the hydrogen bonds (C17–O17 calc. 1.402, exp. 1.438 (2); C3–O3 calc. 1.408, exp. 1.4472 (18); C5–O5 calc. 1.423, exp. 1.4495 (19); C6–O6 calc. 1.405, exp. 1.426 (2) Å).

Related literature top

For the synthesis of the title compound, see: Carvalho, Silva, Moreira et al. (2010); Carvalho, Silva & Sá e Melo (2010); Luche et al. (1978). For related structures, see: Andrade et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax & Norton (1975); Altona et al. (1968). For reference bond-length data, see: Allen et al. (1987). For the program GAMESS used to perform the quantum chemical calculations, see: Schmidt et al. (1993).

Experimental top

Synthesis of the title compound was performed using Luche conditions (NaBH4/CeCl3) (Luche et al., 1978). Reduction of the carbonyl in position C17 revealed to be stereoselective rendering the 17β–OH in good yield (Carvalho, Silva & Sá e Melo, 2010). Crystallization from ethanol at room temperature afforded colourless crystals suitable for X-ray analysis. Analytical data of the title compound is in accordance with the literature (Carvalho, Silva & Sá e Melo, 2010). To a solution of 3β,5α,6β-trihydroxy-androstan-17-one (100 mg, 0.310 mmol) and CeCl3.7H2O (173.3 mg, 0.465 mmol) in THF (5 ml) and MeOH (5 ml) at 273 K, was slowly added NaBH4 (35.2 mg, 0.930 mmol). The mixture was stirred for 15 minutes, stopped with the addition of acetone, neutralized with Et3N and concentrated under vacuum. The residue was dissolved in ethyl acetate, filtrated and evaporated again. Flash chromatography (chloroform, ethanol 9:1) afforded the pure androstan-3β,5α,6β,17β-tetrol (I, 76.5 mg, 76%). M.p. 547 K (EtOH). IR (film) 3365, 2936, 2872, 1158, 1123, 1047, 1001, 960, 874, 745 cm-1. 1H NMR (300 MHz, DMSO–d6) δ p.p.m. 0.61 (3H, s, 18–CH3), 1.02 (3H, s, 19CH3), 1.85 (1H, dd, J=12.9, 11.2 Hz), 3.29 (1H, td, J=3.9, 3.3, 3.3 Hz, 6α–H), 3.43 (1H, dd, J=8.7, 4.5 Hz, 17α–H), 3.65 (1H, s, 5–OH), 3.79 (1H, tt, J=11.1, 5.7 Hz, 3α–H), 4.20 (1H, d, J=5.7 Hz, OH), 4.40 (1H, d, J=4.5 Hz, 17–OH), 4.41 (1H, d, J=3.3 Hz, 6–OH). 13C NMR (75 MHz, DMSO-d6 δ p.p.m. 11.4, 16.3, 20.3 (CH2), 23.1 (CH2), 29.9 (CH2), 30.1, 31.1 (CH2), 32.0 (CH2), 34.1 (CH2), 36.8 (CH2), 37.9 (C), 40.9 (CH2), 42.6 (C), 44.8, 50.4, 65.7, 74.0, 74.3 (C–5), 80.1. MS m/z (%): 323.2 (28) [M–H]+, 311.6 (11), 294.1 (70), 281.5 (17), 266.3 (100), 263.7 (15), 98.8 (20).

Refinement top

All hydrogen atoms were refined as riding on their parent atoms using SHELXL97 defaults except for those of the water molecules whose coordinates were refined from the starting coordinates obtained from a difference Fourier synthesis with Ueq(H)=1.5Ueq(O) using a DFIX restraint for the O—H bond of 0.82 Å and those of the C—OH groups which were positioned and refined with a SELXL97 HFIX 147 instruction.

The absolute configuration was not determined from the X-ray data, as the molecule lacks any strong anomalous scatterer atom at the Mo Kα wavelength, but was known from the synthetic route. Friedel pairs were merged before refinement.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEPII plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
[Figure 2] Fig. 2. Projection of the crystal structure along the a axis, showing the H-bond network.
Androstane-3β,5α,6β,17β-tetrol trihydrate top
Crystal data top
C19H32O4·3H2OZ = 1
Mr = 378.49F(000) = 208
Triclinic, P1Dx = 1.275 Mg m3
Hall symbol: P 1Melting point: 547 K
a = 5.8420 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3366 (2) ÅCell parameters from 9795 reflections
c = 12.7922 (3) Åθ = 3.1–27.9°
α = 74.560 (1)°µ = 0.10 mm1
β = 83.091 (1)°T = 293 K
γ = 68.930 (1)°Prism, colourless
V = 492.97 (2) Å30.40 × 0.30 × 0.24 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2222 independent reflections
Radiation source: fine-focus sealed tube2132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 77
Tmin = 0.973, Tmax = 0.982k = 99
14489 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.0525P]
where P = (Fo2 + 2Fc2)/3
2222 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.20 e Å3
9 restraintsΔρmin = 0.18 e Å3
Crystal data top
C19H32O4·3H2Oγ = 68.930 (1)°
Mr = 378.49V = 492.97 (2) Å3
Triclinic, P1Z = 1
a = 5.8420 (2) ÅMo Kα radiation
b = 7.3366 (2) ŵ = 0.10 mm1
c = 12.7922 (3) ÅT = 293 K
α = 74.560 (1)°0.40 × 0.30 × 0.24 mm
β = 83.091 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2222 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2132 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.017
14489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0319 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
2222 reflectionsΔρmin = 0.18 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.6825 (3)0.6903 (2)1.01710 (10)0.0341 (3)
H30.58880.68241.06990.051*
O50.5070 (2)0.4040 (2)0.81009 (10)0.0274 (3)
H50.54660.31180.86460.041*
O61.1265 (2)0.3581 (2)0.69231 (12)0.0327 (3)
H61.19570.35620.74490.049*
O170.3382 (3)0.6345 (2)0.18191 (10)0.0322 (3)
H170.23680.74640.18120.048*
C80.7075 (3)0.4785 (2)0.54354 (13)0.0190 (3)
H80.84050.52980.51220.023*
C90.5052 (3)0.6405 (2)0.59165 (13)0.0184 (3)
H90.37620.58360.62160.022*
C100.5997 (3)0.6831 (2)0.68858 (13)0.0189 (3)
C40.7953 (3)0.5133 (3)0.87369 (14)0.0235 (3)
H4A0.85950.38500.92560.028*
H4B0.92710.56780.85180.028*
C50.7073 (3)0.4805 (2)0.77394 (13)0.0200 (3)
C110.3867 (3)0.8294 (3)0.50259 (14)0.0265 (4)
H11A0.50740.89310.47230.032*
H11B0.25340.92390.53460.032*
C130.4866 (3)0.6246 (2)0.36183 (13)0.0203 (3)
C140.5959 (3)0.4377 (2)0.45415 (13)0.0209 (3)
H140.45800.39530.48840.025*
C10.3880 (3)0.8233 (3)0.74519 (14)0.0283 (4)
H1A0.32240.95290.69450.034*
H1B0.25780.76670.76510.034*
C30.5877 (3)0.6566 (3)0.92717 (14)0.0285 (4)
H3A0.46340.59360.95540.034*
C60.9057 (3)0.3161 (2)0.72770 (14)0.0233 (3)
H6A0.94620.18990.78400.028*
C70.8106 (3)0.2850 (2)0.63067 (14)0.0240 (3)
H7A0.68310.22640.65550.029*
H7B0.94340.18980.59880.029*
C20.4682 (4)0.8545 (3)0.84738 (15)0.0326 (4)
H2A0.58310.92680.82660.039*
H2B0.32610.93600.88220.039*
C120.2867 (3)0.7820 (3)0.41083 (14)0.0267 (4)
H12A0.15270.73270.43920.032*
H12B0.22300.90440.35470.032*
C180.6775 (3)0.7118 (3)0.29715 (15)0.0293 (4)
H18A0.79010.61590.26010.044*
H18B0.76580.74050.34570.044*
H18C0.59630.83350.24500.044*
C190.7914 (3)0.7860 (3)0.64653 (14)0.0266 (4)
H19A0.71300.91840.60240.040*
H19B0.91560.70810.60400.040*
H19C0.86540.79610.70690.040*
C170.3951 (3)0.5244 (3)0.29226 (14)0.0262 (4)
H17A0.24860.49750.32810.031*
C150.7529 (4)0.2761 (3)0.39465 (15)0.0302 (4)
H15A0.77370.14200.43940.036*
H15B0.91310.28800.37390.036*
C160.6017 (4)0.3220 (3)0.29381 (17)0.0376 (5)
H16A0.70370.33140.22830.056*
H16B0.53400.21690.29900.056*
OW10.6011 (4)0.1107 (3)1.01617 (15)0.0493 (4)
HW110.607 (7)0.002 (3)1.021 (3)0.074*
HW120.468 (5)0.163 (6)1.045 (3)0.074*
OW20.1512 (3)0.3921 (3)0.09832 (16)0.0519 (4)
HW210.186 (7)0.466 (5)0.128 (3)0.078*
HW220.042 (6)0.488 (5)0.067 (3)0.078*
OW30.0382 (5)1.0250 (4)0.1259 (2)0.0762 (7)
HW310.074 (7)1.048 (8)0.088 (4)0.114*
HW320.074 (9)1.124 (6)0.124 (4)0.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0427 (8)0.0482 (8)0.0175 (6)0.0188 (7)0.0037 (5)0.0118 (6)
O50.0313 (7)0.0332 (7)0.0210 (6)0.0191 (6)0.0032 (5)0.0002 (5)
O60.0222 (6)0.0420 (8)0.0344 (7)0.0078 (6)0.0039 (5)0.0129 (6)
O170.0371 (7)0.0358 (7)0.0209 (6)0.0056 (6)0.0087 (5)0.0087 (5)
C80.0199 (7)0.0185 (8)0.0183 (7)0.0047 (6)0.0020 (6)0.0058 (6)
C90.0200 (7)0.0207 (8)0.0148 (7)0.0058 (6)0.0022 (6)0.0055 (6)
C100.0209 (7)0.0195 (8)0.0160 (6)0.0053 (6)0.0032 (6)0.0047 (6)
C40.0259 (8)0.0263 (9)0.0183 (7)0.0089 (7)0.0057 (6)0.0033 (6)
C50.0220 (8)0.0226 (8)0.0174 (7)0.0103 (7)0.0022 (6)0.0037 (6)
C110.0323 (9)0.0218 (8)0.0200 (8)0.0007 (7)0.0083 (7)0.0069 (7)
C130.0207 (7)0.0232 (8)0.0164 (7)0.0049 (6)0.0025 (6)0.0063 (6)
C140.0229 (8)0.0214 (8)0.0193 (7)0.0068 (7)0.0018 (6)0.0069 (6)
C10.0283 (9)0.0310 (10)0.0220 (8)0.0006 (8)0.0056 (7)0.0118 (7)
C30.0307 (9)0.0420 (11)0.0185 (8)0.0157 (8)0.0036 (7)0.0107 (7)
C60.0265 (9)0.0190 (8)0.0210 (7)0.0040 (7)0.0076 (6)0.0016 (6)
C70.0291 (9)0.0182 (8)0.0234 (8)0.0033 (7)0.0071 (6)0.0066 (6)
C20.0360 (10)0.0354 (11)0.0238 (8)0.0019 (8)0.0052 (8)0.0154 (8)
C120.0249 (8)0.0302 (9)0.0200 (8)0.0007 (7)0.0065 (6)0.0092 (7)
C180.0314 (9)0.0339 (10)0.0243 (9)0.0149 (8)0.0006 (7)0.0050 (7)
C190.0348 (9)0.0245 (9)0.0245 (8)0.0157 (7)0.0044 (7)0.0033 (7)
C170.0288 (8)0.0328 (10)0.0198 (8)0.0113 (7)0.0026 (6)0.0089 (7)
C150.0393 (10)0.0234 (9)0.0251 (8)0.0024 (8)0.0064 (7)0.0104 (7)
C160.0535 (12)0.0304 (10)0.0286 (9)0.0064 (9)0.0088 (8)0.0145 (8)
OW10.0636 (11)0.0451 (10)0.0416 (9)0.0261 (9)0.0069 (8)0.0015 (7)
OW20.0525 (10)0.0546 (11)0.0552 (11)0.0203 (9)0.0148 (8)0.0151 (8)
OW30.0667 (14)0.0515 (12)0.107 (2)0.0064 (11)0.0284 (13)0.0217 (12)
Geometric parameters (Å, º) top
O3—C31.4473 (18)C1—C21.538 (2)
O3—H30.8200C1—H1A0.9700
O5—C51.4496 (19)C1—H1B0.9700
O5—H50.8200C3—C21.513 (3)
O6—C61.426 (2)C3—H3A0.9800
O6—H60.8200C6—C71.520 (2)
O17—C171.438 (2)C6—H6A0.9800
O17—H170.8200C7—H7A0.9700
C8—C141.5248 (19)C7—H7B0.9700
C8—C71.525 (2)C2—H2A0.9700
C8—C91.547 (2)C2—H2B0.9700
C8—H80.9800C12—H12A0.9700
C9—C111.535 (2)C12—H12B0.9700
C9—C101.5603 (18)C18—H18A0.9600
C9—H90.9800C18—H18B0.9600
C10—C191.537 (2)C18—H18C0.9600
C10—C11.542 (2)C19—H19A0.9600
C10—C51.557 (2)C19—H19B0.9600
C4—C31.520 (3)C19—H19C0.9600
C4—C51.537 (2)C17—C161.537 (3)
C4—H4A0.9700C17—H17A0.9800
C4—H4B0.9700C15—C161.545 (2)
C5—C61.535 (2)C15—H15A0.9700
C11—C121.539 (2)C15—H15B0.9700
C11—H11A0.9700C16—H16A0.9700
C11—H11B0.9700C16—H16B0.9700
C13—C121.527 (2)OW1—HW110.802 (19)
C13—C181.532 (2)OW1—HW120.820 (19)
C13—C171.537 (2)OW2—HW210.825 (19)
C13—C141.540 (2)OW2—HW220.809 (19)
C14—C151.535 (2)OW3—HW310.81 (2)
C14—H140.9800OW3—HW320.82 (2)
C3—O3—H3109.5O3—C3—H3A108.6
C5—O5—H5109.5C2—C3—H3A108.6
C6—O6—H6109.5C4—C3—H3A108.6
C17—O17—H17109.5O6—C6—C7106.88 (14)
C14—C8—C7110.14 (12)O6—C6—C5114.35 (13)
C14—C8—C9108.20 (12)C7—C6—C5110.36 (13)
C7—C8—C9111.03 (13)O6—C6—H6A108.4
C14—C8—H8109.1C7—C6—H6A108.4
C7—C8—H8109.1C5—C6—H6A108.4
C9—C8—H8109.1C6—C7—C8113.45 (13)
C11—C9—C8111.15 (13)C6—C7—H7A108.9
C11—C9—C10114.18 (13)C8—C7—H7A108.9
C8—C9—C10111.71 (12)C6—C7—H7B108.9
C11—C9—H9106.4C8—C7—H7B108.9
C8—C9—H9106.4H7A—C7—H7B107.7
C10—C9—H9106.4C3—C2—C1111.83 (15)
C19—C10—C1108.27 (14)C3—C2—H2A109.2
C19—C10—C5111.98 (13)C1—C2—H2A109.2
C1—C10—C5107.37 (13)C3—C2—H2B109.2
C19—C10—C9109.47 (13)C1—C2—H2B109.2
C1—C10—C9111.07 (13)H2A—C2—H2B107.9
C5—C10—C9108.69 (12)C13—C12—C11111.20 (14)
C3—C4—C5111.29 (14)C13—C12—H12A109.4
C3—C4—H4A109.4C11—C12—H12A109.4
C5—C4—H4A109.4C13—C12—H12B109.4
C3—C4—H4B109.4C11—C12—H12B109.4
C5—C4—H4B109.4H12A—C12—H12B108.0
H4A—C4—H4B108.0C13—C18—H18A109.5
O5—C5—C6105.43 (13)C13—C18—H18B109.5
O5—C5—C4107.34 (13)H18A—C18—H18B109.5
C6—C5—C4111.83 (13)C13—C18—H18C109.5
O5—C5—C10106.41 (12)H18A—C18—H18C109.5
C6—C5—C10114.03 (12)H18B—C18—H18C109.5
C4—C5—C10111.26 (12)C10—C19—H19A109.5
C9—C11—C12112.56 (14)C10—C19—H19B109.5
C9—C11—H11A109.1H19A—C19—H19B109.5
C12—C11—H11A109.1C10—C19—H19C109.5
C9—C11—H11B109.1H19A—C19—H19C109.5
C12—C11—H11B109.1H19B—C19—H19C109.5
H11A—C11—H11B107.8O17—C17—C16109.69 (14)
C12—C13—C18110.92 (15)O17—C17—C13116.41 (15)
C12—C13—C17115.43 (13)C16—C17—C13105.03 (14)
C18—C13—C17109.95 (14)O17—C17—H17A108.5
C12—C13—C14108.13 (13)C16—C17—H17A108.5
C18—C13—C14113.66 (13)C13—C17—H17A108.5
C17—C13—C1498.26 (13)C14—C15—C16103.10 (15)
C8—C14—C15119.76 (14)C14—C15—H15A111.1
C8—C14—C13114.15 (12)C16—C15—H15A111.1
C15—C14—C13103.82 (13)C14—C15—H15B111.1
C8—C14—H14106.0C16—C15—H15B111.1
C15—C14—H14106.0H15A—C15—H15B109.1
C13—C14—H14106.0C17—C16—C15105.92 (14)
C2—C1—C10112.90 (14)C17—C16—H16A110.6
C2—C1—H1A109.0C15—C16—H16A110.6
C10—C1—H1A109.0C17—C16—H16B110.6
C2—C1—H1B109.0C15—C16—H16B110.6
C10—C1—H1B109.0H16A—C16—H16B108.7
H1A—C1—H1B107.8HW11—OW1—HW12104 (4)
O3—C3—C2110.35 (15)HW21—OW2—HW2290 (4)
O3—C3—C4109.14 (14)HW31—OW3—HW32114 (6)
C2—C3—C4111.63 (15)
C14—C8—C9—C1154.42 (17)C19—C10—C1—C264.85 (19)
C7—C8—C9—C11175.41 (13)C5—C10—C1—C256.22 (19)
C14—C8—C9—C10176.76 (13)C9—C10—C1—C2174.93 (15)
C7—C8—C9—C1055.78 (17)C5—C4—C3—O3177.17 (13)
C11—C9—C10—C1959.18 (19)C5—C4—C3—C254.92 (19)
C8—C9—C10—C1968.02 (17)O5—C5—C6—O6176.93 (13)
C11—C9—C10—C160.3 (2)C4—C5—C6—O660.60 (18)
C8—C9—C10—C1172.47 (13)C10—C5—C6—O666.72 (16)
C11—C9—C10—C5178.24 (14)O5—C5—C6—C762.55 (17)
C8—C9—C10—C554.57 (16)C4—C5—C6—C7178.88 (14)
C3—C4—C5—O557.61 (18)C10—C5—C6—C753.80 (17)
C3—C4—C5—C6172.78 (14)O6—C6—C7—C871.50 (18)
C3—C4—C5—C1058.43 (18)C5—C6—C7—C853.39 (19)
C19—C10—C5—O5177.61 (14)C14—C8—C7—C6175.01 (14)
C1—C10—C5—O558.90 (15)C9—C8—C7—C655.17 (18)
C9—C10—C5—O561.33 (15)O3—C3—C2—C1174.34 (15)
C19—C10—C5—C666.61 (16)C4—C3—C2—C152.8 (2)
C1—C10—C5—C6174.68 (13)C10—C1—C2—C355.1 (2)
C9—C10—C5—C654.45 (16)C18—C13—C12—C1169.96 (18)
C19—C10—C5—C461.00 (17)C17—C13—C12—C11164.15 (15)
C1—C10—C5—C457.72 (16)C14—C13—C12—C1155.30 (19)
C9—C10—C5—C4177.94 (14)C9—C11—C12—C1355.6 (2)
C8—C9—C11—C1254.8 (2)C12—C13—C17—O1781.80 (19)
C10—C9—C11—C12177.68 (14)C18—C13—C17—O1744.6 (2)
C7—C8—C14—C1556.0 (2)C14—C13—C17—O17163.54 (14)
C9—C8—C14—C15177.54 (15)C12—C13—C17—C16156.68 (16)
C7—C8—C14—C13179.93 (14)C18—C13—C17—C1676.94 (18)
C9—C8—C14—C1358.54 (17)C14—C13—C17—C1642.02 (17)
C12—C13—C14—C859.23 (17)C8—C14—C15—C16165.07 (15)
C18—C13—C14—C864.39 (18)C13—C14—C15—C1636.31 (18)
C17—C13—C14—C8179.50 (13)O17—C17—C16—C15146.74 (16)
C12—C13—C14—C15168.66 (14)C13—C17—C16—C1520.9 (2)
C18—C13—C14—C1567.72 (17)C14—C15—C16—C179.3 (2)
C17—C13—C14—C1548.38 (16)C19—C10—C13—C182.85 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O17i0.821.982.787 (2)169
O5—H5···OW10.822.082.891 (2)170
O6—H6···O5ii0.822.262.9897 (16)149
O17—H17···OW30.821.942.718 (3)159
OW1—HW11···O3iii0.80 (2)2.15 (2)2.944 (2)170 (4)
OW1—HW12···OW2i0.82 (2)2.19 (2)2.977 (3)160 (4)
OW2—HW21···O170.83 (2)2.05 (2)2.862 (2)168 (4)
OW2—HW22···O3iv0.81 (2)2.14 (2)2.921 (2)161 (4)
OW3—HW31···OW1v0.81 (2)2.05 (2)2.850 (3)169 (5)
OW3—HW32···OW2vi0.82 (2)2.11 (2)2.921 (3)173 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y1, z; (iv) x1, y, z1; (v) x1, y+1, z1; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H32O4·3H2O
Mr378.49
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.8420 (2), 7.3366 (2), 12.7922 (3)
α, β, γ (°)74.560 (1), 83.091 (1), 68.930 (1)
V3)492.97 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.24
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
14489, 2222, 2132
Rint0.017
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.05
No. of reflections2222
No. of parameters259
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O17i0.821.982.787 (2)168.6
O5—H5···OW10.822.082.891 (2)170.3
O6—H6···O5ii0.822.262.9897 (16)148.5
O17—H17···OW30.821.942.718 (3)159.4
OW1—HW11···O3iii0.802 (19)2.15 (2)2.944 (2)170 (4)
OW1—HW12···OW2i0.820 (19)2.19 (2)2.977 (3)160 (4)
OW2—HW21···O170.825 (19)2.05 (2)2.862 (2)168 (4)
OW2—HW22···O3iv0.809 (19)2.14 (2)2.921 (2)161 (4)
OW3—HW31···OW1v0.81 (2)2.05 (2)2.850 (3)169 (5)
OW3—HW32···OW2vi0.82 (2)2.11 (2)2.921 (3)173 (5)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x, y1, z; (iv) x1, y, z1; (v) x1, y+1, z1; (vi) x, y+1, z.
 

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia. We gratefully acknowledge LCA-UC for granting computer time in the Milipeia cluster and Mr Carlos Pereira for help in the analysis of the output of the GAMESS code.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13–32.  CrossRef CAS Web of Science Google Scholar
First citationAndrade, L. C. R., Almeida, M. J. B. M. de, Paixão, J. A., Carvalho, J. F. S. & Sá e Melo, M. L. (2011). Acta Cryst. E67, o1056–o1057.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarvalho, J. F. S., Silva, M. M. C., Moreira, J. N., Simões, S. & Sá e Melo, M. L. (2010). J. Med. Chem. 53, 7632–7638.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCarvalho, J. F. S., Silva, M. M. C. & Sá e Melo, M. L. (2010). Tetrahedron, 66, 2455–2462.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure. New York: Plenum Press.  Google Scholar
First citationLuche, J. L., Rodriguez-Hahn, L. & Crabbé, P. (1978). J. Chem. Soc. Chem. Commun. 14, 601–602.  CrossRef Google Scholar
First citationSchmidt, M. W., Baldrige, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Sue, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347–1363.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1643-o1644
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds