organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-[2-(1H-benzotriazol-1-yl)acet­yl]-4-hy­dr­oxy-2,6-di­phenyl-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 23 May 2011; accepted 27 May 2011; online 4 June 2011)

In the title compound, C28H26N4O4, the tetra­hydro­pyridine ring adopts a boat conformation. The two phenyl rings form dihedral angles of 88.64 (8) and 59.28 (10)° with the best plane through the tetra­hydro­pyridine ring. The dihedral angle between the two phenyl rings is 82.55 (10)°. The benzotriazole ring system is essentially planar, with a maximum deviation of 0.009 (1) Å from the least-squares plane. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, generating an S(6) motif.

Related literature

For the synthesis and medicinal properties of piperidin-4-one-based amides, see: Aridoss et al. (2010a[Aridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 2242-2249.]). For related structures see: Aridoss et al. (2010a[Aridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 2242-2249.], 2010b[Aridoss, G., Sundaramoorthy, S., Velmurugan, D., Park, K. S. & Jeong, Y. T. (2010b). Acta Cryst. E66, o1982.], 2011[Aridoss, G., Sundaramoorthy, S., Velmurugan, D. & Jeong, Y. T. (2011). Acta Cryst. E67, o540.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C28H26N4O4

  • Mr = 482.53

  • Monoclinic, P 21 /c

  • a = 7.9214 (2) Å

  • b = 21.9667 (6) Å

  • c = 14.5621 (4) Å

  • β = 95.722 (2)°

  • V = 2521.28 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.981

  • 24470 measured reflections

  • 6280 independent reflections

  • 4096 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.04

  • 6280 reflections

  • 326 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 1.90 2.605 (2) 143

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our interest on the conformation and crystal studies of piperidin-4-one based amides (Aridoss et al. 2010a, 2010b, 2011), we are reporting herewith the crystal structure of the title compound.

The molecular structure of compound (I) is illustrated in Fig.1. The sum of the bond angles around the atom N1 [358.77 (32)°] of the tetrahydropyridine ring in the molecule is in accordance with sp2 hybridization. The two phenyl rings form dihedral angles of 88.64 (8) and 59.28 (10)° with the best plane through the tetrahydropyridine ring. The benzotriazole ring system is essentially planar with a maximum deviation of 0.009 (1)Å from the least squares plane. The ethyl acetate group shows an extended conformation [C26—O4—C27—C28 = 82.2 (2)°].

In the present structure tetrahydropyridine ring adopts a boat conformation with atoms C2 and C5 deviating by -0.316 (2) and -0.315 (1) Å, respectively from the least squares plane defined by the remaining atoms N1/C1/C3/C4 in the ring. The puckering parameters (Cremer & Pople, 1975) are Q = 0.5478 (16) Å; Θ = 90.33 (16) and Φ = 123.49 (16)°. The molecular structure is stabilized by a strong O—H···O hydrogen bond, wherein, atom O2 acts as a donor to O3, generating an S (6) motif.

Related literature top

For the synthesis and medicinal properties of piperidin-4-one-based amides, see: Aridoss et al. (2010a). For related structures see: Aridoss et al. (2010a, 2010b, 2011). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The title compound was prepared from N-bromoacetyl-3-carboxyethyl -2,6-diphenyl-4-hydroxy-Δ3-tetrahydropyridine and benzotriazole according to the literature method (Aridoss et al., 2010a). Slow evaporation of the ethanolic solution of the target compound at room temperature gave fine white crystals suitable for X-ray studies.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å, O—H = 0.82Å) and allowed to ride on their parent atoms, with 1.5Ueq(C,O) for methyl H and hydroxyl H and 1.2 Ueq(C) for other H atoms. The anisotropic displacement parameters of C15 and C16 were restrained to be equal in the direction of the bond between them.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down the b axis. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted.
Ethyl 1-[2-(1H-benzotriazol-1-yl)acetyl]-4-hydroxy-2,6-diphenyl- 1,2,5,6-tetrahydropyridine-3-carboxylate top
Crystal data top
C28H26N4O4F(000) = 1016
Mr = 482.53Dx = 1.271 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1044 reflections
a = 7.9214 (2) Åθ = 1.7–28.4°
b = 21.9667 (6) ŵ = 0.09 mm1
c = 14.5621 (4) ÅT = 293 K
β = 95.722 (2)°Block, colourless
V = 2521.28 (12) Å30.26 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6280 independent reflections
Radiation source: fine-focus sealed tube4096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 109
Tmin = 0.978, Tmax = 0.981k = 2921
24470 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.4558P]
where P = (Fo2 + 2Fc2)/3
6280 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C28H26N4O4V = 2521.28 (12) Å3
Mr = 482.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9214 (2) ŵ = 0.09 mm1
b = 21.9667 (6) ÅT = 293 K
c = 14.5621 (4) Å0.26 × 0.24 × 0.22 mm
β = 95.722 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6280 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4096 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.981Rint = 0.025
24470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.128H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
6280 reflectionsΔρmin = 0.23 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C140.4394 (4)0.29971 (18)0.66570 (15)0.1189 (12)
H140.54970.30460.63840.143*
C280.4568 (4)0.41609 (15)1.23886 (19)0.1343 (11)
H28A0.34840.40431.25720.201*
H28B0.52410.43371.29060.201*
H28C0.51370.38091.21780.201*
C10.13796 (17)0.38583 (7)0.83335 (10)0.0444 (3)
H10.19080.42430.81220.053*
C20.19984 (19)0.37148 (9)0.92782 (10)0.0548 (4)
H2A0.31920.38180.92600.066*
H2B0.18880.32810.93930.066*
C30.10443 (19)0.40503 (7)1.00537 (10)0.0494 (4)
C40.06433 (17)0.41019 (7)1.00816 (9)0.0428 (3)
C50.15248 (17)0.38475 (6)0.92983 (9)0.0398 (3)
H50.25670.40850.92740.048*
C60.20532 (17)0.31828 (7)0.93869 (9)0.0423 (3)
C70.1435 (2)0.27823 (8)1.00015 (11)0.0535 (4)
H70.07070.29241.04170.064*
C80.1882 (2)0.21739 (8)1.00086 (13)0.0646 (5)
H80.14330.19091.04190.078*
C90.2973 (2)0.19597 (9)0.94192 (13)0.0696 (5)
H90.32610.15490.94210.084*
C100.3643 (3)0.23537 (9)0.88223 (14)0.0745 (5)
H100.44100.22120.84280.089*
C110.3185 (2)0.29595 (8)0.88043 (11)0.0605 (4)
H110.36440.32220.83940.073*
C120.2044 (2)0.33717 (8)0.76537 (10)0.0530 (4)
C130.3676 (2)0.34412 (11)0.72253 (11)0.0769 (6)
H130.42860.37930.73250.092*
C150.3517 (5)0.24853 (17)0.64860 (16)0.1274 (14)
H150.40110.21890.60900.153*
C160.1890 (4)0.24064 (11)0.69020 (15)0.1051 (9)
H160.12880.20550.67890.126*
C170.1147 (3)0.28529 (9)0.74913 (12)0.0728 (5)
H170.00510.28000.77730.087*
C180.12276 (18)0.42430 (7)0.77372 (10)0.0428 (3)
C190.01021 (19)0.43927 (7)0.68500 (10)0.0492 (4)
H19A0.04170.40220.65940.059*
H19B0.07970.46670.69910.059*
C200.25001 (19)0.52618 (8)0.53605 (10)0.0494 (4)
C210.13955 (17)0.52698 (7)0.60430 (9)0.0418 (3)
C220.0838 (2)0.58034 (8)0.64184 (11)0.0565 (4)
H220.01020.58040.68770.068*
C230.1446 (3)0.63310 (8)0.60675 (14)0.0695 (5)
H230.11050.67020.62950.083*
C240.2553 (3)0.63297 (10)0.53843 (14)0.0735 (6)
H240.29280.67000.51700.088*
C250.3104 (2)0.58077 (9)0.50207 (13)0.0666 (5)
H250.38500.58120.45660.080*
C260.15896 (19)0.43862 (7)1.08725 (10)0.0461 (3)
C270.4324 (2)0.46121 (10)1.16347 (14)0.0777 (6)
H27A0.38040.49761.18580.093*
H27B0.54180.47241.14410.093*
N10.04728 (13)0.39513 (5)0.84073 (7)0.0389 (3)
N20.10739 (15)0.46717 (5)0.61823 (8)0.0451 (3)
N30.19402 (19)0.43209 (6)0.56320 (9)0.0594 (4)
N40.27962 (19)0.46712 (7)0.51253 (10)0.0642 (4)
O10.27280 (13)0.43786 (6)0.78083 (7)0.0613 (3)
O20.19961 (14)0.42665 (6)1.06894 (8)0.0720 (4)
H20.13870.44401.10970.108*
O30.09123 (14)0.46188 (6)1.15100 (8)0.0624 (3)
O40.32511 (13)0.43677 (5)1.08484 (8)0.0593 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C140.0988 (19)0.204 (3)0.0527 (12)0.091 (2)0.0002 (12)0.0100 (17)
C280.116 (2)0.176 (3)0.0982 (19)0.026 (2)0.0519 (16)0.007 (2)
C10.0371 (7)0.0475 (9)0.0476 (8)0.0058 (6)0.0002 (6)0.0031 (6)
C20.0403 (8)0.0726 (11)0.0522 (9)0.0109 (8)0.0084 (7)0.0044 (8)
C30.0456 (8)0.0587 (10)0.0445 (8)0.0008 (7)0.0074 (6)0.0034 (7)
C40.0420 (8)0.0444 (8)0.0419 (7)0.0002 (6)0.0028 (6)0.0002 (6)
C50.0356 (7)0.0448 (8)0.0385 (7)0.0049 (6)0.0013 (5)0.0004 (6)
C60.0389 (7)0.0469 (9)0.0401 (7)0.0009 (6)0.0007 (6)0.0028 (6)
C70.0539 (9)0.0536 (10)0.0536 (9)0.0010 (8)0.0082 (7)0.0083 (7)
C80.0665 (11)0.0542 (11)0.0715 (11)0.0046 (9)0.0020 (9)0.0170 (9)
C90.0764 (12)0.0499 (11)0.0795 (12)0.0128 (9)0.0079 (10)0.0050 (9)
C100.0820 (13)0.0678 (13)0.0755 (12)0.0280 (11)0.0164 (10)0.0026 (10)
C110.0633 (10)0.0610 (11)0.0592 (9)0.0139 (9)0.0171 (8)0.0111 (8)
C120.0559 (9)0.0623 (11)0.0405 (7)0.0247 (8)0.0032 (7)0.0053 (7)
C130.0573 (10)0.1251 (18)0.0471 (9)0.0358 (11)0.0001 (8)0.0049 (10)
C150.179 (3)0.154 (3)0.0506 (12)0.122 (3)0.0183 (16)0.0240 (15)
C160.178 (3)0.0749 (15)0.0656 (13)0.0515 (17)0.0259 (16)0.0143 (11)
C170.1006 (15)0.0570 (12)0.0597 (10)0.0217 (11)0.0022 (10)0.0040 (9)
C180.0433 (8)0.0402 (8)0.0446 (7)0.0058 (6)0.0024 (6)0.0036 (6)
C190.0505 (8)0.0508 (9)0.0455 (8)0.0100 (7)0.0009 (6)0.0094 (7)
C200.0462 (8)0.0579 (10)0.0433 (7)0.0033 (7)0.0015 (6)0.0067 (7)
C210.0437 (8)0.0430 (9)0.0372 (7)0.0018 (6)0.0032 (6)0.0053 (6)
C220.0633 (10)0.0515 (10)0.0540 (9)0.0050 (8)0.0019 (8)0.0000 (8)
C230.0813 (13)0.0445 (10)0.0782 (12)0.0028 (9)0.0145 (10)0.0011 (9)
C240.0757 (13)0.0596 (12)0.0814 (13)0.0179 (10)0.0118 (11)0.0254 (10)
C250.0570 (10)0.0812 (14)0.0611 (10)0.0143 (10)0.0030 (8)0.0217 (10)
C260.0475 (8)0.0444 (9)0.0456 (8)0.0028 (7)0.0007 (6)0.0006 (6)
C270.0506 (10)0.0928 (15)0.0853 (13)0.0035 (10)0.0154 (9)0.0374 (12)
N10.0364 (6)0.0406 (7)0.0394 (6)0.0038 (5)0.0015 (5)0.0034 (5)
N20.0535 (7)0.0418 (7)0.0398 (6)0.0020 (6)0.0036 (5)0.0028 (5)
N30.0711 (9)0.0511 (8)0.0566 (8)0.0027 (7)0.0089 (7)0.0066 (7)
N40.0684 (9)0.0687 (10)0.0580 (8)0.0024 (8)0.0187 (7)0.0040 (7)
O10.0471 (6)0.0798 (8)0.0560 (6)0.0188 (6)0.0006 (5)0.0189 (6)
O20.0507 (7)0.1067 (10)0.0603 (7)0.0038 (7)0.0141 (5)0.0228 (7)
O30.0593 (7)0.0738 (8)0.0534 (6)0.0082 (6)0.0018 (5)0.0188 (6)
O40.0438 (6)0.0738 (8)0.0586 (6)0.0018 (6)0.0035 (5)0.0157 (6)
Geometric parameters (Å, º) top
C14—C151.357 (4)C12—C131.386 (2)
C14—C131.366 (3)C13—H130.9300
C14—H140.9300C15—C161.379 (4)
C28—C271.477 (3)C15—H150.9300
C28—H28A0.9600C16—C171.394 (3)
C28—H28B0.9600C16—H160.9300
C28—H28C0.9600C17—H170.9300
C1—N11.4748 (17)C18—O11.2196 (16)
C1—C121.515 (2)C18—N11.3551 (17)
C1—C21.538 (2)C18—C191.531 (2)
C1—H10.9800C19—N21.4362 (18)
C2—C31.490 (2)C19—H19A0.9700
C2—H2A0.9700C19—H19B0.9700
C2—H2B0.9700C20—N41.368 (2)
C3—O21.3379 (17)C20—C211.388 (2)
C3—C41.338 (2)C20—C251.400 (2)
C4—C261.451 (2)C21—N21.3574 (18)
C4—C51.5031 (19)C21—C221.384 (2)
C5—N11.4882 (16)C22—C231.373 (2)
C5—C61.521 (2)C22—H220.9300
C5—H50.9800C23—C241.390 (3)
C6—C71.379 (2)C23—H230.9300
C6—C111.384 (2)C24—C251.353 (3)
C7—C81.382 (2)C24—H240.9300
C7—H70.9300C25—H250.9300
C8—C91.361 (3)C26—O31.2289 (17)
C8—H80.9300C26—O41.3207 (18)
C9—C101.371 (3)C27—O41.4586 (19)
C9—H90.9300C27—H27A0.9700
C10—C111.379 (2)C27—H27B0.9700
C10—H100.9300N2—N31.3478 (17)
C11—H110.9300N3—N41.3024 (19)
C12—C171.376 (3)O2—H20.8200
C15—C14—C13120.9 (3)C12—C13—H13119.8
C15—C14—H14119.6C14—C15—C16119.8 (2)
C13—C14—H14119.6C14—C15—H15120.1
C27—C28—H28A109.5C16—C15—H15120.1
C27—C28—H28B109.5C15—C16—C17120.0 (3)
H28A—C28—H28B109.5C15—C16—H16120.0
C27—C28—H28C109.5C17—C16—H16120.0
H28A—C28—H28C109.5C12—C17—C16119.7 (2)
H28B—C28—H28C109.5C12—C17—H17120.2
N1—C1—C12115.08 (12)C16—C17—H17120.2
N1—C1—C2111.51 (11)O1—C18—N1123.41 (13)
C12—C1—C2108.59 (12)O1—C18—C19119.99 (12)
N1—C1—H1107.1N1—C18—C19116.60 (12)
C12—C1—H1107.1N2—C19—C18110.90 (12)
C2—C1—H1107.1N2—C19—H19A109.5
C3—C2—C1113.18 (12)C18—C19—H19A109.5
C3—C2—H2A108.9N2—C19—H19B109.5
C1—C2—H2A108.9C18—C19—H19B109.5
C3—C2—H2B108.9H19A—C19—H19B108.0
C1—C2—H2B108.9N4—C20—C21109.10 (13)
H2A—C2—H2B107.8N4—C20—C25130.60 (16)
O2—C3—C4125.39 (14)C21—C20—C25120.29 (16)
O2—C3—C2114.95 (13)N2—C21—C22133.52 (14)
C4—C3—C2119.64 (13)N2—C21—C20103.65 (13)
C3—C4—C26119.73 (13)C22—C21—C20122.82 (14)
C3—C4—C5118.93 (13)C23—C22—C21115.50 (16)
C26—C4—C5121.32 (12)C23—C22—H22122.3
N1—C5—C4110.03 (11)C21—C22—H22122.3
N1—C5—C6110.27 (11)C22—C23—C24122.29 (18)
C4—C5—C6115.93 (11)C22—C23—H23118.9
N1—C5—H5106.7C24—C23—H23118.9
C4—C5—H5106.7C25—C24—C23122.18 (17)
C6—C5—H5106.7C25—C24—H24118.9
C7—C6—C11117.74 (14)C23—C24—H24118.9
C7—C6—C5123.70 (13)C24—C25—C20116.91 (17)
C11—C6—C5118.55 (13)C24—C25—H25121.5
C6—C7—C8120.94 (16)C20—C25—H25121.5
C6—C7—H7119.5O3—C26—O4122.96 (14)
C8—C7—H7119.5O3—C26—C4123.27 (14)
C9—C8—C7120.52 (17)O4—C26—C4113.76 (13)
C9—C8—H8119.7O4—C27—C28111.05 (19)
C7—C8—H8119.7O4—C27—H27A109.4
C8—C9—C10119.48 (17)C28—C27—H27A109.4
C8—C9—H9120.3O4—C27—H27B109.4
C10—C9—H9120.3C28—C27—H27B109.4
C9—C10—C11120.23 (18)H27A—C27—H27B108.0
C9—C10—H10119.9C18—N1—C1121.35 (11)
C11—C10—H10119.9C18—N1—C5116.83 (11)
C10—C11—C6121.05 (16)C1—N1—C5120.59 (10)
C10—C11—H11119.5N3—N2—C21110.50 (12)
C6—C11—H11119.5N3—N2—C19119.84 (13)
C17—C12—C13119.23 (17)C21—N2—C19129.45 (13)
C17—C12—C1123.00 (15)N4—N3—N2108.89 (13)
C13—C12—C1117.64 (17)N3—N4—C20107.85 (13)
C14—C13—C12120.5 (3)C3—O2—H2109.5
C14—C13—H13119.8C26—O4—C27118.16 (13)
N1—C1—C2—C335.76 (19)N4—C20—C21—C22179.28 (14)
C12—C1—C2—C3163.58 (14)C25—C20—C21—C220.1 (2)
C1—C2—C3—O2139.28 (15)N2—C21—C22—C23178.43 (15)
C1—C2—C3—C442.3 (2)C20—C21—C22—C230.3 (2)
O2—C3—C4—C263.2 (2)C21—C22—C23—C240.3 (3)
C2—C3—C4—C26175.13 (14)C22—C23—C24—C250.0 (3)
O2—C3—C4—C5178.42 (14)C23—C24—C25—C200.3 (3)
C2—C3—C4—C53.3 (2)N4—C20—C25—C24178.81 (17)
C3—C4—C5—N137.76 (18)C21—C20—C25—C240.4 (2)
C26—C4—C5—N1143.84 (13)C3—C4—C26—O34.3 (2)
C3—C4—C5—C688.21 (17)C5—C4—C26—O3177.29 (14)
C26—C4—C5—C690.18 (16)C3—C4—C26—O4175.16 (14)
N1—C5—C6—C7110.01 (15)C5—C4—C26—O43.2 (2)
C4—C5—C6—C715.84 (19)O1—C18—N1—C1173.04 (14)
N1—C5—C6—C1168.27 (16)C19—C18—N1—C18.0 (2)
C4—C5—C6—C11165.88 (13)O1—C18—N1—C55.6 (2)
C11—C6—C7—C82.5 (2)C19—C18—N1—C5175.37 (12)
C5—C6—C7—C8175.82 (14)C12—C1—N1—C1874.41 (17)
C6—C7—C8—C91.3 (3)C2—C1—N1—C18161.35 (13)
C7—C8—C9—C100.7 (3)C12—C1—N1—C5118.65 (14)
C8—C9—C10—C111.5 (3)C2—C1—N1—C55.59 (18)
C9—C10—C11—C60.3 (3)C4—C5—N1—C18125.57 (13)
C7—C6—C11—C101.6 (2)C6—C5—N1—C18105.31 (14)
C5—C6—C11—C10176.74 (16)C4—C5—N1—C141.94 (16)
N1—C1—C12—C1733.9 (2)C6—C5—N1—C187.18 (14)
C2—C1—C12—C1791.91 (17)C22—C21—N2—N3179.68 (16)
N1—C1—C12—C13150.30 (13)C20—C21—N2—N30.79 (15)
C2—C1—C12—C1383.93 (17)C22—C21—N2—C195.6 (3)
C15—C14—C13—C121.3 (3)C20—C21—N2—C19175.49 (13)
C17—C12—C13—C140.8 (3)C18—C19—N2—N383.85 (16)
C1—C12—C13—C14175.23 (16)C18—C19—N2—C2190.42 (18)
C13—C14—C15—C161.1 (4)C21—N2—N3—N41.09 (17)
C14—C15—C16—C170.4 (4)C19—N2—N3—N4176.37 (13)
C13—C12—C17—C160.1 (3)N2—N3—N4—C200.89 (17)
C1—C12—C17—C16175.68 (15)C21—C20—N4—N30.40 (18)
C15—C16—C17—C120.1 (3)C25—C20—N4—N3179.65 (16)
O1—C18—C19—N22.0 (2)O3—C26—O4—C272.7 (2)
N1—C18—C19—N2177.02 (12)C4—C26—O4—C27176.79 (15)
N4—C20—C21—N20.24 (16)C28—C27—O4—C2682.2 (2)
C25—C20—C21—N2179.10 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.902.605 (2)143

Experimental details

Crystal data
Chemical formulaC28H26N4O4
Mr482.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.9214 (2), 21.9667 (6), 14.5621 (4)
β (°) 95.722 (2)
V3)2521.28 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.978, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
24470, 6280, 4096
Rint0.025
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.04
No. of reflections6280
No. of parameters326
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.902.605 (2)143
 

Acknowledgements

This research work was supported by the second stage of the BK-21 program. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC & SAP) for financial support.

References

First citationAridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 2242–2249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAridoss, G., Sundaramoorthy, S., Velmurugan, D. & Jeong, Y. T. (2011). Acta Cryst. E67, o540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAridoss, G., Sundaramoorthy, S., Velmurugan, D., Park, K. S. & Jeong, Y. T. (2010b). Acta Cryst. E66, o1982.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds