metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-N′-(2-oxido­benzyl­­idene)thio­phene-2-carbohydrazidato]bis­­[di­methanol­nickel(II)]

aCollege of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
*Correspondence e-mail: wws@hqu.edu.cn

(Received 2 March 2011; accepted 3 June 2011; online 11 June 2011)

In the crystal structure of the centrosymmetric binuclear title complex, [Ni2(C12H8N2O2S)2(CH3OH)4], there are inter­molecular O—H⋯O, O—H⋯N and O—H⋯S hydrogen bonds. These help to stabilize the structure and link the mol­ecules, forming a three-dimensional network structure. The Ni2+ cation exists in a slightly distorted octahedral NiNO5 coordination environment. The thio­phene rings are disordered over two equivalent conformations with occupancies of 0.881 (3) and 0.119 (3).

Related literature

For the structure of the related Cu complex, see: Lu et al. (2006[Lu, Y., Chen, J., Wu, W.-S., Dai, J.-C. & Lin, J.-M. (2006). Acta Cryst. E62, m1291-m1292.]). For the synthesis of the ligand, see: Wu et al. (2004[Wu, W. S., Feng, Y. L., Lan, X. R. & Huang, T. T. (2004). Chin. J. Appl. Chem. A21, 135-139.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C12H8N2O2S)2(CH4O)4]

  • Mr = 734.12

  • Monoclinic, P 21 /n

  • a = 13.7958 (14) Å

  • b = 7.8880 (8) Å

  • c = 14.4219 (16) Å

  • β = 104.672 (1)°

  • V = 1518.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 293 K

  • 0.60 × 0.41 × 0.39 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.499, Tmax = 0.572

  • 11412 measured reflections

  • 3484 independent reflections

  • 3137 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.089

  • S = 1.11

  • 3469 reflections

  • 217 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N2 1.9906 (18)
Ni1—O2 2.0165 (16)
Ni1—O1 2.0244 (16)
Ni1—O2i 2.0521 (15)
Ni1—O3 2.1425 (17)
Ni1—O4 2.1897 (16)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H16⋯O4i 0.82 2.13 2.920 (2) 163
O4—H15⋯N1ii 0.82 2.07 2.850 (2) 159
O4—H15⋯S1Aii 0.82 2.92 3.452 (3) 125
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of [Cu(C12H9N2O2S)Cl].H2O (II), which is closely related to the title comlex has already been reported (Lu et al., 2006). In this article, we report the crystal structure of the realted nickel complex, I.

In the title complex, [Ni2(C24H16N4O4S2)C4H16O4] (Fig.1 and Table 1), the Ni(II) cation is six-coordinated by an amide N, a phenoxide O and a carbonyl O atom derived from the first tridentate ligand, another phenoxide O atom derived from the second tridentate ligand and two other O atoms from two molecules of methanol. The five-and six-membered chelate rings are coplanar, the mean deviation of 0.0497 Å from the least-squares plane through both of them, slightly larger than that of the structure of II (0.037 (18)Å, Lu et al.). The thiophene rings are slightly twisted with respect to the above mentioned plane, making a larger dihedral angle of 15.4 (2)° than that of II (8.77 (9)°). The Ni-O and Ni-N distances [Ni—O1 (2.024 (2)Å), Ni—O2(2.016 (2)Å) and Ni—N2 (1.991 (2)Å)] are longer than the corresponding distances for II (Lu et al., 2006). The O1—Ni1—N2 (79.53 (7)°) and O2—Ni1—N2 (91.24 (7)°) angles differ slightly from the corresponding angles found in II. The thiophene rings are disordered over two eqivalent conformations with ocuupancies of 0.881 (3) and 0.119 (3) as is commonly found for this moiety.

N—H···O, N—H···S and O—H···O intermolecular hydrogen bonds in the compound stabilize the structure and link the molecules in a three-dimensional network structure (shown in Fig.2) and detailed in Table 2.

Related literature top

For the structure of the related Cu complex, see: Lu et al. (2006). For related literature [on what subject?], see: Wu et al. (2004).

Experimental top

The ligand was synthesized according to the method of Wu et al.,(2004). NiCl2 (1 mmol) and the ligand were separately dissolved in 20 ml methanol and the resulting solutions mixed slowly, stirred at room temperature for one hour, and then filtered. The filtrate was allowed to stand at room temperature for ten days, yielding deep-blue crystals of the title compound by slow evaporation.

Refinement top

The C-bound H atoms were included in the riding model approximation with C—H = 0.93 - 0.96 Å, all these H atoms included in the final refinement. The Uiso of each H atom = 1.2Ueq(C) [1.5Ueq(C) for CH3]. The methanol H atoms were refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure (at 30% probability) of the title compound.
[Figure 2] Fig. 2. Packing diagram of the title complex, showing hydrogen bonds as dashed lines.
Bis[µ-N'-(2-oxidobenzylidene)thiophene-2- carbohydrazidato]bis[dimethanolnickel(II)] top
Crystal data top
[Ni2(C12H8N2O2S)2(CH4O)4]F(000) = 760
Mr = 734.12Dx = 1.606 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1552 reflections
a = 13.7958 (14) Åθ = 3.1–27.5°
b = 7.8880 (8) ŵ = 1.43 mm1
c = 14.4219 (16) ÅT = 293 K
β = 104.672 (1)°Columnar, blue
V = 1518.2 (3) Å30.60 × 0.41 × 0.39 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
3484 independent reflections
Radiation source: fine-focus sealed tube3137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 010
Tmin = 0.499, Tmax = 0.572l = 018
11412 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.8784P]
where P = (Fo2 + 2Fc2)/3
3469 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.36 e Å3
10 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni2(C12H8N2O2S)2(CH4O)4]V = 1518.2 (3) Å3
Mr = 734.12Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.7958 (14) ŵ = 1.43 mm1
b = 7.8880 (8) ÅT = 293 K
c = 14.4219 (16) Å0.60 × 0.41 × 0.39 mm
β = 104.672 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3484 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3137 reflections with I > 2σ(I)
Tmin = 0.499, Tmax = 0.572Rint = 0.029
11412 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03710 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.11Δρmax = 0.36 e Å3
3469 reflectionsΔρmin = 0.34 e Å3
217 parameters
Special details top

Experimental. 2011-03-01 # Formatted by IUCr publCIF system

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.39217 (2)0.56046 (3)0.449805 (19)0.02409 (10)
S1A0.03964 (10)0.9026 (2)0.32607 (15)0.0563 (5)0.881 (3)
C1A0.1016 (3)0.7392 (5)0.3958 (3)0.0273 (7)0.881 (3)
C2A0.0491 (6)0.6804 (10)0.4605 (6)0.0408 (11)0.881 (3)
H2AA0.07090.59520.50560.049*0.881 (3)
C3A0.0430 (3)0.7708 (5)0.4469 (4)0.0436 (9)0.881 (3)
H3AA0.08970.74710.48160.052*0.881 (3)
C4A0.0570 (3)0.8928 (6)0.3797 (3)0.0495 (10)0.881 (3)
H4AA0.11270.96350.36430.059*0.881 (3)
S1B0.0546 (13)0.687 (2)0.4652 (14)0.0563 (5)0.119 (3)
C1B0.104 (3)0.767 (5)0.379 (3)0.0273 (7)0.119 (3)
C2B0.053 (3)0.914 (6)0.338 (4)0.0408 (11)0.119 (3)
H2BA0.07731.00350.30880.049*0.119 (3)
C3B0.046 (2)0.896 (5)0.352 (2)0.0436 (9)0.119 (3)
H3BA0.10260.93670.30860.052*0.119 (3)
C4B0.049 (3)0.814 (6)0.433 (3)0.0495 (10)0.119 (3)
H4BA0.09920.82370.46520.059*0.119 (3)
O10.24595 (12)0.5752 (2)0.45082 (12)0.0313 (4)
O20.53297 (11)0.57985 (18)0.43430 (11)0.0263 (3)
O30.42607 (13)0.7737 (2)0.54454 (13)0.0401 (4)
H160.48070.74710.57940.060*
O40.36612 (12)0.3220 (2)0.36958 (12)0.0322 (4)
H150.34330.32660.31130.048*
N10.24055 (14)0.7622 (2)0.32434 (14)0.0288 (4)
N20.34061 (13)0.7130 (2)0.33827 (13)0.0259 (4)
C50.20199 (16)0.6862 (3)0.38915 (16)0.0262 (4)
C60.39124 (17)0.7867 (3)0.28636 (16)0.0285 (5)
H6A0.35750.86370.24060.034*
C70.49684 (16)0.7591 (3)0.29352 (16)0.0260 (4)
C80.56252 (16)0.6577 (3)0.36440 (15)0.0244 (4)
C90.66258 (17)0.6423 (3)0.35929 (17)0.0317 (5)
H9A0.70660.57650.40470.038*
C100.69723 (19)0.7222 (3)0.28877 (19)0.0374 (6)
H10A0.76380.70880.28730.045*
C110.63412 (19)0.8220 (3)0.22015 (18)0.0375 (6)
H11A0.65780.87660.17310.045*
C120.53578 (18)0.8385 (3)0.22323 (18)0.0330 (5)
H12A0.49320.90490.17700.040*
C130.3631 (3)0.8355 (4)0.6013 (3)0.0574 (8)
H13A0.39560.92810.64020.086*
H13B0.35030.74620.64190.086*
H13C0.30090.87380.56020.086*
C140.3199 (2)0.1845 (3)0.4077 (2)0.0448 (6)
H14A0.29510.10250.35820.067*
H14B0.26540.22710.43110.067*
H14C0.36850.13190.45930.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02149 (15)0.02730 (16)0.02132 (16)0.00196 (10)0.00142 (11)0.00409 (11)
S1A0.0438 (7)0.0593 (7)0.0688 (10)0.0245 (6)0.0200 (7)0.0337 (8)
C1A0.0267 (11)0.023 (2)0.028 (2)0.0005 (12)0.0005 (12)0.0056 (11)
C2A0.036 (2)0.047 (2)0.043 (2)0.0097 (15)0.0153 (15)0.0102 (16)
C3A0.0327 (16)0.051 (3)0.050 (2)0.0043 (15)0.0156 (16)0.0032 (17)
C4A0.0349 (18)0.054 (2)0.062 (3)0.0181 (15)0.0165 (17)0.009 (2)
S1B0.0438 (7)0.0593 (7)0.0688 (10)0.0245 (6)0.0200 (7)0.0337 (8)
C1B0.0267 (11)0.023 (2)0.028 (2)0.0005 (12)0.0005 (12)0.0056 (11)
C2B0.036 (2)0.047 (2)0.043 (2)0.0097 (15)0.0153 (15)0.0102 (16)
C3B0.0327 (16)0.051 (3)0.050 (2)0.0043 (15)0.0156 (16)0.0032 (17)
C4B0.0349 (18)0.054 (2)0.062 (3)0.0181 (15)0.0165 (17)0.009 (2)
O10.0240 (8)0.0361 (9)0.0320 (9)0.0034 (6)0.0040 (7)0.0105 (7)
O20.0248 (8)0.0310 (8)0.0210 (8)0.0017 (6)0.0018 (6)0.0074 (6)
O30.0373 (9)0.0399 (10)0.0386 (10)0.0025 (7)0.0015 (8)0.0098 (8)
O40.0360 (9)0.0334 (8)0.0236 (8)0.0058 (7)0.0008 (7)0.0022 (7)
N10.0247 (9)0.0312 (10)0.0276 (10)0.0051 (7)0.0012 (8)0.0040 (8)
N20.0222 (9)0.0284 (9)0.0239 (10)0.0017 (7)0.0000 (7)0.0028 (7)
C50.0247 (10)0.0264 (10)0.0244 (11)0.0013 (8)0.0003 (9)0.0003 (8)
C60.0308 (11)0.0272 (11)0.0238 (11)0.0025 (9)0.0001 (9)0.0051 (9)
C70.0301 (11)0.0241 (10)0.0220 (11)0.0029 (8)0.0034 (9)0.0003 (8)
C80.0275 (11)0.0249 (10)0.0195 (10)0.0028 (8)0.0035 (8)0.0023 (8)
C90.0274 (11)0.0382 (12)0.0280 (12)0.0012 (9)0.0045 (9)0.0032 (10)
C100.0277 (12)0.0489 (14)0.0360 (14)0.0027 (10)0.0088 (10)0.0009 (11)
C110.0397 (14)0.0458 (14)0.0292 (13)0.0085 (11)0.0127 (11)0.0070 (11)
C120.0367 (13)0.0327 (12)0.0273 (12)0.0011 (10)0.0042 (10)0.0070 (9)
C130.065 (2)0.0542 (18)0.059 (2)0.0006 (15)0.0263 (17)0.0225 (15)
C140.0552 (17)0.0366 (13)0.0403 (15)0.0131 (12)0.0080 (13)0.0013 (11)
Geometric parameters (Å, º) top
Ni1—N21.9906 (18)O2—Ni1i2.0521 (15)
Ni1—O22.0165 (16)O3—C131.422 (3)
Ni1—O12.0244 (16)O3—H160.8200
Ni1—O2i2.0521 (15)O4—C141.436 (3)
Ni1—O32.1425 (17)O4—H150.8206
Ni1—O42.1897 (16)N1—C51.330 (3)
S1A—C4A1.704 (4)N1—N21.399 (3)
S1A—C1A1.722 (3)N2—C61.285 (3)
C1A—C2A1.397 (8)C6—C71.451 (3)
C1A—C51.474 (4)C6—H6A0.9300
C2A—C3A1.427 (8)C7—C121.409 (3)
C2A—H2AA0.9300C7—C81.427 (3)
C3A—C4A1.345 (5)C8—C91.406 (3)
C3A—H3AA0.9300C9—C101.381 (3)
C4A—H4AA0.9300C9—H9A0.9300
S1B—C1B1.680 (18)C10—C111.386 (4)
S1B—C4B1.710 (18)C10—H10A0.9300
C1B—C2B1.41 (2)C11—C121.375 (4)
C1B—C51.47 (3)C11—H11A0.9300
C2B—C3B1.43 (2)C12—H12A0.9300
C2B—H2BA0.9300C13—H13A0.9600
C3B—C4B1.344 (19)C13—H13B0.9600
C3B—H3BA0.9300C13—H13C0.9600
C4B—H4BA0.9300C14—H14A0.9600
O1—C51.285 (3)C14—H14B0.9600
O2—C81.330 (3)C14—H14C0.9600
N2—Ni1—O291.24 (7)Ni1—O3—H16102.0
N2—Ni1—O179.53 (7)C14—O4—Ni1118.42 (15)
O2—Ni1—O1170.42 (6)C14—O4—H15109.5
N2—Ni1—O2i170.91 (7)Ni1—O4—H15118.2
O2—Ni1—O2i80.27 (7)C5—N1—N2109.27 (17)
O1—Ni1—O2i108.78 (6)C6—N2—N1116.97 (18)
N2—Ni1—O390.93 (8)C6—N2—Ni1127.48 (15)
O2—Ni1—O387.16 (7)N1—N2—Ni1114.92 (14)
O1—Ni1—O390.41 (7)O1—C5—N1126.2 (2)
O2i—Ni1—O385.43 (7)O1—C5—C1B128.6 (10)
N2—Ni1—O496.61 (7)N1—C5—C1B105.0 (9)
O2—Ni1—O492.32 (6)O1—C5—C1A115.8 (2)
O1—Ni1—O491.30 (6)N1—C5—C1A117.9 (2)
O2i—Ni1—O487.05 (6)N2—C6—C7125.1 (2)
O3—Ni1—O4172.44 (7)N2—C6—H6A117.4
C4A—S1A—C1A91.74 (17)C7—C6—H6A117.4
C2A—C1A—C5127.2 (4)C12—C7—C8118.4 (2)
C2A—C1A—S1A112.0 (4)C12—C7—C6116.2 (2)
C5—C1A—S1A120.6 (2)C8—C7—C6125.4 (2)
C1A—C2A—C3A109.6 (6)O2—C8—C9119.57 (19)
C1A—C2A—H2AA125.2O2—C8—C7122.76 (19)
C3A—C2A—H2AA125.2C9—C8—C7117.7 (2)
C4A—C3A—C2A114.6 (5)C10—C9—C8121.8 (2)
C4A—C3A—H3AA122.7C10—C9—H9A119.1
C2A—C3A—H3AA122.7C8—C9—H9A119.1
C3A—C4A—S1A112.0 (3)C9—C10—C11120.9 (2)
C3A—C4A—H4AA124.0C9—C10—H10A119.6
S1A—C4A—H4AA124.0C11—C10—H10A119.6
C1B—S1B—C4B92.8 (12)C12—C11—C10118.5 (2)
C2B—C1B—C5139 (2)C12—C11—H11A120.7
C2B—C1B—S1B111.3 (17)C10—C11—H11A120.7
C5—C1B—S1B107.6 (17)C11—C12—C7122.7 (2)
C1B—C2B—C3B105 (2)C11—C12—H12A118.6
C1B—C2B—H2BA127.7C7—C12—H12A118.6
C3B—C2B—H2BA127.7O3—C13—H13A109.5
C4B—C3B—C2B114 (2)O3—C13—H13B109.5
C4B—C3B—H3BA122.8H13A—C13—H13B109.5
C2B—C3B—H3BA122.8O3—C13—H13C109.5
C3B—C4B—S1B107.8 (18)H13A—C13—H13C109.5
C3B—C4B—H4BA126.1H13B—C13—H13C109.5
S1B—C4B—H4BA126.1O4—C14—H14A109.5
C5—O1—Ni1109.30 (14)O4—C14—H14B109.5
C8—O2—Ni1127.45 (13)H14A—C14—H14B109.5
C8—O2—Ni1i132.76 (14)O4—C14—H14C109.5
Ni1—O2—Ni1i99.73 (7)H14A—C14—H14C109.5
C13—O3—Ni1124.72 (17)H14B—C14—H14C109.5
C13—O3—H16109.6
C4A—S1A—C1A—C2A1.0 (5)O1—Ni1—N2—N15.62 (14)
C4A—S1A—C1A—C5176.0 (4)O3—Ni1—N2—N184.62 (15)
C5—C1A—C2A—C3A176.7 (5)O4—Ni1—N2—N195.73 (15)
S1A—C1A—C2A—C3A2.0 (7)Ni1—O1—C5—N19.3 (3)
C1A—C2A—C3A—C4A2.3 (7)Ni1—O1—C5—C1B165 (3)
C2A—C3A—C4A—S1A1.6 (6)Ni1—O1—C5—C1A167.0 (3)
C1A—S1A—C4A—C3A0.4 (4)N2—N1—C5—O14.8 (3)
C4B—S1B—C1B—C2B12 (5)N2—N1—C5—C1B171 (2)
C4B—S1B—C1B—C5178 (3)N2—N1—C5—C1A171.5 (3)
C5—C1B—C2B—C3B175 (5)C2B—C1B—C5—O1159 (5)
S1B—C1B—C2B—C3B26 (5)S1B—C1B—C5—O10 (4)
C1B—C2B—C3B—C4B33 (6)C2B—C1B—C5—N117 (7)
C2B—C3B—C4B—S1B25 (5)S1B—C1B—C5—N1176 (2)
C1B—S1B—C4B—C3B7 (4)C2B—C1B—C5—C1A166 (16)
N2—Ni1—O1—C57.40 (15)S1B—C1B—C5—C1A7 (8)
O2i—Ni1—O1—C5168.79 (14)C2A—C1A—C5—O11.0 (7)
O3—Ni1—O1—C583.47 (15)S1A—C1A—C5—O1173.2 (3)
O4—Ni1—O1—C5103.89 (15)C2A—C1A—C5—N1177.7 (5)
N2—Ni1—O2—C85.77 (17)S1A—C1A—C5—N13.4 (5)
O2i—Ni1—O2—C8177.5 (2)C2A—C1A—C5—C1B174 (11)
O3—Ni1—O2—C896.64 (17)S1A—C1A—C5—C1B0 (10)
O4—Ni1—O2—C890.90 (17)N1—N2—C6—C7176.82 (19)
N2—Ni1—O2—Ni1i176.73 (7)Ni1—N2—C6—C76.4 (3)
O2i—Ni1—O2—Ni1i0.0N2—C6—C7—C12173.4 (2)
O3—Ni1—O2—Ni1i85.85 (7)N2—C6—C7—C85.7 (4)
O4—Ni1—O2—Ni1i86.60 (7)Ni1—O2—C8—C9172.88 (15)
N2—Ni1—O3—C1397.2 (2)Ni1i—O2—C8—C93.8 (3)
O2—Ni1—O3—C13171.6 (2)Ni1—O2—C8—C77.7 (3)
O1—Ni1—O3—C1317.7 (2)Ni1i—O2—C8—C7175.67 (15)
O2i—Ni1—O3—C1391.1 (2)C12—C7—C8—O2179.0 (2)
N2—Ni1—O4—C14134.19 (17)C6—C7—C8—O21.8 (3)
O2—Ni1—O4—C14134.29 (17)C12—C7—C8—C90.4 (3)
O1—Ni1—O4—C1454.58 (17)C6—C7—C8—C9178.7 (2)
O2i—Ni1—O4—C1454.16 (17)O2—C8—C9—C10179.3 (2)
C5—N1—N2—C6174.3 (2)C7—C8—C9—C100.2 (3)
C5—N1—N2—Ni12.7 (2)C8—C9—C10—C110.3 (4)
O2—Ni1—N2—C61.2 (2)C9—C10—C11—C120.6 (4)
O1—Ni1—N2—C6176.2 (2)C10—C11—C12—C70.4 (4)
O3—Ni1—N2—C685.9 (2)C8—C7—C12—C110.1 (4)
O4—Ni1—N2—C693.7 (2)C6—C7—C12—C11179.1 (2)
O2—Ni1—N2—N1171.80 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H16···O4i0.822.132.920 (2)163
O4—H15···N1ii0.822.072.850 (2)159
O4—H15···S1Aii0.822.923.452 (3)125
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni2(C12H8N2O2S)2(CH4O)4]
Mr734.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.7958 (14), 7.8880 (8), 14.4219 (16)
β (°) 104.672 (1)
V3)1518.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.60 × 0.41 × 0.39
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.499, 0.572
No. of measured, independent and
observed [I > 2σ(I)] reflections
11412, 3484, 3137
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.11
No. of reflections3469
No. of parameters217
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—N21.9906 (18)Ni1—O2i2.0521 (15)
Ni1—O22.0165 (16)Ni1—O32.1425 (17)
Ni1—O12.0244 (16)Ni1—O42.1897 (16)
N2—Ni1—O291.24 (7)O1—Ni1—O390.41 (7)
N2—Ni1—O179.53 (7)O2i—Ni1—O385.43 (7)
O2—Ni1—O1170.42 (6)N2—Ni1—O496.61 (7)
N2—Ni1—O2i170.91 (7)O2—Ni1—O492.32 (6)
O2—Ni1—O2i80.27 (7)O1—Ni1—O491.30 (6)
O1—Ni1—O2i108.78 (6)O2i—Ni1—O487.05 (6)
N2—Ni1—O390.93 (8)O3—Ni1—O4172.44 (7)
O2—Ni1—O387.16 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H16···O4i0.822.132.920 (2)163.0
O4—H15···N1ii0.822.072.850 (2)159.4
O4—H15···S1Aii0.822.923.452 (3)124.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from The National Science Foundation of Fujian Province of China (No. 2010J01288) and Huaqiao University Basic Research Special Fund operating expenses (No.JB-JC1003).

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, Y., Chen, J., Wu, W.-S., Dai, J.-C. & Lin, J.-M. (2006). Acta Cryst. E62, m1291–m1292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W. S., Feng, Y. L., Lan, X. R. & Huang, T. T. (2004). Chin. J. Appl. Chem. A21, 135–139.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds