metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m843-m844

Poly[[hexa­kis­(μ-benzene-1,4-di­carboxyl­ato)octa­kis­(N,N-di­methyl­acetamide)­hexa­manganese(II)] monohydrate]

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China, and bCoordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 30 March 2011; accepted 26 May 2011; online 4 June 2011)

In the title compound, {[Mn6(C8H4O4)6(C4H9NO)8]·H2O}n, two of the Mn atoms are six-coordinated by six O atoms from three benzene-1,4-dicarboxyl­ate (bdc) ligands and two trans DMA (dimethyl­acetamide) mol­ecules, whereas two other Mn atoms, located on inversion centers, are both in octa­hedral coordinations by six bdc O atoms. The discrete trinuclear manganese secondary building units (SBU) of Mn3(O2CR)6 ({–Mn—Mn—Mn-}) are linked through bdc ligands, forming a chain, while the discrete trinuclear SBU of {–Mn—Mn—Mn-} are bridged, forming another chain]. The two types of chains are linked through bdc ligands, resulting in the formation of a layer with 36 topology. Weak O—H⋯O and O—H⋯N hydrogen-bonding inter­actions involving the disordered water molecule (half-occupation) extend the two-dimensional layers into a three-dimensional supra­molecular framework.

Related literature

For related structures, see: Hawxwell et al. (2006[Hawxwell, S. M., Adams, H. & Brammer, L. (2006). Acta Cryst. B62, 808-814.]); He et al. (2006[He, J. H., Zhang, Y. T., Yu, J. H., Pan, Q. H. & Xu, R. R. (2006). Mater. Res. Bull. 41, 925-933.]); Williams et al. (2005[Williams, C. A., Blake, A. J., Hubberstey, P. & Schröder, M. (2005). Chem. Commun. pp. 5435-5437.]). For general background to porous materials, see: Li et al. (2009[Li, J. R., Kuppler, R. J. & Zhou, H. C. (2009). Chem. Soc. Rev. 38, 1477-1504.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn6(C8H4O4)6(C4H9NO)8]·H2O

  • Mr = 2029.30

  • Triclinic, [P \overline 1]

  • a = 9.924 (9) Å

  • b = 14.533 (13) Å

  • c = 16.990 (16) Å

  • α = 69.947 (13)°

  • β = 86.549 (14)°

  • γ = 83.807 (14)°

  • V = 2288 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 291 K

  • 0.18 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.776, Tmax = 0.815

  • 18098 measured reflections

  • 8890 independent reflections

  • 6477 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.121

  • S = 1.04

  • 8890 reflections

  • 591 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H17B⋯O16i 0.85 2.61 3.236 (7) 131
O17—H17B⋯N4i 0.85 2.62 3.463 (8) 170
Symmetry code: (i) -x+2, -y+3, -z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic frameworks (MOFs) are currently under massive investigation due to their fascinating properties and high potential as a new class of porous materials (Li et al., 2009). Our particular interest is to construct three-dimensional (three-dimensional) frameworks with more open porosity using benzene-1,4-dicarboxylicacid (H2bdc) and pillar bidentate ligands as mixed ligands, and to probe the influence of pillar ligands on the topological networks. Recently, we have employed the pillar bidentate ligand 4,4'-azopyridine. Unexpectedly, a new MOF without the pillared ligand, {[Mn6(bdc)6(DMA)8].H2O}n, has been obtained.

The title compound contains two types of crystallographically equivalent six-coordinated Mn centers, and bdc ligands adopt two coordination modes. Mn1 and Mn4 atoms are both six-coordinated to six oxygen atoms from three bdc ligands and two trans-DMA molecules,whereas Mn2 and Mn3 located on an inversion center are both in octahedral coordination with six oxygen atoms of bdc species. The average bond distances of Mn1—O, Mn2—O, Mn3—O, and Mn4—O are 2.213, 2.167, 2.146, and 2.207 Å, respectively. The discrete trinuclear manganese secondary building unit (SBU) of Mn3(O2CR)6 ({–Mn4—Mn3—Mn4-}) are linked through bdc ligands to form a one-dimensional chain, while the discrete trinuclear SBU of {–Mn1—Mn2—Mn1-} are bridged to form another one-dimensional chain.Two types of one-dimensional chains are linked through bdc ligands, resulting in the formation of a two-dimensional layer with 36 topology. The 36 net also displays an interdigitated structure, with the interplanar distance between adjacent nets being 7.043 Å. The structure of the 36 layer has been also observed in other MOFs (Hawxwell et al., 2006; He et al., 2006; Williams et al., 2005).The weak hydrogen-bonding interactions extend the two-dimensional layers into a three-dimensional supramolecular framework.

Related literature top

For related structures, see: Hawxwell et al. (2006); He et al. (2006); Williams et al. (2005). For general background to porous materials, see: Li et al. (2009).

Experimental top

A mixture of MnCl2.4H2O (0.0198 g, 0.1 mmol), benzene-1,4-dicarboxylic acid (0.0166 g, 0.1 mmol), 4,4'-azopyridine (0.0184 g, 0.1 mmol) combined with 6 ml DMA was stirred for 20 min at room temperature. Then the solution was heated solvothermally in a 25 ml Teflon-lined stainless-steel vessel at 160 oC for 72 h under autogenous pressure. Slow cooling of the resulting solution to room temperature at the rate of 10 oC.h-1 afforded colorless block-shaped crystals suitable for single-crystal X-ray structure analysis. Yield based on based on MnCl2.4H2O: 41%.

Refinement top

All non-hydrogen atoms were refined with anisotropic thermal parameters. The H atoms of H2bdc ligands and DMA molecules were calculated at idealized positions with C—H = 0.93 or 0.96 Å and included in the refinement in a riding mode with Uiso for H assigned as 1.2 or 1.5 times Ueq of the attached atoms. The water molecule is disordered and the H atoms bound to oxygen atoms from water molecules were located from difference maps and refined as riding, with O - H restraint (O - H = 0.85 Å), and with Uĩso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound. Displacement ellipsoids are drawn at 30% probability level. Hydrogen atoms, solvent water molecules are omitted for clarity. Symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1, y, z; (v) -x + 1, -y + 2, -z; (vi) 2 - x, 2 - y, -z.
[Figure 2] Fig. 2. The three-dimensional supramolecular network of the title compound.
Poly[[hexakis(µ-benzene-1,4-dicarboxylato)octakis(N,N- dimethylacetamide)hexamanganese(II)] monohydrate] top
Crystal data top
[Mn6(C8H4O4)6(C4H9NO)8]·H2OZ = 1
Mr = 2029.30F(000) = 1048
Triclinic, P1Dx = 1.473 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.924 (9) ÅCell parameters from 1310 reflections
b = 14.533 (13) Åθ = 2.4–26.1°
c = 16.990 (16) ŵ = 0.89 mm1
α = 69.947 (13)°T = 291 K
β = 86.549 (14)°Block, colorless
γ = 83.807 (14)°0.18 × 0.16 × 0.14 mm
V = 2288 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
8890 independent reflections
Radiation source: sealed tube6477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.776, Tmax = 0.815k = 1717
18098 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.05P)2 + 1.55P]
where P = (Fo2 + 2Fc2)/3
8890 reflections(Δ/σ)max < 0.001
591 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Mn6(C8H4O4)6(C4H9NO)8]·H2Oγ = 83.807 (14)°
Mr = 2029.30V = 2288 (4) Å3
Triclinic, P1Z = 1
a = 9.924 (9) ÅMo Kα radiation
b = 14.533 (13) ŵ = 0.89 mm1
c = 16.990 (16) ÅT = 291 K
α = 69.947 (13)°0.18 × 0.16 × 0.14 mm
β = 86.549 (14)°
Data collection top
Bruker SMART APEX CCD
diffractometer
8890 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6477 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.815Rint = 0.044
18098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
8890 reflectionsΔρmin = 0.42 e Å3
591 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6079 (4)0.7147 (3)0.4638 (2)0.0346 (8)
C20.6860 (4)0.7813 (3)0.3964 (2)0.0346 (8)
C30.6914 (4)0.8782 (3)0.3875 (2)0.0345 (8)
H30.64540.90320.42620.041*
C40.7653 (4)0.9408 (3)0.3207 (2)0.0371 (9)
H40.76771.00600.31710.045*
C50.8349 (4)0.9085 (3)0.2602 (2)0.0351 (9)
C60.8252 (4)0.8097 (3)0.2667 (2)0.0337 (8)
H60.86350.78690.22470.040*
C70.7595 (4)0.7463 (3)0.3350 (2)0.0363 (8)
H70.76290.68000.34110.044*
C80.9124 (4)0.9703 (3)0.1889 (2)0.0364 (9)
C90.4520 (4)0.5199 (3)0.3057 (2)0.0386 (9)
C100.3845 (4)0.5940 (3)0.2290 (2)0.0371 (9)
C110.3482 (4)0.6902 (3)0.2222 (2)0.0351 (8)
H110.36490.71190.26590.042*
C120.2865 (4)0.7553 (3)0.1505 (2)0.0397 (9)
H120.26860.82140.14480.048*
C130.2517 (4)0.7233 (3)0.0880 (2)0.0419 (10)
C140.2938 (4)0.6252 (3)0.0947 (2)0.0366 (8)
H140.27590.60380.05110.044*
C150.3606 (4)0.5598 (3)0.1634 (2)0.0344 (8)
H150.38870.49550.16630.041*
C160.1706 (4)0.7945 (3)0.0147 (2)0.0416 (9)
C170.2092 (3)0.5711 (3)0.5685 (2)0.0293 (7)
C180.1036 (4)0.5320 (3)0.5330 (2)0.0343 (8)
C190.0124 (4)0.5022 (3)0.5807 (3)0.0354 (8)
H190.02080.50250.63550.042*
C200.1171 (3)0.4715 (3)0.5462 (2)0.0298 (7)
H200.19600.45350.57760.036*
C210.3282 (4)0.9478 (3)0.4694 (2)0.0412 (9)
H21A0.35630.93150.52600.062*
H21B0.26831.00720.45440.062*
H21C0.40640.95720.43240.062*
C220.2578 (4)0.8677 (3)0.4624 (3)0.0379 (9)
C230.2436 (4)0.9462 (3)0.3088 (3)0.0481 (10)
H23A0.29640.99270.31840.072*
H23B0.16010.97940.28320.072*
H23C0.29370.91630.27220.072*
C240.1468 (4)0.7890 (3)0.3833 (3)0.0435 (10)
H24A0.20420.72910.40610.065*
H24B0.12840.79880.32600.065*
H24C0.06310.78490.41520.065*
C250.2922 (4)0.6604 (3)0.8043 (3)0.0445 (10)
H25A0.21660.65840.77240.067*
H25B0.25960.67340.85420.067*
H25C0.34610.59820.81940.067*
C260.3779 (4)0.7410 (3)0.7521 (2)0.0315 (8)
C270.5451 (4)0.8643 (3)0.7399 (3)0.0434 (9)
H27A0.57130.84700.69110.065*
H27B0.62290.85520.77360.065*
H27C0.50860.93190.72310.065*
C280.3830 (4)0.8082 (3)0.8706 (2)0.0412 (9)
H28B0.29090.83710.86310.062*
H28C0.43580.84860.88860.062*
H28A0.38530.74370.91230.062*
C291.2530 (4)1.0724 (3)0.0613 (2)0.0365 (8)
C301.3790 (4)1.0338 (3)0.0268 (2)0.0371 (9)
C311.3923 (4)1.0379 (3)0.0530 (3)0.0465 (10)
H311.32121.06600.08940.056*
C321.5108 (4)1.0008 (3)0.0814 (3)0.0385 (9)
H321.51840.99850.13550.046*
C330.9785 (4)1.1317 (3)0.3481 (3)0.0408 (9)
H33A0.89631.15890.36780.061*
H33B1.03491.09590.39480.061*
H33C0.95711.08810.32010.061*
C341.0555 (4)1.2154 (3)0.2870 (2)0.0329 (8)
C351.1307 (4)1.2506 (3)0.4156 (3)0.0444 (10)
H35A1.06191.29600.42780.067*
H35B1.21741.26160.43120.067*
H35C1.11111.18450.44680.067*
C361.2147 (5)1.3460 (3)0.2672 (3)0.0519 (11)
H36B1.28411.35690.29920.078*
H36C1.15641.40560.24490.078*
H36A1.25571.32660.22200.078*
C371.3693 (5)1.3544 (4)0.0014 (3)0.0568 (12)
H37B1.42741.29520.00780.085*
H37C1.36151.36650.05370.085*
H37A1.40721.40870.04080.085*
C381.2266 (5)1.3429 (3)0.0251 (3)0.0486 (11)
C391.0383 (4)1.3542 (3)0.1284 (3)0.0498 (11)
H39A1.03171.28590.11950.075*
H39B1.01891.39240.18570.075*
H39C0.97421.37540.09210.075*
C401.2821 (5)1.4090 (4)0.1795 (3)0.0574 (12)
H40A1.35131.43630.15970.086*
H40B1.23641.45940.22490.086*
H40C1.32271.35710.19860.086*
Mn10.38729 (5)0.67699 (4)0.60045 (3)0.02763 (13)
Mn20.50000.50000.50000.02486 (16)
Mn31.00001.00000.00000.03000 (18)
Mn41.04197 (6)1.17403 (4)0.11125 (4)0.03636 (15)
N10.2148 (3)0.8716 (2)0.3871 (2)0.0361 (7)
N20.4408 (3)0.8006 (2)0.7893 (2)0.0409 (8)
N31.1331 (4)1.2662 (3)0.3229 (2)0.0433 (8)
N41.1816 (4)1.3683 (3)0.1093 (2)0.0491 (9)
O10.5369 (3)0.75104 (19)0.51206 (16)0.0370 (6)
O20.6154 (3)0.62445 (19)0.47181 (16)0.0381 (6)
O30.9342 (3)1.05421 (19)0.19333 (16)0.0362 (6)
O40.9591 (2)0.93877 (18)0.13152 (15)0.0334 (6)
O50.4543 (3)0.55091 (18)0.36912 (15)0.0343 (6)
O60.4982 (2)0.43460 (17)0.30840 (14)0.0297 (5)
O70.1522 (3)0.88310 (18)0.01153 (17)0.0379 (6)
O80.1204 (3)0.75779 (19)0.03211 (16)0.0386 (6)
O90.3222 (2)0.59198 (18)0.52522 (15)0.0328 (6)
O100.1904 (3)0.58840 (19)0.63579 (16)0.0366 (6)
O110.2320 (3)0.79224 (19)0.52664 (17)0.0398 (6)
O120.3879 (3)0.7629 (2)0.68427 (17)0.0417 (6)
O131.1432 (3)1.09305 (19)0.02173 (15)0.0358 (6)
O141.2535 (3)1.0920 (2)0.13129 (18)0.0428 (7)
O151.0527 (3)1.2349 (2)0.21012 (17)0.0399 (6)
O161.1533 (3)1.2991 (2)0.03719 (19)0.0491 (7)
O170.9587 (6)1.4716 (4)0.0090 (4)0.0522 (15)0.50
H17C0.94361.41450.04200.063*0.50
H17B0.93351.51530.03100.063*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0317 (19)0.044 (2)0.0288 (19)0.0172 (16)0.0065 (15)0.0105 (17)
C20.038 (2)0.034 (2)0.0314 (19)0.0140 (16)0.0023 (15)0.0073 (15)
C30.0338 (19)0.039 (2)0.0322 (19)0.0067 (16)0.0075 (15)0.0159 (16)
C40.039 (2)0.0303 (19)0.044 (2)0.0090 (16)0.0003 (17)0.0137 (17)
C50.038 (2)0.036 (2)0.0310 (19)0.0189 (16)0.0197 (16)0.0092 (16)
C60.0366 (19)0.039 (2)0.0289 (19)0.0033 (16)0.0031 (15)0.0158 (16)
C70.038 (2)0.0321 (19)0.043 (2)0.0094 (16)0.0059 (17)0.0151 (17)
C80.038 (2)0.046 (2)0.0260 (19)0.0159 (17)0.0108 (15)0.0112 (17)
C90.0332 (19)0.041 (2)0.034 (2)0.0148 (17)0.0179 (16)0.0063 (17)
C100.0317 (19)0.042 (2)0.033 (2)0.0166 (16)0.0166 (16)0.0103 (17)
C110.047 (2)0.039 (2)0.0239 (18)0.0092 (17)0.0022 (16)0.0143 (16)
C120.053 (2)0.0242 (18)0.042 (2)0.0118 (17)0.0065 (18)0.0091 (16)
C130.040 (2)0.047 (2)0.030 (2)0.0169 (18)0.0143 (16)0.0050 (17)
C140.041 (2)0.038 (2)0.036 (2)0.0060 (17)0.0061 (16)0.0170 (17)
C150.047 (2)0.0268 (18)0.0255 (18)0.0022 (16)0.0051 (16)0.0047 (14)
C160.045 (2)0.043 (2)0.035 (2)0.0160 (18)0.0237 (18)0.0132 (18)
C170.0257 (17)0.0306 (18)0.0253 (17)0.0081 (14)0.0146 (14)0.0024 (14)
C180.0374 (19)0.0318 (19)0.035 (2)0.0164 (16)0.0102 (16)0.0073 (15)
C190.0318 (19)0.037 (2)0.040 (2)0.0054 (16)0.0108 (16)0.0154 (17)
C200.0265 (17)0.0313 (18)0.0290 (18)0.0036 (14)0.0068 (14)0.0077 (15)
C210.042 (2)0.044 (2)0.036 (2)0.0166 (18)0.0012 (17)0.0071 (18)
C220.0312 (19)0.032 (2)0.048 (2)0.0113 (15)0.0188 (17)0.0114 (18)
C230.046 (2)0.049 (3)0.039 (2)0.011 (2)0.0039 (19)0.0012 (19)
C240.047 (2)0.051 (2)0.039 (2)0.0163 (19)0.0024 (18)0.0197 (19)
C250.044 (2)0.051 (3)0.040 (2)0.0127 (19)0.0010 (18)0.0148 (19)
C260.039 (2)0.0300 (18)0.027 (2)0.0043 (15)0.0162 (15)0.0108 (15)
C270.042 (2)0.044 (2)0.047 (2)0.0100 (18)0.0098 (18)0.0160 (19)
C280.051 (2)0.042 (2)0.037 (2)0.0029 (18)0.0148 (18)0.0195 (18)
C290.039 (2)0.033 (2)0.040 (2)0.0131 (16)0.0058 (17)0.0140 (17)
C300.0283 (18)0.046 (2)0.039 (2)0.0166 (16)0.0022 (16)0.0122 (17)
C310.033 (2)0.062 (3)0.044 (2)0.0135 (19)0.0085 (18)0.016 (2)
C320.0301 (19)0.051 (2)0.039 (2)0.0189 (17)0.0034 (16)0.0177 (19)
C330.040 (2)0.038 (2)0.046 (2)0.0121 (17)0.0106 (18)0.0120 (18)
C340.0356 (19)0.0277 (18)0.0278 (19)0.0134 (15)0.0113 (15)0.0027 (15)
C350.049 (2)0.039 (2)0.049 (2)0.0045 (18)0.016 (2)0.0189 (19)
C360.071 (3)0.043 (2)0.047 (3)0.013 (2)0.006 (2)0.021 (2)
C370.055 (3)0.057 (3)0.056 (3)0.016 (2)0.010 (2)0.015 (2)
C380.059 (3)0.042 (2)0.046 (3)0.019 (2)0.010 (2)0.014 (2)
C390.049 (3)0.042 (2)0.056 (3)0.0120 (19)0.010 (2)0.013 (2)
C400.050 (3)0.066 (3)0.052 (3)0.016 (2)0.013 (2)0.014 (2)
Mn10.0301 (3)0.0251 (3)0.0240 (3)0.0052 (2)0.0064 (2)0.0018 (2)
Mn20.0299 (4)0.0246 (4)0.0239 (4)0.0050 (3)0.0071 (3)0.0112 (3)
Mn30.0292 (4)0.0309 (4)0.0261 (4)0.0026 (3)0.0083 (3)0.0035 (3)
Mn40.0406 (3)0.0370 (3)0.0321 (3)0.0148 (3)0.0093 (2)0.0109 (2)
N10.0445 (18)0.0275 (16)0.0385 (18)0.0123 (14)0.0072 (14)0.0129 (14)
N20.0469 (19)0.0444 (19)0.0372 (18)0.0177 (16)0.0089 (15)0.0159 (15)
N30.047 (2)0.0424 (19)0.0396 (19)0.0116 (15)0.0065 (15)0.0165 (15)
N40.054 (2)0.044 (2)0.048 (2)0.0185 (17)0.0029 (17)0.0113 (17)
O10.0381 (14)0.0396 (15)0.0329 (14)0.0066 (12)0.0004 (11)0.0112 (12)
O20.0400 (15)0.0368 (15)0.0369 (15)0.0115 (12)0.0087 (11)0.0082 (12)
O30.0372 (14)0.0347 (14)0.0344 (14)0.0099 (11)0.0087 (11)0.0058 (11)
O40.0360 (13)0.0357 (14)0.0301 (13)0.0021 (11)0.0055 (11)0.0128 (11)
O50.0381 (14)0.0350 (14)0.0274 (13)0.0129 (11)0.0063 (11)0.0040 (11)
O60.0331 (13)0.0287 (13)0.0240 (12)0.0068 (10)0.0074 (10)0.0023 (10)
O70.0408 (15)0.0301 (14)0.0405 (15)0.0013 (11)0.0008 (12)0.0097 (11)
O80.0446 (15)0.0409 (15)0.0323 (14)0.0141 (12)0.0087 (12)0.0135 (12)
O90.0293 (13)0.0338 (13)0.0347 (14)0.0074 (10)0.0119 (11)0.0122 (11)
O100.0375 (14)0.0408 (15)0.0361 (15)0.0092 (12)0.0079 (11)0.0162 (12)
O110.0360 (14)0.0363 (15)0.0410 (15)0.0010 (11)0.0112 (12)0.0044 (12)
O120.0509 (17)0.0417 (16)0.0315 (16)0.0029 (13)0.0121 (12)0.0112 (12)
O130.0393 (14)0.0394 (14)0.0297 (13)0.0125 (12)0.0011 (11)0.0108 (11)
O140.0344 (14)0.0505 (17)0.0455 (17)0.0112 (12)0.0062 (12)0.0178 (14)
O150.0409 (15)0.0409 (15)0.0379 (15)0.0148 (12)0.0060 (12)0.0093 (12)
O160.0531 (17)0.0441 (16)0.0507 (18)0.0239 (14)0.0180 (14)0.0141 (14)
O170.058 (4)0.046 (4)0.051 (4)0.019 (3)0.003 (3)0.010 (3)
Geometric parameters (Å, º) top
C1—O11.262 (5)C28—H28A0.9600
C1—O21.267 (5)C29—O131.268 (5)
C1—C21.465 (5)C29—O141.315 (5)
C2—C31.371 (5)C29—C301.485 (6)
C2—C71.439 (5)C30—C311.336 (6)
C3—C41.410 (5)C30—C32ii1.412 (5)
C3—H30.9300C31—C321.370 (6)
C4—C51.390 (5)C31—H310.9300
C4—H40.9300C32—C30ii1.412 (5)
C5—C61.415 (5)C32—H320.9300
C5—C81.468 (5)C33—C341.543 (5)
C6—C71.387 (5)C33—H33A0.9600
C6—H60.9300C33—H33B0.9600
C7—H70.9300C33—H33C0.9600
C8—O41.258 (4)C34—O151.240 (4)
C8—O31.289 (5)C34—N31.413 (5)
C9—O61.261 (5)C35—N31.513 (5)
C9—O51.305 (5)C35—H35A0.9600
C9—C101.515 (5)C35—H35B0.9600
C10—C111.373 (5)C35—H35C0.9600
C10—C151.408 (5)C36—N31.501 (6)
C11—C121.389 (5)C36—H36B0.9600
C11—H110.9300C36—H36C0.9600
C12—C131.372 (6)C36—H36A0.9600
C12—H120.9300C37—C381.555 (7)
C13—C141.408 (6)C37—H37B0.9600
C13—C161.525 (5)C37—H37C0.9600
C14—C151.379 (5)C37—H37A0.9600
C14—H140.9300C38—O161.265 (5)
C15—H150.9300C38—N41.435 (6)
C16—O81.251 (5)C39—N41.529 (6)
C16—O71.263 (5)C39—H39A0.9600
C17—O101.251 (4)C39—H39B0.9600
C17—O91.309 (4)C39—H39C0.9600
C17—C181.491 (5)C40—N41.506 (5)
C18—C20i1.363 (5)C40—H40A0.9600
C18—C191.387 (5)C40—H40B0.9600
C19—C201.405 (5)C40—H40C0.9600
C19—H190.9300Mn1—O6iii2.100 (3)
C20—C18i1.363 (5)Mn1—O12.141 (3)
C20—H200.9300Mn1—O122.193 (3)
C21—C221.462 (5)Mn1—O92.221 (3)
C21—H21A0.9600Mn1—O112.233 (3)
C21—H21B0.9600Mn1—O102.389 (3)
C21—H21C0.9600Mn2—O2iii2.145 (3)
C22—O111.291 (5)Mn2—O22.145 (3)
C22—N11.354 (5)Mn2—O52.149 (3)
C23—N11.435 (5)Mn2—O5iii2.149 (3)
C23—H23A0.9600Mn2—O9iii2.208 (3)
C23—H23B0.9600Mn2—O92.208 (3)
C23—H23C0.9600Mn3—O7iv2.112 (3)
C24—N11.461 (5)Mn3—O7v2.112 (3)
C24—H24A0.9600Mn3—O4vi2.134 (3)
C24—H24B0.9600Mn3—O42.134 (3)
C24—H24C0.9600Mn3—O132.192 (3)
C25—C261.515 (5)Mn3—O13vi2.192 (3)
C25—H25A0.9600Mn4—O8v2.095 (3)
C25—H25B0.9600Mn4—O152.162 (3)
C25—H25C0.9600Mn4—O32.163 (3)
C26—O121.087 (4)Mn4—O162.192 (3)
C26—N21.441 (5)Mn4—O142.283 (3)
C27—N21.484 (5)Mn4—O132.344 (3)
C27—H27A0.9600O6—Mn1iii2.100 (3)
C27—H27B0.9600O7—Mn3vii2.112 (3)
C27—H27C0.9600O8—Mn4v2.095 (3)
C28—N21.499 (5)O17—O17viii1.179 (11)
C28—H28B0.9600O17—H17C0.8500
C28—H28C0.9600O17—H17B0.8500
O1—C1—O2123.2 (3)N3—C35—H35C109.5
O1—C1—C2117.5 (3)H35A—C35—H35C109.5
O2—C1—C2119.3 (3)H35B—C35—H35C109.5
C3—C2—C7117.1 (3)N3—C36—H36B109.5
C3—C2—C1122.8 (4)N3—C36—H36C109.5
C7—C2—C1120.1 (3)H36B—C36—H36C109.5
C2—C3—C4121.3 (4)N3—C36—H36A109.5
C2—C3—H3119.3H36B—C36—H36A109.5
C4—C3—H3119.3H36C—C36—H36A109.5
C5—C4—C3122.2 (4)C38—C37—H37B109.5
C5—C4—H4118.9C38—C37—H37C109.5
C3—C4—H4118.9H37B—C37—H37C109.5
C4—C5—C6117.0 (3)C38—C37—H37A109.5
C4—C5—C8124.7 (3)H37B—C37—H37A109.5
C6—C5—C8118.3 (3)H37C—C37—H37A109.5
C7—C6—C5120.9 (3)O16—C38—N4121.2 (4)
C7—C6—H6119.5O16—C38—C37112.0 (4)
C5—C6—H6119.5N4—C38—C37126.5 (4)
C6—C7—C2121.2 (3)N4—C39—H39A109.5
C6—C7—H7119.4N4—C39—H39B109.5
C2—C7—H7119.4H39A—C39—H39B109.5
O4—C8—O3124.2 (3)N4—C39—H39C109.5
O4—C8—C5120.7 (3)H39A—C39—H39C109.5
O3—C8—C5114.9 (3)H39B—C39—H39C109.5
O6—C9—O5123.2 (3)N4—C40—H40A109.5
O6—C9—C10122.5 (3)N4—C40—H40B109.5
O5—C9—C10114.3 (3)H40A—C40—H40B109.5
C11—C10—C15120.8 (3)N4—C40—H40C109.5
C11—C10—C9122.6 (4)H40A—C40—H40C109.5
C15—C10—C9116.7 (3)H40B—C40—H40C109.5
C10—C11—C12120.4 (3)O6iii—Mn1—O1103.76 (12)
C10—C11—H11119.8O6iii—Mn1—O1286.16 (12)
C12—C11—H11119.8O1—Mn1—O1297.03 (12)
C13—C12—C11120.8 (4)O6iii—Mn1—O9100.39 (11)
C13—C12—H12119.6O1—Mn1—O996.44 (12)
C11—C12—H12119.6O12—Mn1—O9163.16 (10)
C12—C13—C14117.8 (3)O6iii—Mn1—O11167.36 (10)
C12—C13—C16119.1 (4)O1—Mn1—O1187.73 (12)
C14—C13—C16123.1 (4)O12—Mn1—O1187.22 (12)
C15—C14—C13122.7 (4)O9—Mn1—O1183.26 (11)
C15—C14—H14118.7O6iii—Mn1—O1092.02 (11)
C13—C14—H14118.7O1—Mn1—O10151.75 (10)
C14—C15—C10117.3 (3)O12—Mn1—O10107.42 (11)
C14—C15—H15121.3O9—Mn1—O1057.22 (10)
C10—C15—H15121.3O11—Mn1—O1079.71 (11)
O8—C16—O7126.6 (3)O2iii—Mn2—O2180.000 (1)
O8—C16—C13116.5 (4)O2iii—Mn2—O593.06 (10)
O7—C16—C13116.6 (3)O2—Mn2—O586.94 (10)
O10—C17—O9119.6 (3)O2iii—Mn2—O5iii86.94 (10)
O10—C17—C18122.2 (3)O2—Mn2—O5iii93.06 (10)
O9—C17—C18118.1 (3)O5—Mn2—O5iii180.000 (1)
C20i—C18—C19119.7 (3)O2iii—Mn2—O9iii88.32 (12)
C20i—C18—C17121.2 (3)O2—Mn2—O9iii91.68 (12)
C19—C18—C17119.0 (3)O5—Mn2—O9iii89.33 (10)
C18—C19—C20119.9 (4)O5iii—Mn2—O9iii90.67 (10)
C18—C19—H19120.1O2iii—Mn2—O991.68 (12)
C20—C19—H19120.1O2—Mn2—O988.32 (12)
C18i—C20—C19120.4 (3)O5—Mn2—O990.67 (10)
C18i—C20—H20119.8O5iii—Mn2—O989.33 (10)
C19—C20—H20119.8O9iii—Mn2—O9180.0
C22—C21—H21A109.5O7iv—Mn3—O7v180.000 (1)
C22—C21—H21B109.5O7iv—Mn3—O4vi91.32 (10)
H21A—C21—H21B109.5O7v—Mn3—O4vi88.68 (10)
C22—C21—H21C109.5O7iv—Mn3—O488.68 (10)
H21A—C21—H21C109.5O7v—Mn3—O491.32 (10)
H21B—C21—H21C109.5O4vi—Mn3—O4180.0
O11—C22—N1117.5 (3)O7iv—Mn3—O1392.39 (12)
O11—C22—C21122.2 (4)O7v—Mn3—O1387.61 (12)
N1—C22—C21120.3 (4)O4vi—Mn3—O1389.45 (10)
N1—C23—H23A109.5O4—Mn3—O1390.55 (10)
N1—C23—H23B109.5O7iv—Mn3—O13vi87.61 (12)
H23A—C23—H23B109.5O7v—Mn3—O13vi92.39 (12)
N1—C23—H23C109.5O4vi—Mn3—O13vi90.55 (10)
H23A—C23—H23C109.5O4—Mn3—O13vi89.45 (10)
H23B—C23—H23C109.5O13—Mn3—O13vi180.000 (1)
N1—C24—H24A109.5O8v—Mn4—O15112.11 (12)
N1—C24—H24B109.5O8v—Mn4—O395.84 (11)
H24A—C24—H24B109.5O15—Mn4—O391.37 (12)
N1—C24—H24C109.5O8v—Mn4—O1686.47 (12)
H24A—C24—H24C109.5O15—Mn4—O1683.87 (12)
H24B—C24—H24C109.5O3—Mn4—O16175.21 (11)
C26—C25—H25A109.5O8v—Mn4—O14149.65 (11)
C26—C25—H25B109.5O15—Mn4—O1495.14 (11)
H25A—C25—H25B109.5O3—Mn4—O1496.63 (11)
C26—C25—H25C109.5O16—Mn4—O1483.32 (12)
H25A—C25—H25C109.5O8v—Mn4—O1393.91 (12)
H25B—C25—H25C109.5O15—Mn4—O13151.48 (10)
O12—C26—N2115.4 (4)O3—Mn4—O1397.61 (12)
O12—C26—C25123.0 (4)O16—Mn4—O1386.39 (12)
N2—C26—C25121.3 (3)O14—Mn4—O1357.05 (10)
N2—C27—H27A109.5C22—N1—C23124.7 (3)
N2—C27—H27B109.5C22—N1—C24118.2 (3)
H27A—C27—H27B109.5C23—N1—C24116.8 (3)
N2—C27—H27C109.5C26—N2—C27119.0 (3)
H27A—C27—H27C109.5C26—N2—C28118.4 (3)
H27B—C27—H27C109.5C27—N2—C28121.8 (3)
N2—C28—H28B109.5C34—N3—C36119.8 (3)
N2—C28—H28C109.5C34—N3—C35123.4 (3)
H28B—C28—H28C109.5C36—N3—C35116.6 (3)
N2—C28—H28A109.5C38—N4—C40117.4 (4)
H28B—C28—H28A109.5C38—N4—C39122.2 (3)
H28C—C28—H28A109.5C40—N4—C39120.4 (4)
O13—C29—O14117.6 (3)C1—O1—Mn1124.7 (2)
O13—C29—C30121.1 (4)C1—O2—Mn2143.9 (2)
O14—C29—C30121.1 (4)C8—O3—Mn4132.4 (2)
C31—C30—C32ii121.0 (4)C8—O4—Mn3136.6 (2)
C31—C30—C29122.6 (4)C9—O5—Mn2141.5 (2)
C32ii—C30—C29116.2 (4)C9—O6—Mn1iii130.9 (2)
C30—C31—C32120.1 (4)C16—O7—Mn3vii142.6 (3)
C30—C31—H31120.0C16—O8—Mn4v124.3 (3)
C32—C31—H31120.0C17—O9—Mn2133.0 (2)
C31—C32—C30ii118.7 (4)C17—O9—Mn194.1 (2)
C31—C32—H32120.6Mn2—O9—Mn1108.62 (11)
C30ii—C32—H32120.6C17—O10—Mn188.0 (2)
C34—C33—H33A109.7C22—O11—Mn1125.1 (2)
C34—C33—H33B108.9C26—O12—Mn1130.9 (3)
H33A—C33—H33B109.5C29—O13—Mn3131.9 (2)
C34—C33—H33C109.8C29—O13—Mn491.6 (2)
H33A—C33—H33C109.5Mn3—O13—Mn4109.57 (12)
H33B—C33—H33C109.5C29—O14—Mn493.1 (2)
O15—C34—N3121.7 (3)C34—O15—Mn4144.9 (3)
O15—C34—C33121.3 (3)C38—O16—Mn4152.1 (3)
N3—C34—C33116.9 (3)O17viii—O17—H17C142.0
N3—C35—H35A109.5O17viii—O17—H17B72.4
N3—C35—H35B109.5H17C—O17—H17B111.4
H35A—C35—H35B109.5
O1—C1—C2—C34.4 (6)O2—Mn2—O5—C9132.3 (4)
O2—C1—C2—C3174.9 (3)O9iii—Mn2—O5—C940.6 (4)
O1—C1—C2—C7174.6 (3)O9—Mn2—O5—C9139.4 (4)
O2—C1—C2—C76.1 (6)O5—C9—O6—Mn1iii9.2 (6)
C7—C2—C3—C40.3 (5)C10—C9—O6—Mn1iii172.9 (3)
C1—C2—C3—C4178.7 (4)O8—C16—O7—Mn3vii45.6 (7)
C2—C3—C4—C50.8 (6)C13—C16—O7—Mn3vii128.3 (4)
C3—C4—C5—C61.8 (6)O7—C16—O8—Mn4v14.4 (6)
C3—C4—C5—C8179.4 (4)C13—C16—O8—Mn4v159.5 (3)
C4—C5—C6—C75.7 (6)O10—C17—O9—Mn2109.5 (4)
C8—C5—C6—C7176.6 (4)C18—C17—O9—Mn273.8 (4)
C5—C6—C7—C27.0 (6)O10—C17—O9—Mn110.8 (3)
C3—C2—C7—C64.2 (6)C18—C17—O9—Mn1165.9 (3)
C1—C2—C7—C6174.8 (4)O2iii—Mn2—O9—C1721.5 (3)
C4—C5—C8—O4171.6 (4)O2—Mn2—O9—C17158.5 (3)
C6—C5—C8—O46.0 (6)O5—Mn2—O9—C17114.6 (3)
C4—C5—C8—O312.4 (6)O5iii—Mn2—O9—C1765.4 (3)
C6—C5—C8—O3170.1 (4)O2iii—Mn2—O9—Mn1136.19 (12)
O6—C9—C10—C11172.3 (4)O2—Mn2—O9—Mn143.81 (12)
O5—C9—C10—C119.6 (6)O5—Mn2—O9—Mn1130.74 (11)
O6—C9—C10—C157.4 (6)O5iii—Mn2—O9—Mn149.26 (11)
O5—C9—C10—C15170.6 (3)O6iii—Mn1—O9—C1791.53 (19)
C15—C10—C11—C120.3 (6)O1—Mn1—O9—C17163.16 (19)
C9—C10—C11—C12180.0 (4)O12—Mn1—O9—C1720.2 (4)
C10—C11—C12—C134.9 (6)O11—Mn1—O9—C1776.23 (19)
C11—C12—C13—C146.9 (6)O10—Mn1—O9—C175.85 (17)
C11—C12—C13—C16173.4 (4)O6iii—Mn1—O9—Mn246.66 (12)
C12—C13—C14—C154.0 (6)O1—Mn1—O9—Mn258.65 (13)
C16—C13—C14—C15176.3 (4)O12—Mn1—O9—Mn2158.4 (3)
C13—C14—C15—C100.9 (6)O11—Mn1—O9—Mn2145.59 (12)
C11—C10—C15—C143.1 (6)O10—Mn1—O9—Mn2132.33 (15)
C9—C10—C15—C14177.2 (3)O9—C17—O10—Mn110.1 (3)
C12—C13—C16—O8167.3 (4)C18—C17—O10—Mn1166.5 (3)
C14—C13—C16—O813.0 (6)O6iii—Mn1—O10—C17107.2 (2)
C12—C13—C16—O77.3 (6)O1—Mn1—O10—C1717.5 (3)
C14—C13—C16—O7172.4 (4)O12—Mn1—O10—C17166.22 (19)
O10—C17—C18—C20i169.4 (3)O9—Mn1—O10—C176.11 (18)
O9—C17—C18—C20i7.3 (5)O11—Mn1—O10—C1782.5 (2)
O10—C17—C18—C198.3 (5)N1—C22—O11—Mn1113.1 (3)
O9—C17—C18—C19175.0 (3)C21—C22—O11—Mn168.1 (5)
C20i—C18—C19—C202.1 (6)O6iii—Mn1—O11—C22151.8 (4)
C17—C18—C19—C20175.7 (3)O1—Mn1—O11—C223.8 (3)
C18—C19—C20—C18i2.1 (6)O12—Mn1—O11—C2293.4 (3)
O13—C29—C30—C3114.3 (6)O9—Mn1—O11—C22100.6 (3)
O14—C29—C30—C31161.4 (4)O10—Mn1—O11—C22158.4 (3)
O13—C29—C30—C32ii170.6 (3)N2—C26—O12—Mn1153.3 (3)
O14—C29—C30—C32ii13.7 (5)C25—C26—O12—Mn132.7 (6)
C32ii—C30—C31—C325.4 (7)O6iii—Mn1—O12—C2639.6 (4)
C29—C30—C31—C32179.7 (4)O1—Mn1—O12—C26143.1 (4)
C30—C31—C32—C30ii5.2 (7)O9—Mn1—O12—C2674.1 (5)
O11—C22—N1—C23175.1 (4)O11—Mn1—O12—C26129.6 (4)
C21—C22—N1—C236.0 (6)O10—Mn1—O12—C2651.3 (4)
O11—C22—N1—C242.1 (5)O14—C29—O13—Mn3110.7 (3)
C21—C22—N1—C24179.0 (4)C30—C29—O13—Mn373.4 (4)
O12—C26—N2—C2718.1 (5)O14—C29—O13—Mn47.7 (3)
C25—C26—N2—C27167.8 (4)C30—C29—O13—Mn4168.2 (3)
O12—C26—N2—C28152.3 (4)O7iv—Mn3—O13—C2926.8 (3)
C25—C26—N2—C2821.8 (5)O7v—Mn3—O13—C29153.2 (3)
O15—C34—N3—C360.1 (5)O4vi—Mn3—O13—C29118.1 (3)
C33—C34—N3—C36177.7 (3)O4—Mn3—O13—C2961.9 (3)
O15—C34—N3—C35174.9 (3)O7iv—Mn3—O13—Mn4137.83 (12)
C33—C34—N3—C357.5 (5)O7v—Mn3—O13—Mn442.17 (12)
O16—C38—N4—C40172.7 (4)O4vi—Mn3—O13—Mn4130.88 (12)
C37—C38—N4—C400.9 (6)O4—Mn3—O13—Mn449.12 (12)
O16—C38—N4—C396.6 (6)O8v—Mn4—O13—C29165.9 (2)
C37—C38—N4—C39179.8 (4)O15—Mn4—O13—C299.6 (3)
O2—C1—O1—Mn112.4 (5)O3—Mn4—O13—C2997.7 (2)
C2—C1—O1—Mn1168.4 (2)O16—Mn4—O13—C2979.7 (2)
O6iii—Mn1—O1—C169.4 (3)O14—Mn4—O13—C294.7 (2)
O12—Mn1—O1—C1157.2 (3)O8v—Mn4—O13—Mn358.07 (13)
O9—Mn1—O1—C133.0 (3)O15—Mn4—O13—Mn3145.60 (17)
O11—Mn1—O1—C1115.9 (3)O3—Mn4—O13—Mn338.36 (13)
O10—Mn1—O1—C152.7 (4)O16—Mn4—O13—Mn3144.27 (13)
O1—C1—O2—Mn240.3 (6)O14—Mn4—O13—Mn3131.35 (15)
C2—C1—O2—Mn2140.4 (3)O13—C29—O14—Mn47.9 (3)
O5—Mn2—O2—C186.5 (4)C30—C29—O14—Mn4168.0 (3)
O5iii—Mn2—O2—C193.5 (4)O8v—Mn4—O14—C2914.4 (3)
O9iii—Mn2—O2—C1175.8 (4)O15—Mn4—O14—C29168.7 (2)
O9—Mn2—O2—C14.2 (4)O3—Mn4—O14—C2999.3 (2)
O4—C8—O3—Mn43.0 (6)O16—Mn4—O14—C2985.5 (2)
C5—C8—O3—Mn4178.9 (2)O13—Mn4—O14—C294.50 (19)
O8v—Mn4—O3—C884.9 (3)N3—C34—O15—Mn4144.5 (3)
O15—Mn4—O3—C8162.7 (3)C33—C34—O15—Mn433.1 (6)
O14—Mn4—O3—C867.4 (3)O8v—Mn4—O15—C34124.5 (4)
O13—Mn4—O3—C89.9 (3)O3—Mn4—O15—C3427.6 (4)
O3—C8—O4—Mn336.0 (6)O16—Mn4—O15—C34151.8 (4)
C5—C8—O4—Mn3148.4 (3)O14—Mn4—O15—C3469.1 (4)
O7iv—Mn3—O4—C8153.1 (4)O13—Mn4—O15—C3481.1 (5)
O7v—Mn3—O4—C826.9 (4)N4—C38—O16—Mn460.4 (9)
O13—Mn3—O4—C860.7 (4)C37—C38—O16—Mn4114.0 (6)
O13vi—Mn3—O4—C8119.3 (4)O8v—Mn4—O16—C3885.6 (7)
O6—C9—O5—Mn28.0 (7)O15—Mn4—O16—C38161.7 (7)
C10—C9—O5—Mn2170.1 (3)O14—Mn4—O16—C3865.8 (7)
O2iii—Mn2—O5—C947.7 (4)O13—Mn4—O16—C388.5 (7)
Symmetry codes: (i) x, y+1, z+1; (ii) x+3, y+2, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+2, z; (vi) x+2, y+2, z; (vii) x1, y, z; (viii) x+2, y+3, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H17B···O16viii0.852.613.236 (7)131
O17—H17B···N4viii0.852.623.463 (8)170
Symmetry code: (viii) x+2, y+3, z.

Experimental details

Crystal data
Chemical formula[Mn6(C8H4O4)6(C4H9NO)8]·H2O
Mr2029.30
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.924 (9), 14.533 (13), 16.990 (16)
α, β, γ (°)69.947 (13), 86.549 (14), 83.807 (14)
V3)2288 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.18 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.776, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
18098, 8890, 6477
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.121, 1.04
No. of reflections8890
No. of parameters591
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.42

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H17B···O16i0.852.613.236 (7)131
O17—H17B···N4i0.852.623.463 (8)170
Symmetry code: (i) x+2, y+3, z.
 

Acknowledgements

The work was supported by the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationHawxwell, S. M., Adams, H. & Brammer, L. (2006). Acta Cryst. B62, 808–814.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHe, J. H., Zhang, Y. T., Yu, J. H., Pan, Q. H. & Xu, R. R. (2006). Mater. Res. Bull. 41, 925–933.  CrossRef CAS Google Scholar
First citationLi, J. R., Kuppler, R. J. & Zhou, H. C. (2009). Chem. Soc. Rev. 38, 1477–1504.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, C. A., Blake, A. J., Hubberstey, P. & Schröder, M. (2005). Chem. Commun. pp. 5435–5437.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m843-m844
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds