organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl­enediaminium dinicotinate

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayitzhao@yahoo.com.cn

(Received 12 June 2011; accepted 18 June 2011; online 25 June 2011)

In the title compound, C2H10N22+·2C6H4NO2, the cation lies on an inversion centre. The asymmetric unit is composed of one nicotinate anion and one half ethyl­enediaminium cation. All the amino H atoms are involved in N—H⋯O and N—H⋯N hydrogen bonds. These hydrogen bonds link the ionic units into a three-dimensional network. In addition, ππ inter­actions between pyridine rings [centroid–centroid distance = 3.6037 (7) Å] further stabilize the crystal structure.

Related literature

For applications of amino compounds, see: Fu et al. (2010[Fu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282-285.]); Aminabhavi et al. (1986[Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·2C6H4NO2

  • Mr = 306.32

  • Monoclinic, P 21 /c

  • a = 6.2953 (13) Å

  • b = 16.835 (3) Å

  • c = 6.8288 (14) Å

  • β = 102.03 (3)°

  • V = 707.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 7181 measured reflections

  • 1618 independent reflections

  • 1162 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.147

  • S = 1.08

  • 1618 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯N2i 0.90 2.24 2.971 (3) 138
N1—H1C⋯O1ii 0.90 1.85 2.729 (3) 164
N1—H1A⋯O2 0.90 1.83 2.711 (3) 166
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The amino derivatives have found wide range of applications in material science, such as magnetic, fluorescent and dielectric behaviors, and there has been an increased interest motif in the preparation of amino cocrystal compounds (Aminabhavi et al., 1986; Fu, et al. 2010). We report here the crystal structure of the title compound. In the title compound, [(C2H10N2)(C6H4NO2)2], the cation lies on inversion centre. The asymmetric unit is composed of one nicotinate anion and one-half ethylenediaminium cation, (Fig.1). Both the amine N atoms of the ethylenediaminium cation are protonated. The geometric parameters are in the normal range. In the crystal structure, all the amino group H atoms are involved in N—H···O and N—H···N hydrogen bonds (Table1). These hydrogen bonds link the ionic units into a three-dimentional network. In addition, the pyridine rings ππ (centroid-to-centroid distance = 3.6037 (7) Å, symmetry code: x, 1/2-y, 1/2+z) interactions further stabilized the structure (Fig. 2).

Related literature top

For applications of amino compounds, see: Fu et al. (2010); Aminabhavi et al. (1986).

Experimental top

A mixture of ethylenediamine (0.4 mmol) and nicotinic acid (0.8 mmol) were dissolved in distilled water (10 ml). Colorless block crystals suitable for X-ray analysis were obtained after 3 days.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C— H = 0.97 Å(methylene) and C— H = 0.93 Å(aromatic) with Uiso(H) = 1.2Ueq(C). The positional parameters of the H atoms (N1) were refined freely, in the last stage of the refinement, it were restrained with the H—N = 0.90 (2) Å, with Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis showing the one-dimensionnal hydrogen bondings chain (dashed line). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
Ethylenediaminium dinicotinate top
Crystal data top
C2H10N22+·2C6H4NO2F(000) = 324
Mr = 306.32Dx = 1.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1618 reflections
a = 6.2953 (13) Åθ = 3.3–27.5°
b = 16.835 (3) ŵ = 0.11 mm1
c = 6.8288 (14) ÅT = 298 K
β = 102.03 (3)°Block, colourless
V = 707.8 (3) Å30.30 × 0.05 × 0.05 mm
Z = 2
Data collection top
Rigaku Mercury2
diffractometer
1618 independent reflections
Radiation source: fine-focus sealed tube1162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD profile fitting scansh = 78
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2121
Tmin = 0.910, Tmax = 1.000l = 88
7181 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.4625P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1618 reflectionsΔρmax = 0.23 e Å3
101 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (6)
Crystal data top
C2H10N22+·2C6H4NO2V = 707.8 (3) Å3
Mr = 306.32Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.2953 (13) ŵ = 0.11 mm1
b = 16.835 (3) ÅT = 298 K
c = 6.8288 (14) Å0.30 × 0.05 × 0.05 mm
β = 102.03 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1618 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1162 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.056
7181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
1618 reflectionsΔρmin = 0.25 e Å3
101 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0882 (3)0.56578 (10)0.8189 (3)0.0407 (5)
O20.4172 (3)0.61799 (10)0.9019 (3)0.0415 (5)
C20.1214 (3)0.70652 (13)0.8166 (3)0.0226 (5)
N10.6707 (3)0.51198 (11)0.7583 (3)0.0284 (5)
H1A0.58130.54050.81820.043*
H1B0.68120.46030.79260.043*
H1C0.80570.53130.80160.043*
N20.1923 (3)0.84765 (12)0.8146 (3)0.0366 (5)
C30.0997 (4)0.72136 (13)0.7603 (4)0.0284 (5)
H3A0.19820.67950.74160.034*
C50.0222 (4)0.85903 (14)0.7611 (4)0.0346 (6)
H5A0.07270.91100.74230.042*
C10.2585 (4)0.77203 (14)0.8423 (4)0.0308 (6)
H1D0.40690.76280.88160.037*
C60.2143 (3)0.62372 (13)0.8475 (3)0.0248 (5)
C70.6080 (4)0.52001 (14)0.5385 (3)0.0278 (5)
H7B0.71820.49590.47730.033*
H7A0.59770.57580.50250.033*
C40.1726 (4)0.79878 (14)0.7320 (4)0.0326 (6)
H4A0.32020.80980.69420.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0329 (10)0.0209 (9)0.0674 (13)0.0021 (7)0.0086 (9)0.0007 (8)
O20.0237 (9)0.0340 (10)0.0633 (13)0.0046 (7)0.0006 (8)0.0115 (9)
C20.0247 (11)0.0225 (11)0.0210 (11)0.0010 (9)0.0058 (9)0.0012 (9)
N10.0268 (10)0.0222 (10)0.0342 (11)0.0025 (8)0.0016 (8)0.0010 (8)
N20.0402 (12)0.0247 (11)0.0466 (13)0.0054 (9)0.0128 (10)0.0029 (9)
C30.0278 (12)0.0223 (12)0.0346 (13)0.0024 (9)0.0050 (10)0.0004 (10)
C50.0485 (15)0.0214 (13)0.0370 (14)0.0037 (11)0.0158 (12)0.0031 (10)
C10.0262 (12)0.0286 (13)0.0383 (14)0.0031 (10)0.0081 (10)0.0022 (10)
C60.0257 (12)0.0234 (12)0.0253 (12)0.0000 (9)0.0057 (9)0.0028 (9)
C70.0266 (12)0.0236 (12)0.0326 (13)0.0029 (9)0.0048 (10)0.0022 (10)
C40.0299 (13)0.0308 (13)0.0370 (14)0.0047 (10)0.0069 (11)0.0044 (11)
Geometric parameters (Å, º) top
O1—C61.247 (3)N2—C11.341 (3)
O2—C61.257 (3)C3—C41.382 (3)
C2—C31.387 (3)C3—H3A0.9300
C2—C11.389 (3)C5—C41.373 (3)
C2—C61.509 (3)C5—H5A0.9300
N1—C71.476 (3)C1—H1D0.9300
N1—H1A0.9005C7—C7i1.510 (4)
N1—H1B0.9004C7—H7B0.9700
N1—H1C0.9004C7—H7A0.9700
N2—C51.337 (3)C4—H4A0.9300
C3—C2—C1116.9 (2)N2—C1—C2124.7 (2)
C3—C2—C6122.82 (19)N2—C1—H1D117.6
C1—C2—C6120.2 (2)C2—C1—H1D117.6
C7—N1—H1A110.7O1—C6—O2124.1 (2)
C7—N1—H1B110.0O1—C6—C2119.0 (2)
H1A—N1—H1B114.6O2—C6—C2116.87 (19)
C7—N1—H1C109.6N1—C7—C7i110.1 (2)
H1A—N1—H1C107.1N1—C7—H7B109.6
H1B—N1—H1C104.5C7i—C7—H7B109.6
C5—N2—C1116.2 (2)N1—C7—H7A109.6
C4—C3—C2119.6 (2)C7i—C7—H7A109.6
C4—C3—H3A120.2H7B—C7—H7A108.2
C2—C3—H3A120.2C5—C4—C3118.5 (2)
N2—C5—C4124.1 (2)C5—C4—H4A120.7
N2—C5—H5A118.0C3—C4—H4A120.7
C4—C5—H5A118.0
C1—C2—C3—C40.2 (3)C3—C2—C6—O11.0 (3)
C6—C2—C3—C4179.1 (2)C1—C2—C6—O1178.3 (2)
C1—N2—C5—C40.7 (4)C3—C2—C6—O2178.8 (2)
C5—N2—C1—C21.0 (4)C1—C2—C6—O21.9 (3)
C3—C2—C1—N20.7 (4)N2—C5—C4—C30.3 (4)
C6—C2—C1—N2178.6 (2)C2—C3—C4—C50.0 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N2ii0.902.242.971 (3)138
N1—H1C···O1iii0.901.852.729 (3)164
N1—H1A···O20.901.832.711 (3)166
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC2H10N22+·2C6H4NO2
Mr306.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.2953 (13), 16.835 (3), 6.8288 (14)
β (°) 102.03 (3)
V3)707.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7181, 1618, 1162
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.147, 1.08
No. of reflections1618
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.25

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N2i0.902.242.971 (3)138
N1—H1C···O1ii0.901.852.729 (3)164
N1—H1A···O20.901.832.711 (3)166
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the start-up fund of Anyang Institute of Technology.

References

First citationAminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128.  CrossRef CAS Web of Science Google Scholar
First citationFu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282-285.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds